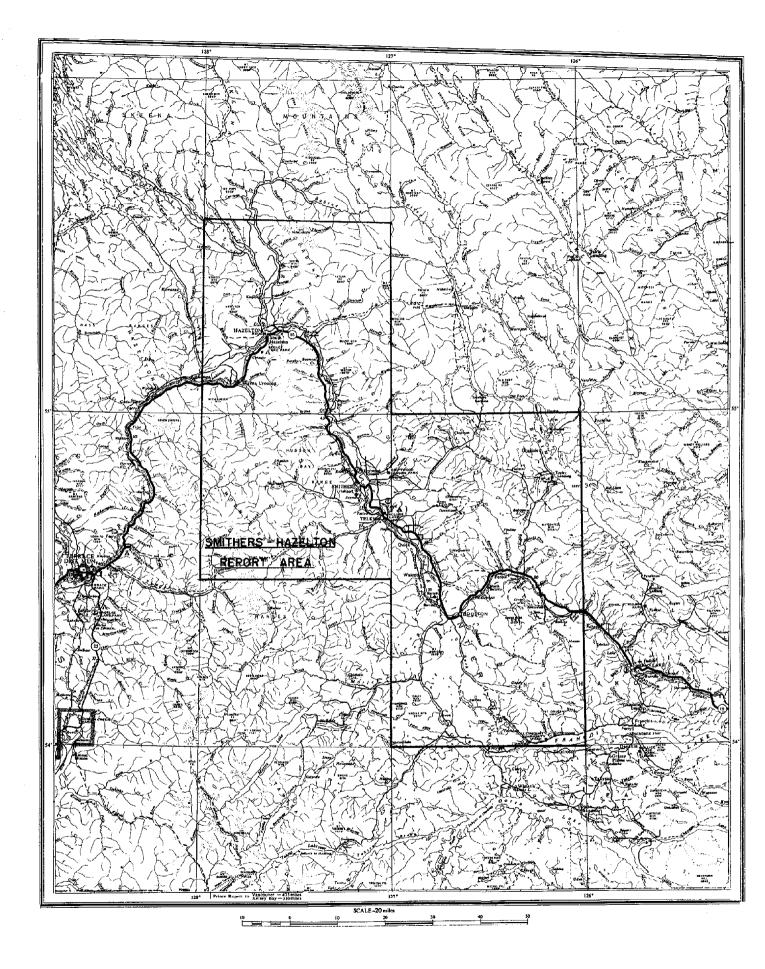


SOIL RESOURCES

of the


SMITHERS - HAZELTON AREA

by

G. G. Runka

Soil Survey Division British Columbia Department of Agriculture Kelowna, B.C. 1972

Ĵ.

TABLE OF CONTENTS

۰.

_

Introduction	Page 1
Acknowledgements	1
How to Use the Report	2
How the Mapping was Done	2
PHYSICAL FEATURES AND GENERAL INFORMATION	
Location and Physiography	3
History and Economy (References Only)	4
Bedrock Geology	5
Landforms and Soil Forming Deposits	6
GENERAL ENVIRONMENTAL FEATURES	
Climate	7
Vegetation	9
Soil Development and Classification	14
DESCRIPTION OF THE SOILS, THEIR ENVIRONMENT AND GENERAL USE	1
Properties of Soil Associations	16
Alix Soils	18
Babine Soils	20
Barrett Soils	22
Berman Soils	25
Causqua Soils	27
Cobb Soils	29
Cronin Soils	31
Crystal Soils	33
Dahl Soils	35

TABLE OF CONTENTS (Cont'd)

	Page
Decker Soils	37
Deserters Soils	39
Dragon Soils	42
Driftwood Soils	44
Hagwilget Soils	47
Kispiox Soils	49
Kitsuns Soils	51
Kitsguecla Soils	53
Kitwanga Soils	55
Kwun Soils	57
Mapes Soils	59
Morice Soils	61
Moricetown Soils	63
Natlan Soils	65
Nechako Soils	67
Oona Soils	69
Ormond Soils	71
Peta Soils	73
Pinkut Soils	75
Prairiedale Soils	77
Ramsey Soils	79
Roaring Soils	81
Saunders Soils	83
Savory Soils	85
Shass Soils	87

TABLE OF CONTENTS (Cont'd)

	Daaa
Shegunia Soils	Page 89
Sidina Soils	92
Skeena Soils	94
Skins Soils	96
Slug Soils	99
Snodgrass Soils	10 1
Stellako Soils	103
Suskwa Soils	106
Tatin Soils	108
Tiltusha Soils	110
Twain Soils	112
Utsun Soils	115
Vanderhoof Soils	117
Windfall Soils	119
LAND TYPES	
Organics Soils	122
USE AND MANAGEMENT OF THE SOILS	
Agriculture	125
Recreation	131
Engineering	136
Forestry	145
Wildlife	153
REFERENCES	157
APPENDIX	
I Soils	158

.

TABLE OF CONTENTS (Cont 'd)

APPENDIX (Cont'd)	-
II Vegetation	Page 218
III Climate	220
IV Description of Landforms	222
GLOSSARY	226

FIGURE NO.		
1	Physiography	Page 3
2	Bedrock Geology	4
3	Biogeoclimatic Zones	8
4	Vegetation	13
5	Physiographic Setting of Alix Soils	18
6	Physiographic Setting of Babine Soils	20
7	Physiographic Setting of Barrett Soils	2 2
8	Physiographic Setting of Berman Soils	25
9	Physiographic Setting of Causqua Soils	27
10	Physiographic Setting of Cobb Soils	29
11	Physiographic Setting of Cronin Soils	31
12	Physiographic Setting of Crystal Soils	33
13	Physiographic Setting of Dahl Soils	35
14	Physiographic Setting of Decker Soils	37
15	Physiographic Setting of Deserters Soils	39
16	Physiographic Setting of Dragon Soils	42
17	Physiographic Setting of Driftwood Soils	44
18	Physiographic Setting of Hagwilget Soils	47
• ¹⁹	Physiographic Setting of Kispiox Soils	49
20	Physiographic Setting of Kitsuns Soils	51
21	Physiographic Setting of Kitsguecla Soils	53
22	Physiographic Setting of Kitwanga Soils	55
23	Physiographic Setting of Kwun Soils	57
24	Physiographic Setting of Mapes Soils	59

•

J.

...

,

ï

LIST OF FIGURES (Cont'd)

FIGURE NO.					
25	Physiographic	Setting	of	Morice Soils	Page 61
26	Physiographic	Setting	of	Moricetown Soils	63
27	Physiographic	Setting	of	Natlan Soils	65
28	Physiographic	Setting	of	Nechako Soils	67
29	Physiographic	Setting	of	Oona Soils	69
30	Physiographic	Setting	of	Ormond Soils	71
31	Physiographic	Setting	o£	Peta Soils	73
32	Physiographic	Setting	of	Pinkut Soils	75
33	Physiographic	Setting	of	Prairiedale Soils	77
34	Physiographic	Setting	of	Ramsey Soils	79
35	Physiographic	Setting	of	Roaring Soils	81
36	Ph ysi og rap hic	Setting	of	Saunders Soils	83
37	Physiographic	Setting	of	Savory Soils	85
38	Physiographic	Setting	of	Shass Soils	87
39	Physiographic	Setting	of	Shegunia Soils	89
40	Physiographic	Setting	of	Sidina Soils	92
41	Physiographic	Setting	of	Skeena Soils	94
42	Physiographic	Setting	of	Skins Soils	96
<mark>،</mark> ⁴³	Physiographic	Setting	of	Slug Soils	9 9
44	Physiographic	Setting	of	Snodgrass Soils	101
4 5	Physiographic	Setting	of	Stellako Soils	103
46	Physiographic	Setting	of	Suskwa Soils	106
47	Physiographic	Setting	of	Tatin Soils	108
48	Physiographic	Setting	of	Tiltusha Soils	110
49	Physiographic	Setting	of	Twain Soils	112

LIST OF FIGURES (Cont'd)

FIGURE NO.		Page
50	Physiographic Setting of Utsun Soils	115
51	Physiographic Setting of Vanderhoof Soils	1 17
52	Physiographic Setting of Windfall Soils	119
53	Physiographic Setting of Organic Soils	122
54	Land Capability for Agriculture (Soils & Climate)	127

ŧ,

_

••

•

TABLE NO.		Page
1	Distribution of Vegetation Zones	9
2	Alix Soils	19
3	Babine Soils	21
4	Barrett Soils	23
5	Berman Soils	25
6	Causqua Soils	28
7	Cobb Soils	30
8	Cronin Soils	32
9	Crystal Soils	34
10	Dahl Soils	36
11	Decker Soils	38
12	Deserters Soils	40
13	Dragon Soils	43
14	Driftwood Soils	45
15	Hagwilget Soils	48
16	Kispiox Soils	50
17	Kitsuns Soils	52
18	Kitsguecla Soils	54
19	Kitwanga Soils	56
20	Kwun Soils	58
21	Mapes Soils	60
22	Morice Soils	62
23	Moricetown Soils	64
24	Natlan Soils	66

•

;

TABLE NO.		T
25	Nechako Soils	Page 68
26	Oona Soils	70
27	Ormond Soils	72
28	Peta Soils	74
29	Pinkut Soils	76
30	Prairiedale Soils	78
31	Ramsey Soils	80
32	Roaring Soils	82
33	Saunders Soils	84
34	Savory Soils	86
35	Shass Soils	88
36	Shegunia Soils	90
37	Sidina Soils	93
38	Skeena Soils	95
39	Skins Soils	97
40	Slug Soils	100
41	Snodgrass Soils	102
42	Stellako Soils	104
43	Suskwa Soils	107
4 4	Tatin Soils	109
45	Tiltusha Soils	111
46	Twain Soils	113
47	Utsun Soils	116
48	Vanderhoof Soils	118

۰

TABLE NO).	
49	Windfall Soils	Page 120
50	Organics Soils	123
51	Capability for Agriculture	125
52	Crop and Soil-Climate Suitability	128
53	Surface Erosion Potential	129
54	Agriculture Management Problems	129
55	Limitations of Soils For Recreational Uses	133
56	Landscape Personality	132
57	Inferred Engineering Characteristics of Soils .	136
58	Engineering Use of Soils	141
59	Forestry Interpretations	149
60	Sedimentation Yield Potential	153
61	Ungulate (Moose, Deer, Caribou, Goat) Use	154

Ċ.

INTRODUCTION

The soils inventory of the Smithers-Hazelton area (93L/NE, NW, SE and 93M/SW) in north central B. C. (Fig. 1) was carried out during summers 1969 and 1970. The purpose of the inventory was to provide capability ratings for Agriculture and Forestry for the Canada Land Inventory, and present by map and written report soil, landform, climate and vegetation information, their interrelationships, and performance characteristics as a physical base for land use planning. Since most human activities require land, the information in this report should have some relevance to all land uses. In general, to accomplish sustained yield of renewable resources and to conserve or preserve the soil resource while making wise use of this resource, it is necessary to have basic soils information to assist in making sound management interpretations.

The first part of the report summarizes related environmental information on physiography, geology, climate and vegetation. The second part of the report describes the soils and their interrelationships with other components of the ecosystem. The third part indicates the lands performance characteristics in terms of use for agriculture, forestry, engineering, recreation and wildlife. The last section provides detailed technical information on soils, climate and vegetation.

ACKNOWLEDGEMENTS

The mapping was carried out by N. Gough, J. Jungen, G. Young and U. Wittneben under the direction of the author. Others assisting in the field work, providing technical back-up and applying Canada Land Inventory capability ratings were R. Louie, R. Kowall, R. Kot, J. Wood and J. van Barneveld.

Laboratory analysis and data compilation by V. Osborne and staff.

Acknowledgement is made to J. H. Day, Canada Department of Agriculture and P. N. Sprout for field correlation and critical review of the report.

Mrs. J. Fisher assisted in the compilation, typing and preparation of the publication. Drafting of maps was by S. Bertolami, F. Waterman and C. Clement.

Grateful acknowledgement is made to the following individuals who contributed directly or indirectly to various parts of the report: R. Kowall, Forestry; R. Marshall, Climatology; J. van Barneveld, Vegetation; D. Benn, Recreation; D. Blower and G. Young, Wildlife; G. I. Howell Jones and R. Reid, maps and cartography; V. Osborne, Engineering.

The original map manuscript was compiled by F. Waterman, C. Clement and R. Reid.

How to Use the Report

The objective of this soils resource inventory is to provide soils information in a form useful to land managers. The report contains information on soils, geology, vegetation and climate.

Descriptions of the soils, their environment and use are presented in relation to the various mapping units (map symbols), and <u>the soils map show-</u> ing location and extent of the various soils should be used in combination with the report at all times.

For general information on the area the reader should refer to the sections titled "Physical Features and General Information" and "General Environmental Features". For a more detailed non-technical description of each soil its general use and extent the reader should refer to the section "Description of Soils, their Environment and General Use". For a detailed description and comparison of use and management of each of the soils, including engineering characteristics and uses, and interpretations for agriculture, forestry, wildlife and recreation, the section "Use and Management of Soils" should be consulted. Technical soil, climate and vegetation information is included in the Appendix.

How the Happing was Done

Prior to the field work, landforms were pretyped on aerial photographs. The landforms, or areas of recurring landscape patterns thus identified formed the mapping units.

Field survey by truck where access permitted, by helicopter and by selected transects on foot provided field checking of aerial photo interpretation and soils were examined in test pits, road cuts, etc. Various characteristics of the total land environment were recorded such as soil morphology (drainage, stoniness, thickness, layers) vegetation, topography, soil forming deposits and climatic indicators which might influence the land and its use.

Representative samples of the more important soils were obtained and analysed in the laboratory.

The mapping was carried out on 1 inch = 1 mile (80 chain) photography and boundaries were transferred to 1:50,000 scale base maps, which were subsequently photographically reduced to approximately 1:125,000 scale maps.

The reliability of mapping depends on access availability. Heavy reliance on aerial photo interpretations was necessary in areas with little access.

PHYSICAL FEATURES AND GENERAL INFORMATION

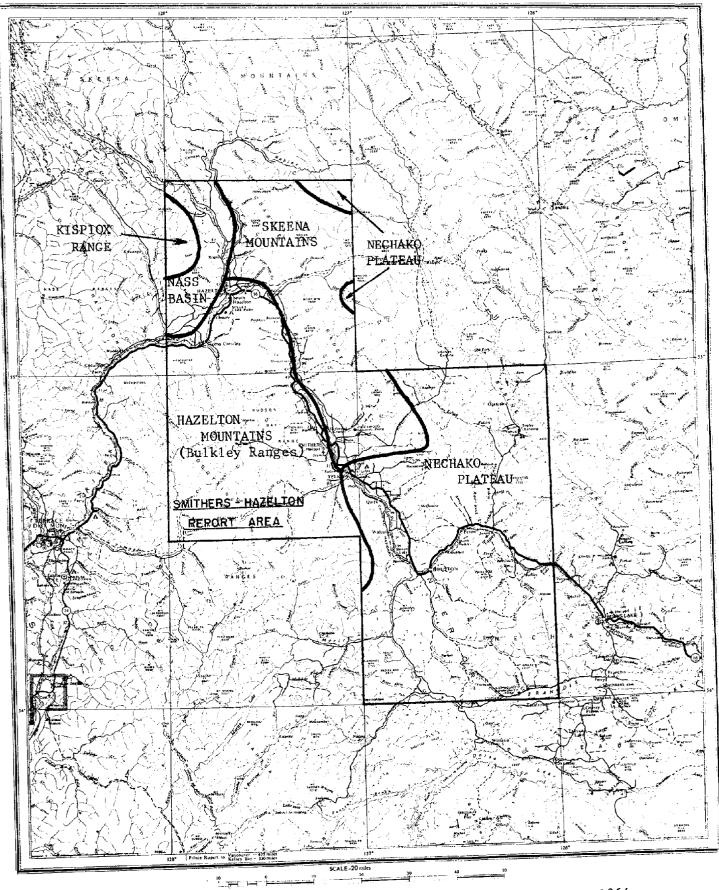
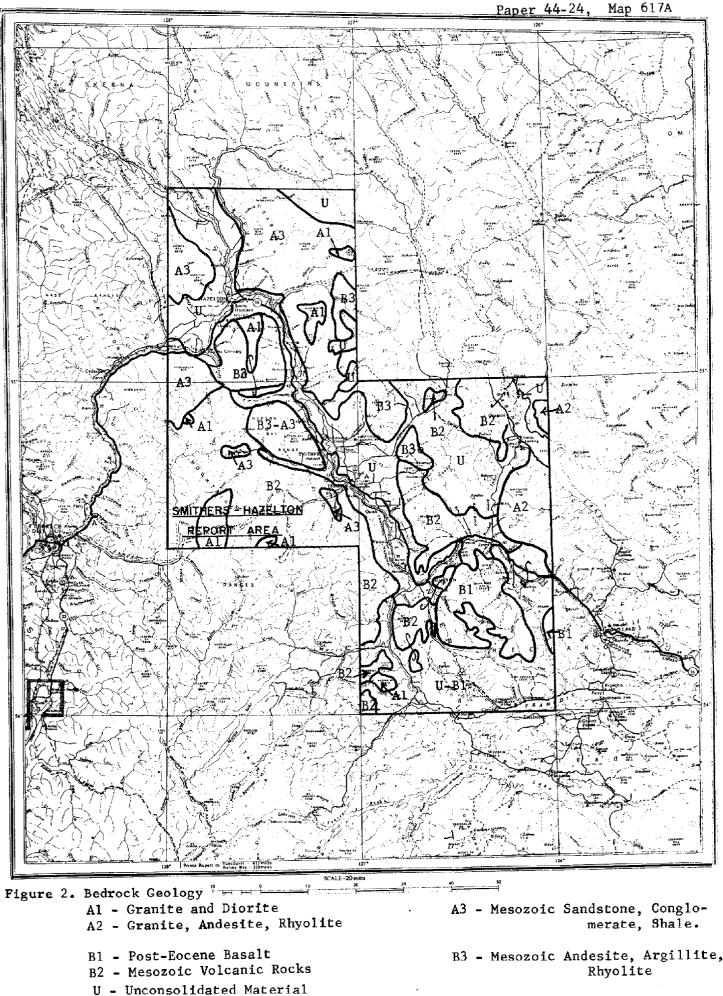



Figure 1. Physiography

Reference: Holland, S. S. 1964 Landforms of B. C.

History and Economy

History references include the following:

The Skeena, River of Destiny, - R.G. Large (1957), Mitchell Press; Gateway to Alaska, R.G. Large (1960), Mitchell Press; Notes from the Century Before, E. Hoagland (1969) Random House; Reports of Lands Service (1949-50); The Collins Overland Telegraph, From Journal of Givilization, New York, MacKay (1946), Provincial Archives.

The economy of the region is best described in, The Bulkley-Nechako Region - A B. C. Regional Economic Study (1970) B. C. Department of Industrial Development, Trade and Commerce.

Landforms: and Soil Forming Depositis

The soils in the area formed mainly in mineral materials most of which were deposited during glaciation. These soil forming materials are glacial till, glacial outwash, and glacial lacustrine deposits. More recently alluvium has been deposited in the valleys along streams while colluvium has been deposited on the steeply sloping valley walls. In places, organic soils are formed in decomposed and decomposing plant material that has accumulated in depressions.

These deposits can overlay one another at variable depths and are often influenced by underlying bedrock and its characteristics.

The major soil forming deposits are as follows:

A. <u>Glacial, Till</u>, construction of the product of the state of the second of the seco

(1) Unsorted mixture of compact, relatively impervious sand, silt, clay and stones deposited by glacial ice.

 rolling to flat and gently undulating glacial till deposits.
 Soil Associations derived from this material: Barrett (BA), Cronir (CN), Deserters (D), Driftwood (DD), Kwun (KN), Twain (TW), Saunders (SD).

(2) as (1) except some modification of surface material due to downslope movement by gravity.

- very steeply sloping mountainous till deposits.

- Soil Associations derived from this material: Causqua (CA), Cronin (CN), Driftwood (DD), Saunders (SD), Tatin (TT).

(3) Unsorted to partially sorted loose, porous material deposited by glacial ice with some modification and transportation by glacial meltwater.

- rolling to flat and gently undulating till deposits.

- Soil Associations derived from this material: Cobb (CB),

Crystal (CR), Kitwanga (KT).

B. Glacial Outwash

- (1) Relatively well sorted, stratified, loose, sands and gravels deposited by glacial meltwater.
 - flat or gently sloping terraces, plains, deltas and eskers.
 - Soil Associations derived from this material: Alix (AX), Kitsguecla (KA), Mapes (MS), Moricetown (MT), Peta (PA), Ramsey (R), Savory (SY), Shegunia (SH), Roaring (RG).
- (2) Poorly sorted stratified sands and gravels deposited by glacial meltwater in close contact with ice.
 - general tendency to be less well sorted than (1).
 - hummocky, strongly rolling kame mounds and terraces, often associated with or adjacent to valley walls.
 - Soil Associations derived from this material: Morice (M), Snodgrass (SO), Suskwa (SW).

C. Glacial Lacustrine

- well sorted, compact, stratified silts and clays deposited in temporary lakes during deglaciation.
- flat to rolling and somewhat dissected plains.

- Soil Associations derived from this material: Babine (BE), Berman (BN), Prairiedale (PR), Vanderhoof (V).

D. Colluvium

- highly variable, loose deposits which accumulate by the downstream movement of materials under the influence of gravity.
- very steep mountainous slopes, often closely associated with bedrock and glacial till.
- talus cones.
- Soil Associations derived from this material: Dahl (DL), Dragon (DN), Kispiox (KX), Kitsuns (KS), Natlan (NA), Oona (ON), Ormond (OD), Pinkut (PT), Shass (SS), Skins (SK), Utsun (UN), Windfall (WL), Sidina (SA).

E. Alluvium

- variable, often stratified and sorted materials laid down by recent streams and rivers as flat or gently undulating, channeled floodplains and fans.
- Soil Associations derived from this material: floodplains: Stellako (SL), Tiltusha (TA), Nechako (N); fans: Hagwilget (H), Slug (SG).
- F. Organic States and the states and

- generally unstratified organic materials which accumulate in and around closed basins or moisture receiving positions within the landscape.

- Soil Associations derived from this material: Organic (01), (02).

GENERAL ENVIRONMENTAL FEATURES

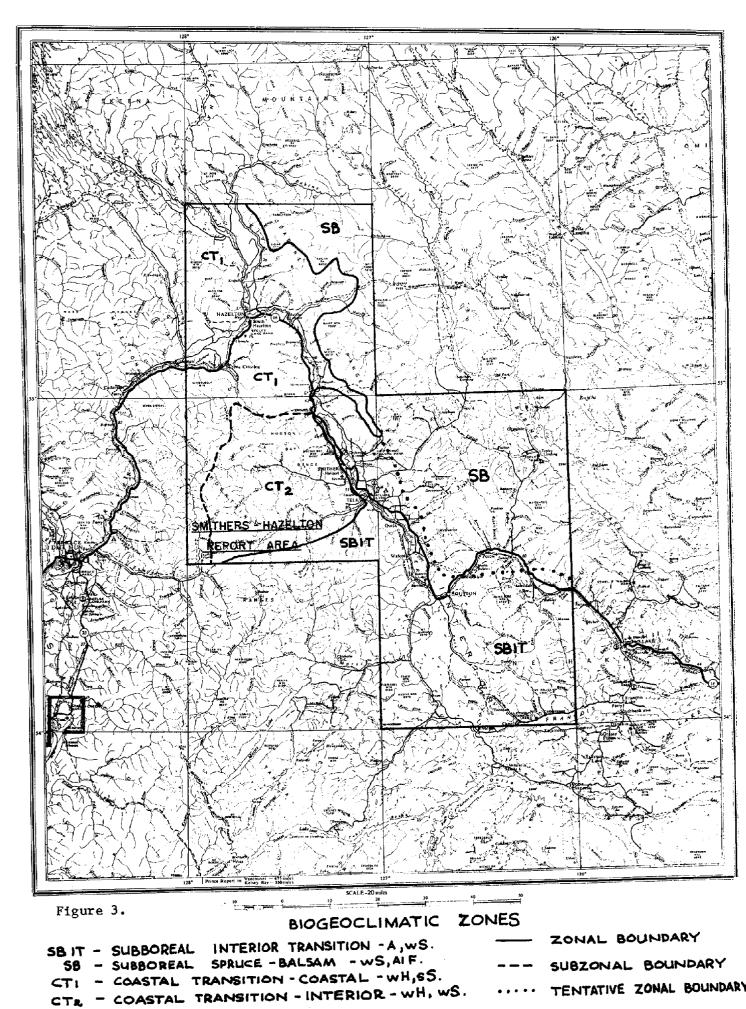
Climate

Altitude and relief play a major role in determining the climate within the area and local influences of topography, aspect, elevation and general landscape position are significant.

A continental type of climate with warm summers and long cold winters prevails throughout the plateau region (approximately eastern half of the area). The increased influence of the Pacific Ocean (higher precipitation, longer frost free periods, etc.) is evident in the western section and is reflected in the vegetation and land use.

Frost free seasons range from 20 days in frost susceptible low lying pockets in the eastern section of the area to 130 days on midslope positions within the Skeena Valley. Growing degree day accumulations range from 700 in the alpine zones of the Babine and Hazelton mountains to 2500 in the Skeena Valley on the western edge of the area. There is a trend in the valleys towards increased growing degree days and frost free periods from east to west. As well within the valleys temperature gradients vary and temperature inversions are commonplace often resulting in frost pockets. Large lakes such as Francois and Babine have a moderating effect. Growing degree days tend to decrease with increase in elevation. Mean annual temperatures are relatively stable with a slight upward trend to the west, i.e. 37° at Telkwa and 39° at New Hazelton.(See Appendix for tabular data).

Although precipitation generally increases with elevation, the rate of increase varies with every location, with aspect, massiveness of mountains and with distance or influence from the ocean. There is a general trend toward increased precipitation in the northwest, west and southwest portions of the area, due to the influence of the ocean to the west. Growing season precipitation ranges from approximately 7.5 inches in the east and most valley bottoms to 13.5 inches on mountain slopes at higher elevations in the west.


Vegetation

The surveyed area is referred to as a coastal transition area since characteristics of the Coastal forest are mixed in with those of the Subboreal Spruce forest and the Interior Trembling aspen-Douglas-fir-Lodgepole pine forest.

On the basis of the distribution of each of the forest types and the degree to which each type is expressed in its forest zones, four sections have been recognized.

These are:

A. Coastal transition, with a strong expression of coastal characteristics (CT1).

DISTRIBUTION OF VEGETATION ZONES

SMITHERS-HAZELTON REPORT AREA

Table 1

Section A: Coastal Tran (CT1)	sition 1		Section B: Coastal Transiti (CT2)	on 2		Section C: Subboreal Spri (SB)	uce		Section D:. Subboreal-Int (SBIT)	erior Transi	tion
Vegetation Z	one	Altitudinal Limits (Ft.)	Vegetation Zone		Altitudinal Limits (Ft.)	Vegetation Zo		Altitudinal Limits (Ft.)	Vegeration Z		Alticudina Limits (Fr
	Subzone	Lower Upper		Subzone .	Lower Upper		Subzone	Lower Upper_		Subzone	Lower Uppe
1. Cedar- Hemlock		2200-(4300), 5000	1. Coastal transition 2	Cedar- Hemlock	2500~4500	l. White spruce- Alpine fir		belou 3500	1. Subboreal Interior- transition	spruce-	below 3000
				Eng. spruce Alpine fir- Interior transition	2000-3500					White spruce- Interior- Eng. spruce Alpine fir transition	3000-3500
2. Engelm. spruce- Alpine fir		4300-(5300), 5500	2. Engelm. spruce- Alpine fir	· · · ·	3500-5500	2. Engelm. spruce- Alpine fir		3 500- 5500	2. Engelm. spruce- Alpine fir		3500-5000 (prob- ably)
	Krumm- holz	5300-5500		Krumahol z	(4500),5300 -5500		Krummholz	(4700),5000 -5500			
3. Alpine tundra		above 5500	3, Alpine cundra		above 5500	3. Alpine tundra (probably)		above 5500	3. Alpine tundra		above 5000 (probably)

- 9 -

- B. Coastal transition with a predominance of characteristics of the interior forest types (CL).
- C. Subboreal spruce, with a minor influence of the adjacent forest types (SB).
- D. Subboreal-Interior transition (SBIT), in which the characteristics of the Trembling Aspen-Douglas-fir-lodgepole pine forest are well represented.

The distribution of these sections is indicated in figure 3.

(A) <u>The Coastal Transition Section with strong coastal influences (CT1)</u> is characterized by the following zones:

1. Cedar-Hemlock zone.

In this zone the climatic climax forest consists of western hemlock, while western red cedar prevails on moister soils. The Cedar-Hemlock zone extends from the valley bottoms (1100 feet at South Hazelton and 1500 feet at Moricetown) to an elevation of approximately 5000 feet. At Nine Mile Mountain western hemlock occurs up to 5500 feet elevation on the north and east facing slopes. On Southern exposures the upper limit of the Cedar-Hemlock zone is found between 4000 and 4500 feet elevation.

High precipitation and a relatively deep snowpack, which prevents the soil from freezing, are characteristic conditions for this forest type. Deep podzolic profiles form on the well drained materials. Western red cedar tends to dominate on finer textured, less acidic and moister soils.

On the moist and finer textured soils in this zone, seral stages are characterized by an abundance of shrubs, including willows, red ozier dogwood and hazel with a lush growth of herbs, like twisted stalk and cow parsnip. The more acidic, coarser-textured soils of infrequently and intensively disturbed sites regenerate in trembling aspen. Under the latter conditions the stands take on many of the characteristics of interior forest types.

2. Subalpine Engelmann Spruce - Alpine Fir Zone.

As suggested by the name of this zone, variable proportions of Engelmann spruce and alpine fir form the climatic climax forest. Almost pure stands of spruce are restricted to the edaphically wetter positions, while alpine fir often dominates on drier sites. Although Engelmann spruce has a somewhat lower shade tolerance than alpine fir, the latter tends to become more prevalent after fires. This may be due to the greater resistance of alpine fir to wind and other adverse exposures. Engelmann spruce regenerates in the forest stand possibly after alpine fir has "stabilized" the atmosphere above ground level. A combination of better drained soils and adverse exposures often results in a predominance of alpine fir at the upper parts of the Engelmann spruce-Alpine fir zone especially just below the mountain peaks. It is possible that once the hardy alpine fir has stabilized the atmosphere, Engelmann spruce can successfully regenerate in vacant locations.

The Engelmann spruce-Alpine fir zone extends from the upper limit of the Cedar-Hemlock zone up to the wind exposed mountain peaks at approximately 5300 feet on east facing slopes and 5500 feet on the westerly exposures. The narrow Krummholz (crooked wood) subzone, an area in which the growth of trees is stunted, is found between 5300 feet and 5500 feet elevation. However, the width and the position of this subzone, and consequently the position of the upper boundary of the Engelmann Spruce-Alpine fir zone and the lower boundary of the Alpine tundra, vary considerably with the depth of the soil, the degree of exposure to wind, sun and frost and the depth and duration of the snow cover.

3. The Alpine tundra zone is found on exposed mountain slopes generally above 5500 feet. In snow chutes and on sites affected by cold air drainage this zone may extend downwards even below 4000 feet.

The Alpine tundra zone is characterized by the absence of alpine fir, Engelmann spruce and western hemlock. Some hardy shrubs, (mainly low-growing willows) and alpine species, which can mature and set seed rapidly, are adapted to the extremely short growing season and can survive the severe winters.

At locations where the snow cover is sufficient in depth and duration to prevent freezing of the soil and where sufficient moisture is available during the growing season, western hemlock may reach up to the timberline. In such locations mountain hemlock may be mixed in with the western hemlock as low as 3500 feet.

(B) The Coastal Transition Section CT_2 with a strong influence of the interior formations is characterized by:

1. The distribution of western hemlock. This species is restricted to protected northeast, north and west facing slopes normally below 4500 feet on which favorable moisture conditions occur.

2. Below 3500 feet elevation the presently predominantly seral vegetation of lodgepole pine and trembling aspen shows much similarity with the transition between the Subboreal Spruce zone and the Interior trembling aspen zone. However regeneration consists nearly always of alpine fir and spruce (probably a hybrid between Sitka and Engelmann spruce), so that it becomes extremely difficult to assign this zone to any particular class.

Some evidence suggests that Coastal forest features were more common in the CT_2 section than they are at present. If this is the case, succession from aspen and lodgepole pine towards western hemlock and Sitka spruce will be extremely slow.

· *

1217

3. The remainder of this section between 3500 feet and 5500 feet belongs to the Subalpine Engelmann spruce-Alpine fir zone. Lodgepole pine is the common seral species. After intensive disturbances trembling aspen can occur in the lower part of the zone. In this zone pockets of stunted growth may be found upwards from 4500 feet elevation. Here removal of the protective forest cover by extensive fires, has caused an expansion of the Krummholz subzone and brought the treeline down several hundred feet. Recovery from this condition may be expected to be extremely slow.

4. Above 5500 feet elevation Alpine tundra is extensive and particularly so on the exposed rounded peaks. Recovery from disturbances is extremely slow under the adverse conditions, creating this biotic zone.

(C) 1. In the Subboreal forest region (SB) white spruce and alpine fir are characteristic. Black spruce frequently occurs in wet depressions. Lodgepole pine commonly pioneers on infrequently burnt sites. However repetitive burning or other more intensive disturbances favor willows on moist to wet sites and trembling aspen on drier sites.

2. Above 3500 feet white spruce is replaced by Engelmann spruce to form a Subalpine Engelmann spruce-Alpine fir zone. This zone extends to approximately 5500 feet. The Krummholz subzone may extend downwards to approximately 4700 feet due to disturbance or local climatic variations. Several locations show evidence of slow recovery from disturbance through advancing timberlines and improved height growth on younger trees.

1. The lower zone of the Subboreal-Interior forest transition (SBIT) (D) consists of a mixture of trembling aspen stands, white spruce stands, white spruce-alpine fir stands, and some rare local inclusions of Douglas fir stands in the southeastern corner. In most cases lodgepole pine is the seral stage after light or moderate fire disturbance. Trembling aspen succession is more prevalent on areas repeatedly burned or formerly cultivated. Intensive, repeated disturbances may result in "temporary grasslands". On exposed sites such grasslands may become practically permanent due to their influence on micro-climate and soil. Productivity on these induced grasslands is nearly always low. In most cases trembling aspen permanently exerts pressure to reinvade these areas. Regeneration of white spruce under stands of trembling aspen and of lodgepole pine indicates that both species are seral to a white spruce climax. The occurrence of Douglas fir regeneration under a canopy of trembling aspen on some edaphic sites provides evidence of trembling aspen being a seral species to edaphic Douglas fir climax as well. Between the elevations of 3000 feet and 3500 feet the lower white spruce forest is intermixed with the subalpine Engelmann spruce Alpine fir forest.

2. Above 3500 feet the Engelmann Spruce-Alpine fir forest zone extends upwards to the peaks of the relatively low mountains. Lodgepole pine is the major seral species of this zone. The upper limit of this zone is expected to be approximately 5000 feet where the forest yields to the Alpine tundra zone.

The above is summarized in table 1. Figure 4 indicates vegetation symbols used in the diagrams of the "Description of Soils, their Environment and General Use".

နှ

88

Ę

Ш

٧V

Birch

Aspen

Maple

Shrubs

Herbs

Cottonwood

Legend for Vegetation 公 Douglas Fir Λ_{4} True Firs (Abies) Ponderosa Pine 斧 Spruce 会 Western White Pine Ą Lodgepole Pine Western Larch Δ Hemlock **人**公公

Western Red Cedar

Moist Mosses

Sedges

Mosses nn Lichen

Figure 4. Vegetation

Soil Development and Classification

Soils as natural bodies, are dynamic and did not always exist as such in the landscape. They formed from geologic materials with the interaction of other agencies commonly known as soil forming factors. These soil forming factors, including <u>climate</u>, <u>vegetation</u>, nature of the <u>parent material</u>, <u>relief and drainage</u>, <u>biological activity</u> and length of <u>time</u> determine the type of soil body that is formed.

Soil mapping involves the delination of areas of like soils with similar interpretive groupings.

In the Canadian classification scheme (3), used in this survey the soil order is the highest level of generalization. All of the soils within one order have one or more basic profile characteristics in common. Each soil order is further subdivided into a number of Great Soil Groups. These groups of soils have certain morphological features in common reflecting a similar environment of soil development (pedologic environment).

A soil may be rapidly drained, well drained or poorly drained, depending on its topographical position and size distribution of the mineral particles contained within it (texture). Gravel and coarse sand are the largest while clay particles are the smallest. Soils derived from coarse textured gravelly and sandy deposits are usually rapidly drained while finer textured soils on slopes and semi-flat areas free from the influence of groundwater are well drained. Poorly drained soils are those affected by groundwater.

There are 8 orders in the system of Canadian Soil Classification.

These are:

¢,

- (1) Grassland soils (Chernozemic Order)
- (2) Soils of poor structure and tilth (Solonetzic Order)
- (3) Soils of dry forested regions that have movement of clay within the soil (Luvisolic Order)
- (4) Soils of the humid forested regions high in iron and/or humus (Podzolic Order)
- (5) Soils of the dry interior forests (Brunisolic Order)
- (6) Young soils with poor layer (horizon) differentiation and development (Regosolic Order)
- (7) Groundwater saturated soils (Gleysolic Order)
- (8) Soils containing primarily decomposed and (or) semi-decomposed plant residues (Organic Order)

The aforementioned Orders are usually subdivided into two to four Great Soil Groups. For more detailed description on the technical classification of soils of the area see Canadian Soil Survey Committee Manual (3) and Appendix.

The following diagram indicates the relation of soil forming factors on soil development and thus the general environment.

DEVELOPMENT SEQUENCE FOR MEDIUM TO FINE TEXTURED SOILS

		THEREASTING EFFECTIVE HOISTURE						
VEGETATION	Purv	₽ ₽ キ	_\$v		ŀ			
			,					
SOIL DEVELO	PMENT				PODZOL			
ORDER		GRAY WO			1			
GREAT GROUP	DARK CRAY MOODED	CRAY WOODED	BRUNISOLIC GRAY WOODED	BISEQUA GRAY WOODED	BISEQUA WINO-PERRIC POL			
				LEN- COLLOIDAL HUNUS RENO	VED			
41	- ORGANIC LITTER - BLACK			Bfb	UXIDES REHOVED - WHITE			
	- PIBROUS ROOT DECOMPOSITIE		1	ACCINULATE:	MONTIS - DASK REDDISH RECHN			
			1	-Fe Al OXI	RUMUS - DARK REDDISH BROWN DES - REDDISH BROWN			
ле ⁻	WASHED LAYER, CLAY ETC.	REMOVED - LICHTER COLOR	1	Ae				
Bt	- ACCUMULATES CLAY ETC	BROWNER COLOR						
-				Bt				
-				i	1			
c -	- UNMODIFIED PARENT MATERI	AL - LIGHTER COLOR						
-								
LITHIC SUBGROUPS: D	EVELOPHENT SAME AS ABOVE P	ROFILES BUT WITH BEDROCK WITHIN 2	20 IN. OF SURFACE.					
				NAME AND PRODUCT MOTTLES.				
		ROFILES, BUT MOIST CONDITIONS CAU						
CLEVSOLS- NO RESEM	BLANCE TO ABOVE PROFILES.	WATER SATURATED MUCH OF THE YEAR	R, RESTRICTED ABRATION CAUSES OF	GANIC MATTER ACCUMULATION ON SURFA	CE AND DARK BLUE-GRAY			
		TS OBVIOUS WYDROPHYTIC VEGETATION						
CODORS N								
INCOMATION COMPOSE.								
VEGETATION SYMBOLS:	_		FORBES	- DRIER MOSSES				
VECETATION SYNBOLS:	Φ - trembling as		111		w c			
VECETATION SYMBOLS:	_		- m	- DRIER MOSSES	ES			
VEGETATION SYMBOLS:	Φ - trembling as		- m		es			
VECETATION SYMBOLS:	Φ - trembling as		- m		ES			
VECETATION SYMBOLS:	Φ - trembling as		- m		25			
VECETATION SYMBOLS:	Φ - trembling as		- m		ES			
VECTATION SYMBOLS:	Φ - trembling as		- m		ES			
	Φ - TREMBLING AS	INE ALPINE PIR	/// ¥ - Shrues	- NOISTER NOSSI				
	Φ - TREMBLING AS		/// ¥ - Shrues					
VELOPME	Φ - TREMBLING AS	INE ALPINE PIR	/// ¥ - Shrues	- NOISTER NOSSI				
VELOPME	Φ - TREMBLING AS	INE ALPINE PIR	/// ¥ - Shrues	ARSE TEXTUR				
VELOPME	Φ - TREMBLING AS	INE ALPINE PIR	₩ ¥ - SHRUBS	ARSE TEXTUR				
VELOPME	Φ - TREMBLING AS	INE ALPINE PIR	₩ ¥ - SHRUBS	ARSE TEXTUR				
	Φ - TREMBLING AS	INE ALPINE PIR	₩ ¥ - SHRUBS	ARSE TEXTUR				
VELOPME	Φ - TREMBLING AS	INE ALPINE PIR	₩ ¥ - SHRUBS	ARSE TEXTUR				
VELOPME	⊕ - TREMBLING AS € - LODGEROLE P NT SEQUE	INE ALPINE PIR	₩ ¥ - SHRUBS		ED SOILS			
VELOPME		INE ALPINE PIR	₩ ¥ - SHRUBS	ARSE TEXTUR				
	Φ - TREMBLING AS	INE ALPINE PIR	₩ ¥ - SHRUBS		ED SOILS			
VELOPME	Φ - TREMBLING AS	INE ALPINE PIR	₩ ¥ - SHRUBS		ED SOILS			
VELOPME	Φ - TREMBLING AS	INE ALPINE PIR	THCREASING EFFECT		ED SOILS			
VELOPME LIMATE EGETATION DIL DEVELO	Φ - TREMBLING AS	INE FOR MI	THCREASING EFFECT		ED SOILS			
VELOPME	Φ - TREMBLING AS	INE FOR MI	ТИС В НВ И ЗВ E DIUM TO CC ТИСКРАЗ ЈИС В РРРСТ 		ED SOILS			
VELOPME	Φ - TREMBLING AS	INE FOR MI	THCREASING EFFECT	PODZOL	ED SOILS			
VELOPME	Φ - TREMBLING AS	INTE FOR MI		- HOISTER HOSSI	ED SOILS			
VELOPME LIMATE				- MOISTER HOSSI DARSE TEXTURI TVE HOISTURE	ED SOILS			
VELOPME LIMATE EGETATION DIL DEVELO DRDER SREAT GROUP = SUBGROUP		INTE FOR MI		- MOISTER HOSSI	ED SOILS			
VELOPME LIMATE			EDIUM TO CO THEREASING EFFECT	- MOISTER HOSSI	ED SOILS			
VELOPME LIMATE EGETATION DIL DEVELO DRDER SREAT GROUP			EDIUM TO CO	- MOISTER HOSSI ARSE TEXTURI VARSE TEXTURI FODZOL HUNO - SZERJC FODZOL HUNO - SZERJC FODZOL HUNO - SZERJC FODZOL IJI - ORGANIC LITTER - COLUDIAL HUNGS - DARK BERIOTSH	ED SOILS			
VELOPME LIMATE EGETATION DIL DEVELO DRDER SREAT GROUP			EDIUM TO CO THEREASING EFFECT	- MOISTER HOSSI	ED SOILS			
VELOPME LIMATE EGETATION DIL DEVELO DRDER SREAT GROUP			EDIUM TO CO THEREASING REPECT	- MOISTER HOSSI ARSE TEXTURI PODZOL HUNO - FEBRIC FODZOL HUNO - FEBRIC FODZOL	ED SOILS			

LITHIC SUBGROUPS: DEVELOPMENT SAME AS ABOVE PROFILES BUT WITH BEDROCK WITHIN 20 IN. OF SURFACE.

GLEVED SUBGROUPS: DEVELOPMENT SAME AS ABOVE PROFILES, BUT MOIST CONDITIONS CAUSE DULLER COLORS AND BLUISH - CRAY AND REODISH MOTTLES.

GLEYSOLS: NO RESEMPLANCE TO ABOVE PROFILES. WATER SATURATED MUCH OF THE YEAR, RESTRICTED ARRATICH CAUSES ORGANIC MATTER ACCUMULATION ON SURFACE AND DARK BLUE-GRAY COLORS AND REDDISH NOTTLES, SUPPORTS OBVIOUS HYDROPHYTIC VEGETATION.

VEGETATION SYNBOLS;

TREMBLING ASPEN
 LODGEPOLE PINE

↓ - WHITE SPRUCE ↓ - ALPINE FIR III - PORBES V - SHRUBS V - SEDGES

- DRIER MOSSES

DESCRIPTION OF THE SOILS, THEIR ENVIRONMENT AND GENERAL USE

Properties of Soil Associations

Soils in this area were mapped using <u>soil associations</u>. A soil association is defined as a sequence of soils about the same age, derived from similar parent materials, and occurring under similar climatic conditions, but having different characteristics due to variation in relief and in drainage. Similar general climate conditions is taken to include one forest zone and some soil associations are defined on the basis of changes in forest zone i.e. Oona vs. Natlan.

<u>Map Units</u> are shown on the map as symbols e.g. KX1. These map units usually represent a segment of soil association and contain a dominant (or major) soil or soils which account for 40-100% of the soil delineation, with from 20-40% occurring as a minor component (see descriptive tables for each mapping unit). These minor components are those soils most commonly associated with the dominant soil of the map unit.

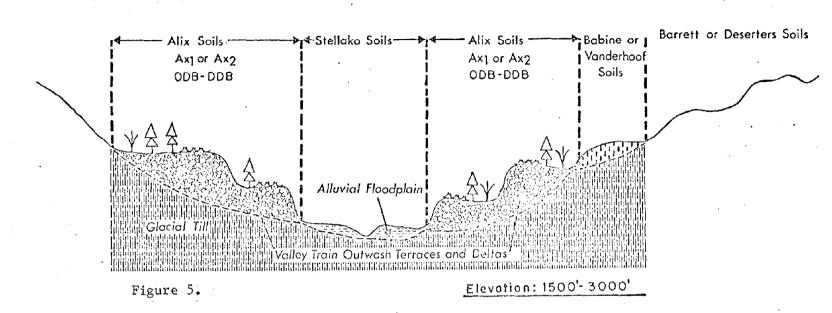
<u>Complexes</u> are areas delineated on the map where two or more map units from different soil associations are present in an arrangement too complex to separate at the scale of mapping. Most complexes used in this survey are composed of two map units, e.g. $SN_2^7 - KA^3$. However, a few complexes are composed of three map units, e.g. $KX_1^5 - SN_1^3 - UN^2$.

See Appendix for more technical detail on soils, climate and vegetation. See Use and Management section for more detail on Use and Management characteristics as only highlights related to use are presented in this section. See the Map legend for more detail on map unit symbol description.

Soil Subgroup Abbreviations for Figures

Chernozemic Order	Symbol
Orthic Dark Gray	ODG
Lithic Dark Gray	LiDG
Rego Dark Gray	RDG

Luvisolic (Gray Wooded) Order


Orthic Gray Wooded	OGW
Dark Gray Wooded	DGW
Brunisolic Gray Wooded	BrGW
Bisequa Gray Wooded	BiGW
Gleyed Orthic Gray Wooded	GIGW
Gleyed Brunisolic Gray Wooded	GIBrGW
Gleyed Dark Gray Wooded	GIDGW

Podzolic Order

Gleyed Ferro Humic Podzol	G1FHP
Orthic Humo-Ferric Podzol	OHFP
Mini Humo-Ferric Podzol	MHFP
Bisequa Humo-Ferric Podzol	BiHFP

Claud Orthic Home Fronts De				
Gleved Orthic Humo-Ferric Po	dzol G1HFP			
Gleyed Mini Humo-Ferric Podz Gleyed Bisequa Humo-Ferric P	ol G1MHFP			
Lithic Orthic Humo-Ferric Po	odzol G1BiHFF			
Lithic Mini Humo-Ferric Podz				
Bienie mini numo-relitic rouz			•4	
Brunisolic Order				
	· · · ·	a. taka		
Degraded Eutric Brunisol	DEB	a status	the second second second	
Orthic Sombric Brunisol	OSB		11	
Lithic Orthic Sombric Brunise				
Orthic Dystric Brunisol		11 - 11 yr.	n na	
Degraded Dystric Brunisol	DDB	an De la Myrae		
Alpine Dystric Brunisol	ADB	station of the		
Gleyed Orthic Dystric Brunise	G1DB			-
Gleyed Degraded Dystric Bruni	isol G1DDB			
Gleyed Alpine Dystric Bruniso	ol G1ADB			
Lithic Orthic Dystric Brunise			•	
Lithic Alpine Dystric Brunisc	ol LIADB	1. 1. 1.		
Regosolic Order				
	•	4.4 1. 24 - 24 - 2	and a second	
Orthic Regosol	OR	*3 [*]		
Cumulic Regosol	CuR			
Gleyed Orthic Regosol	GIR	·		_
Lithic Orthic Regosol	LiR	·		.,
Lithic Cumulic Regosol	Lik		and the second	
	: DIGUN	· · ·		
<u>Gleysolic</u> Order				+
			e de la companya de l	
Gl ey solic soils	G			
			الم المراجع ال المراجع المراجع	
Organic Order				
a				
Organic soils	0			
<u>Miscellaneous</u>		·	y 11	
Gleyed Subgroups				
Lithic Subgroups	GI Subs.	• •	e Caracteria de la composición de la comp	•
	Li Subs.			
	•	· · 1 .		
•	1			
	. ·			÷
		4		
	•			
			•	
	14 1			
) <u>:</u> :	Est en tr	 A second definition 	-
		Est en tr		ę

ALIX ASSOCIATION

Landform

Flat to gently sloping (0 to 6% slopes) valley-side glacial terraces or deltas with occasional upland gravel-filled channels. Surfaces are occasionally pitted, and pits have no obvious drainage outlets. Surface drainage patterns are non-existent and short v-shaped gullies typical of gravel materials are common on terrace edges.

Parent Material

Physiographic Setting

Water sorted, stratified gravels which are coarse to moderately coarse textured, often stony, highly permeable and loose. Of variable thickness but always exceeding 5 feet in depth and with stratified gravels and sands common at depth.

Environment (Soil-Climate-Vegetation Relationships)

The combination of the coarse soil texture and high permeability as well as relatively low precipitation (approximately 7.5 inches, May-September) results in a very dry, droughty summer environment. Cold winters and frost free periods of 40-80 days are common, although many of these valley-side terraces have excellent air drainage and provide the best annual climate in the valleys. Associated with these Brunisol soils in the area are lodgepole pine, trembling aspen, dry mosses and a sparse shrub and herb layer due to the lack of moisture. The AX2 map units exhibit a somewhat moister environment than AX1 and usually occur at higher elevations, in very narrow valleys, or in the western (moister) edge of this soils occurrence. Table 2. Alix Soils

Soil Association Map Units	Major Soil (40-100%)	Minor Soil (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex Acreage
	Orthic Dystr Brunisol	ric	rapid	flat terraces with steep edges next to valley center	lodgepole pine, aspen, dry mosses	5,208	5,052
		Degraded Dystric Brunisol	rapid	flat terraces with steep edges next to valley center	lodgepole pine, aspen, dry mosses		
AX2	Degraded Dystric Brunisol		rapid	flat terraces with steep edges next to valley center	lodgepole pine, aspen, dry mosses, white spruce	15,824	8,992
		Orthic Dystric Brunisol	rapid	flat terraces with steep edges next to valley center	lodgepole pine, aspen, dry mosses, white spruce		
					Total Acreage	21,032	14,044

Suitability for Different Uses

a. Agriculture

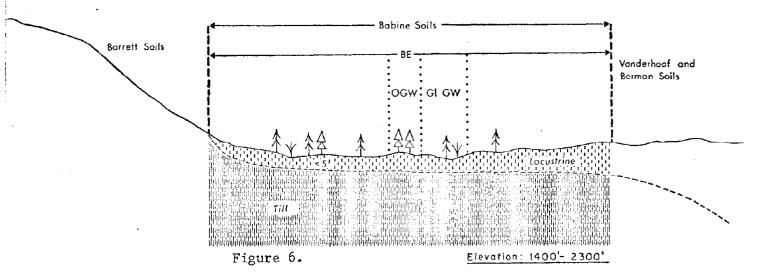
Although frost free periods are relatively better than on adjacent soils the droughty nature of the soil and stoniness limit the range of crops possible to forages without irrigation. Irrigation water requirement would be high. Where stoniness is not too severe a wide range of climatically adapted crops could be grown under irrigation. Irrigation water is usually close at hand.

b. Forestry

Mean annual increments range from 31-60 cu.ft./ac./yr. for lodgepole pine, with soil drought being the main limitation. Fire hazard is extremely high on these soils. Slash burning is not recommended as organic matter removal only reduces the soil moisture holding capacity and reduces growth.

c. Engineering and Urban Development

Excellent aggregate source. Road location and subdivision development possibilities excellent. Compressibility and bearing strength characteristics are variable and should be checked carefully when heavy structures are contemplated. Sewage effluent disposal potential is high, but some contamination of groundwater is possible under high density development.


d. Wildlife

Physiographic location next to streams and the flat topography near valley bottoms (lesser snow depths usually) make these terraces a useful part of ungulate winter range, although the droughty soils themselves do not produce useful food plants. The dry environment provides excellent upland bird nesting sites with water adjacent and feeding areas often close at hand in the upland or on agriculture lands. Much of the wildlife use is hampered by other use (transportation routes, homesites, agriculture).

e. Recreation

Excellent capability for most uses. Surface stoniness might limit use for intensive playing fields and topsoil application would be necessary. High irrigation requirement where grassed areas are necessary. Esthetic qualities of open lodgepole pine stands and the excellent views of the valley from the terrace edges are particularly attractive.

BABINE ASSOCIATION

Physiographic Setting

Landform

This glaciolacustrine landform is relatively flat, although erosion and underlying till result in a fair amount of undulating topography (2-9% slopes). An intense dendritic drainage pattern with associated rounded gullies typical of clay materials is common, although modified where very shallow to underlying glacial till.

Parent Material

The deposits consist of less than 5 feet of moderately fine to fine textured (loam to clay) stone-free, non-calcareous, layered, compact, nearly impervious, glaciolacustrine sediments overlying a compact medium textured, (loam to silty clay loam) stony glacial till, which is also nearly impervious.

Environment (Soil-Climate-Vegetation Relationships)

The Babine soils develop on the above parent materials under climates which have 7.5-10.5 inches, May-September precipitation, a mean annual temperature of approximately 379 and long cold winters, cool summers and relatively cold soil temperatures, especially under forest stands. Frost free periods range from 40 to 70 days. Associated major vegetation consists of white spruce with willow and lodgepole pine taking over after fire. In turn white spruce regenerates under the lodgepole pine and eventually becomes dominant. This is especially obvious on the moderately well drained topographic highs (Orthic Gray Wooded soils). Willow is more specific to the imperfectly drained swales (Gleyed Orthic Gray Wooded soils) and can be dominant in association with white spruce.

Table 3. Babine Soils

Soil Association Map Unit	Major Soil (40-100%)	Minor Soil (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex Acreage
BE .	Orthic Gray Wooded		moderately well	on crests or topographic highs in undulating topography	lodgepole pine and white spruce	5,344	12,728
		Gleyed Orthic Gray Wooded	imperfect	moist swales of un- dulating topography	white spruce and willow		

Suitability for Different Uses

a. Agriculture

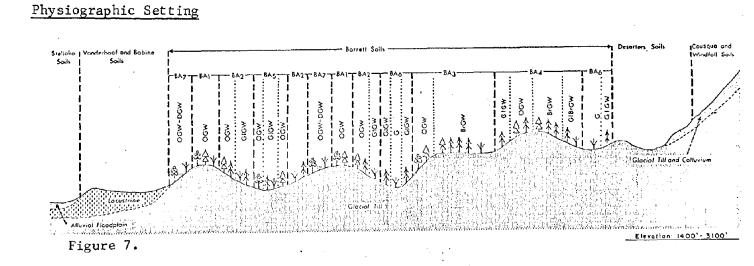
Although these soils are quite suitable for cultivation, short frost free periods limit their use to forage crops and hardy cereal grains except in the Bulkley Valley west of Moricetown, where a wider range of crops including vegetables is possible. Cool soil temperatures, slow permeability, high probability of winter killing in swales and necessary late spring cultivation due to the fine texture are the main management limitations. Advantages include high moisture holding capacity and relatively flat topography.

b. Forestry

Mean annual increments (amount of wood growth per year) range from 51 to 70 cu.ft./ac./yr. based on a 100 year rotation for lodgepole pine and spruce. The main limitations are shallow rooting depth (low permeability), perhaps cool soil temperatures and a slight soil moisture deficit during the growing season. The relatively flat topography lends itself to machine harvesting and planting. Due to poor trafficability when wet, winter logging is recommended on these soils.

c. Engineering and Urban Development

These nearly impermeable medium to fine textured soils are subject to frost heaving, have limited potential for effluent disposal, generally poor trafficability when wet and cutbanks have high erosion hazard. The only advantage is relatively flat topography.


d. Wildlife

Generally unsuitable for waterfowl, but suitable to varying degrees for ungulate wildlife depending upon successional stages of vegetation. After logging or fire, browse species will predominate for a short period, after which they will survive only in the moist swales (Gleyed Orthic Gray Wooded soils). As most areas are near major valleys, moderate wildlife suitability is hampered by other uses.

e. Recreation

Generally unsuitable except for extensive use because of the fine textured soils and associated poor suitability for effluent disposal, easily compacted soil surface, and general unattractiveness except as part of a pastoral setting.

BARRETT ASSOCIATION

Landform

An undulating to rolling (5-30% slopes) till plain of the interior plateau occasionally drumlinized but commonly a haphazard pattern of wave-like ridges, humps and swales of various sizes. A uniform modified dendritic surface drainage pattern with tributaries exhibiting little directional change on meeting major drainageways is common, and gullies have the characteristic u-shape of moderately fine textured materials.

Parent Material

A heterogeneous moderately fine textured (clay loam, silty clay loam) glacial till which is hard, compact, often stony and nearly impervious.

Environment (Soil-Climate-Vegetation Relationships)

These soils occur associated with the relatively drier climate in the area (4.5 to 7.5 inches, May to September precipitation-approximately 35 inches annual) and have a wide range of soil drainage conditions and frost free periods (45-85 days). Fire history and the variability in drainage is reflected in the vegetation composition more than usual. A complex and intricate combination of climatic and soil moisture factors occurs ranging from the drier often disturbed sites (Map Unit BA7)at lower elevations or on exposed slopes, to the shaded moister north slopes at higher elevations or on the edge of the coastal transition (BA3 and BA4). Along with this gross climatic variation are the soil moisture characteristics related to landscape position and soil drainage. In depressional areas (BA5,6,4,2) imperfectly and poorly drained soils have a higher shrub and white spruce component in the vegetation cover and this is likely to remain for along period of time. Mature stands

are also more common on these sites. On the well drained soils of (BA1,2, 3,4,7) fire more frequently changes the vegetation components drastically, but shrub cover is likely to be transitory on most except BA7.

Due to the nearly impervious nature of the soil, roots have difficulty in penetrating and only moist sites have roots below 30 inches.

Table 4. Barrett Soils

Soil sociation lap Unit	Major Soll (40-100%)	Minor Soll (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Comple Acreas
BA1	Orthic Cray Wooded		well to moderately well	moisture chedding convex ridges, humps, relatively steeper slopes	lodgepole pine, vhite spruce, aspen	39,032	37,268
BA2 Orthic Gray Wooded			well to moderately well	moisture shedding convex ridges, humps, relatively steeper slopes	lodgepole pine, white spruce, aspen		
		Gleyed Orthic Gray Wooded	imperfect	moisture receiving swales, flat plains and seepage channels	white spruce, abundant shrubs, lodgepole pine, aspen	70,928	20,55
BA3	Orthic Gray Wooded		well to moderately well	moisture shedding convex ridges, humps, relatively stecper slopes	lodgepole pine, white spruce, aspen		
	•	Brunisolic Gray Wooded	well to moderately well	moisture shedding convex ridges, humps, relatively steeper slopes (north and east aspects common)	white spruce, lodgepole pine, shrubs	58,324	15,08
BA4 Orthic Gray Wooded			well to moderately well	moisture shedding convex ridges, humps and steeper slopes	lodgepole pine, white spruce, aspen		
		Brunisolic Gray Wooded	well to moderately well	moisture shedding convex ridges, humps and steeper slopes			
		Gleyed subgroups	imperfect	moisture receiving swales, flat plains and seepage channels	lodgepole pine, white Spruce, aspen		
BA5 ,	Gleyed Orthic Gray Wooded		imperfect	moisture receiving swales, fiat plains and seepage channels	lodgepole pine, white spruce, aspen		
	t a	Orthic Gray Wooded	moderately well to well	moisture shedding convex ridges, humps and relatively steeper slopes	lodgepole pine, white spruce, aspen	3,000	5,46
BA6	Gleysolics		poor	deep swales and seepage channels, moisture receiving	shrubs, black spruce, white spruce, abundant shrubs, lodgepole pine	2,888	
		Gleyed Orthic Gray Wooded	imperfect	swales, flat plains and seepage chounels		;	
	Orthic Gray Wooded		well to moderately well	moisture shedding convex ridges, humps and relatively steeper slopes	aspen, lodgepole pine, Shrubs	46.056	16,88
		Dark Gray Wooded	well	moisture shedding convex ridges, humps and relatively steeper slopes (steepest slopes within Barrett)	abundant shrub, herb and grass cover, stunted aspen clumps	·	
					aspen crumps		

- 23 -

Suitability for Different Uses

a. Agriculture

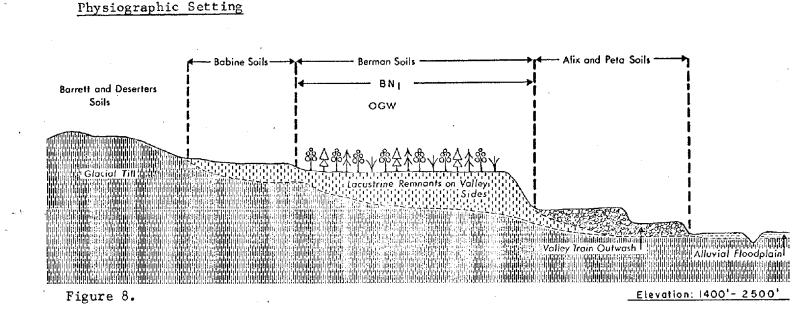
Although slopes do get rather severe in some locations all of the Barrett soils are arable. The main limitations are the hard, nearly impervious soil material (difficult to cultivate), some stoniness and in most cases short frost free periods (the greater area covered by 45 to 60 days frost free period with growing degree days approximately 1650). In the extreme western occurrence of these soils (mouth of the Bulkley Valley) frost free periods do rise to as high as 90 days, but this involves a very small area. The greater part of the acreage is limited to forage crops and hardy cereals and vegetables although a wider range of crops is possible in the limited area within the Bulkley Valley from Telkwa westward.

b. Forestry

The mean annual increments range from; (1) 71-90 cu.ft./ac./yr. for white spruce on the imperfectly drained soils within Map Units BA2,4,5,6; (2) on the moister Brunisolic Gray Wooded segments of Map Units BA3 and BA4, to 51-70 cu. ft./ac./yr. for lodgepole pine; (3) on the well drained Gray Wooded soils of Map Units BA1,2,3,4,5; (4) 11-30 cu.ft./ac./yr. for black spruce on the wet Gleysol soils Map Unit BA6, and (5) 30-51 cu.ft./ac./yr. for aspen of Map Unit BA7. Excellent topography for machine harvesting and planting. This soil material can be very sloppy and sticky during fall and spring and presents some harvesting problems. Some frost heaving and compaction can be expected.

c. Engineering and Urban Development

Barrett soils are subject to frost heaving, have limited potential for effluent disposal. Trafficability generally poor when wet and while only limited cuts are necessary for road construction (flat topography) cutbanks have high erosion hazard. Fluctuating water tables are associated with imperfectly and poorly drained soils in Map Units BA2.4.5.6.


d. Wildlife

Under natural conditions a wide range of vegetation suitable for ungulate and upland game bird food and cover could be expected on these soils. The lower elevations and exposed slopes of BA7 map units provide part of the ungulate winter range along the Bulkley Valley. Continuance of present habitat, its diversity and the various successional stages of vegetation on these soils will depend on mans use through forest management and monocultures, especially on the well drained soils in Map Units BA1,2,3,4,5,7.

e. Recreation

Generally unsuitable flat landscape except for extensive use such as hiking and riding. Some lakes and streams associated have higher capability. Rather attractive vegetation and use pattern associated with Map Unit BA7. Intensive use limited by poor trafficability when wet, compaction problems and limited potential for effluent disposal.

BERMAN ASSOCIATION

Landform

Flat to eroded and dissected valley-side terraces. Dissected units have numerous u-shaped progressing gullies with a complex dendritic (branched) surface drainage pattern. Slopes from 0 to 6% common; dissected areas (7-50%).

Parent Material

Medium to moderately fine textured (silty), stone-free, layered, and relatively permeable, glaciolacustrine (lakebed) sediments.

Environment (Soil-Climate-Vegetation Relationships)

These moderately well to well drained, moderately permeable, highly erodable soils are associated with a climate characterized by approximately 7.5 inches of May-September precipitation and frost free periods ranging from 60-80 days. Aspen is the dominant tree species with scattered white spruce and lodgepole pine. Abundance of the shrub and herb layer varies with stand density but generally is abundant. Roots penetrate easily.

Table 5. Berman Soils

Soil Association Map Units	Major Soil (40-100%)	Minor Soil (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex Acreage
BNI	Orthic Gray Wooded		moderately well to well	flat and dissected valley side terraces	aspen, white spruce, lodgopole pine	940	
	WOOded				100800-10 0100		

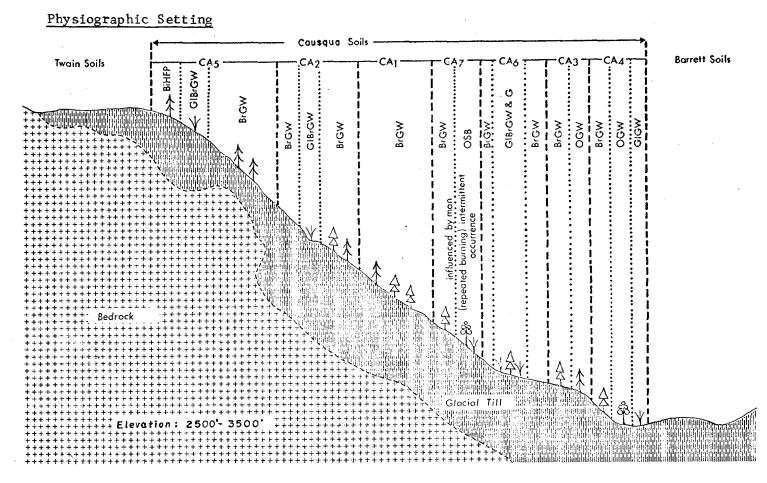
a. Agriculture

Highly desirable agricultural soil with no physical limitations where not dissected by gullies. Capable of producing a range of crops within climatic limits (forages, hardy cereals and vegetables). Often located in position of best air drainage on valley side.

b. Forestry

Mean annual increments range from 51-70 cu.ft./ac./yr. for lodgepole pine. These soils are highly erodable especially where dissected and careful harvesting procedures and skid trail construction, are essential to maintaining the site and preventing stream sedimentation. Frost heaving of seedlings likely.

c. Engineering and Urban Development


Frost heaving likely. Sliding and slumping hazard high on edge of terraces and in dissected areas. Ditch maintenance high due to flowing characteristics when wet. Trafficability generally poor when wet. Flat topography a road construction advantage. Moderately suitable for effluent disposal although some hazard of seepage between layers of material. Low bearing strength.

d. Wildlife

Location at lower elevations (lesser snow depths) and a soil-climate combination conducive to the production of food plants useful to both upland game birds and ungulates. An interspersion of dense stands provides necessary cover.

e. Recreation

Sticky and slippery when wet and subject to compaction and erosion. Occasional panoramic views of the valley, otherwise not generally suitable for intensive recreation use. CAUSQUA ASSOCIATION

Figure 9.

Landform

A very steeply sloping, (over 30%; average 45% slopes) glacial till plain on steep valley walls. Often parallel or modified dendritic surface drainage pattern, with abrupt directional changes where underlying bedrock is encountered. Gullies cut deeply into the surface, with u-shaped profiles common and typical of medium textured material.

Parent Material

A heterogeneous medium to moderately fine textured, (loam to silty clay loam) stony, relatively impermeable, compact glacial till which often has some surface modification due to downslope movement of material as a result of gravity. The surface modification may be a reworking of the local glacial till or an admixture of detritus from further up slope.

Environment (Soil-Climate-Vegetation Relationships)

The Causqua soils develop on the above parent materials under climates which have approximately 10.5 inches of May-September precipitation and mean annual temperatures of 36°. Long, cold winters, cool, moderately humid summers and relatively cool soil temperatures, especially under forest stands are typical. Some of these slopes are exposed to the south and west and are somewhat drier than surrounding moister environment. Frost free periods range from 40 to 60 days. Associated vegetation consists of white spruce and willow with lodgepole pine and trembling aspen taking over after fire. In turn white spruce regenerates under the lodgepole pine and aspen, and eventually becomes dominant. Willow is more specific to the imperfectly drained seepage slopes (predominantly Gleved Brunisolic Gray Wooded soils) and can be dominant on these sites.

Table 5, Causqua Soila

Soll sociation inp Units	Hajor Soil (40-100%)	Minor Soil (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex Acreage
CAI	Brunisolic Gray Woodød		well	shedding convex slope	white spruce, lodge- pole pin e	· 208	1,696
GA2	Brunisolic Gray Wooded		well	shedding convex slope	lodgepole pine, white Spruce		
		Gleyed Brunisolic Gray Wooded	imperfect	receiving concave slope base or scepage channel	villov, white spruce, lodgepole pine	772	1,660
CA3	Brunisolic Gray Wooded		vell	shedding convex slope	lodgepole pine, white spruce		
		Orthic Gray Wooded	vell	exposed convex shedding slope	lodgepole pine, white spruce, trembling aspen	1,900	5,272
CA4	Brunisolic Cray Wooded		vell	shedding convex slope	white spruce, lodgepole pine, willow	********	
		Orthic Gray Wooded	vell	exposed convex shedding slope	łodgepole pine, aspen, saskateon, white spruce	3,492	3,788
		Gleyed subgroups	imperfect	Tecciving concave slope base or scopage channel	white spruce, willow, lodgepole pine		
CAS	Brunisolic Gray Wooded	**********	well co moderately well	shedding convex slope	white spruce, lodgepole pine, willow, alpine fir		
		Bisequa Humo- Ferric Podzol				9,628	14,956
		Gleyed subgroups	imperfect	receiving concave slope base or seepage channel	white spruce, willow, lodgepole pine, alpine fir		
СА6	Gleyed Brunisolic Gray Wooded		imperfect	receiving concave slope base or seepage channel			
÷		Brunisolic Gray Wooded	moderately well	lower part of shedding slope		292	
4		Gleysolics	ροοτ	depressional concave or continuous seepage on Blope			
CA7	Brunisolic Gray Wooded		vell	shedding convex slope	white spruce, willow, lodgepole pine		
		Orthic Sombric Brunisol	well to moderately well	shedding convex slope	willow, forbes, aspen, lodgepole pine	`	840
	••••••				Total Acreage	16,292	28,212

a. Agriculture

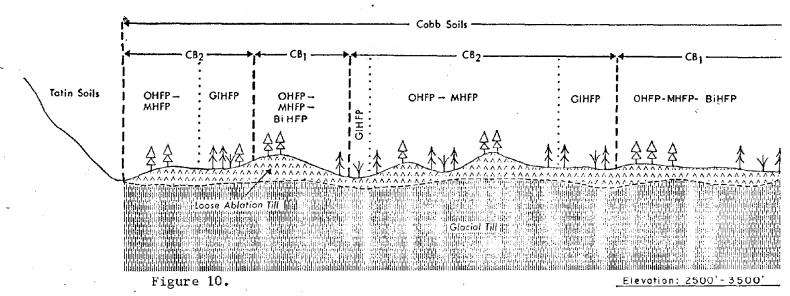
All soils non-arable. Limited natural grazing after fire and logging for a short period of time until conifer regeneration eliminates desirable grasses and forbes.

b. Forestry

Mean annual increments (amount of wood growth per year) ranges from 71-90 cu.ft./ac./yr. on Map Unit CA5 to 31-50 cu.ft./ac./yr. on the Gleysolic soils in Map Unit CA6 based on a 100 year rotation for lodgepole pine and white spruce. Main limitations are; (1) steep slopes which shed moisture, (2) rooting depth restrictions, (3) skid-road erosion hazard. Brushing in problems can be severe especially on Map Units CA5 and CA6. Main advantage is comparatively high productivity especially at the higher elevations and in moisture receiving positions.

c. Engineering and Urban Development

Not well suited to urban development because of the steep topography and relatively impermeable subsoil. Much cut and fill necessary for road construction. Moderate erosion and slump hazard. Relatively good source of road fill material.


d. Wildlife

High probability of browse species suitable for moose persisting for a long period of time, especially after logging and/or fires if not intensively managed for wood production. Moderate erosion hazard could result in stream sedimentation detrimental to fish production.

e. Recreation

Generally unattractive landscape with the exception of a few small streams and panoramic views from upper slopes. Not really suited for either extensive or intensive use.

COBB ASSOCIATION

Physiographic Setting

Low hummocky and kettled, or sag-and-swale till plain relief is common. Topography varies from gently to strongly rolling (5-30% slopes). The repetitiveness and uniformity of topography usually makes an impression (regular irregularity). Surface drainage patterns are nonintegrated and haphazard with little uniformity of pattern. A repetitive condition of short drainage channels ending in swales is common.

Parent Material

Loose, permeable, partially water sorted, stony, moderately coarse ablation materials of variable thickness (usually 7 or 8 feet) over compact, hard, nearly impervious moderately fine textured glacial till. Variability in the ablation overlay and its characteristics is high due to differences in thickness, stratification and textures because of its origin and deposition processes.

Environment (Soil-Climate-Vegetation Relationships)

Characteristics of the environment include a 10.5 - 13.5 inch May to September precipitation, with approximately 30 to 50 frost free days. The moderately coarse textured, permeable, Podzol soils are associated with lodgepole pine, Engelmann spruce, alpine fir occasionally and variable shrub cover. The relatively moist climate is somewhat counterbalanced by the low moisture holding capacity and high permeability of most of these soils. The humps, in fact, can be quite dry during the growing season while the swales are quite moist, (Gleyed soils of CB2) resulting in lodgepole pine and little shrub cover on the humps and Engelmann spruce, lodgepole pine and abundant shrub cover in the swales. Repeated fires which occur on interconnecting dry sites often results in a patchwork vegetation pattern. The depth to compact material although greater than 5 feet, can have a considerable affect on the surface conditions and environment.

Table 7. Cobb Soils

Soil Ssociation Map Units	Major Soil (40-100%)	Minor Soil (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex Acreage
CB1	Orthic Humo- Ferric Podrol		well to moderately well	hummiocks (humps) and shallow swales	lodgepole pine	5,468	32,376
		Mini Humo+ Ferric Podzol	well to moderately well	hummocks (humps) and shallow swales	lodgepole pine		
		Bisequa Humo-Ferric Podzol	moderately Well to Well	flatter greas and shallow swales	lodgepole pine, Engelmann spruce		
CB2	Orthic Humo- Ferric Podzol			hummocks (humps) and shallow swales	lodgepole pine	2,460	30,884
		Mini Humo- Ferríc Podzol	well	hummocks (humps) and shallow swales	lodgepole pine		
	ı	Gleyed subgroups	imperfect	swales or depressions .	Engelmann spruce, lodgepole pine and shrubs		
******				****			

Total Acreage 7,928

63,260

a. Agriculture

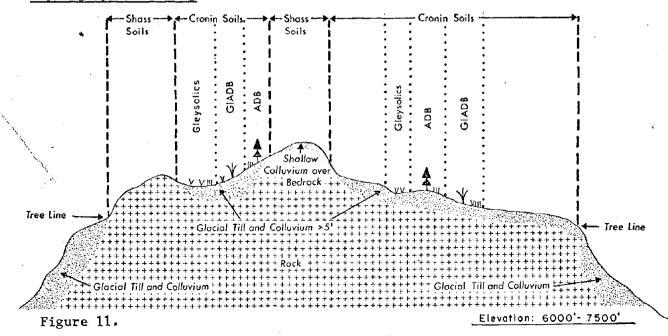
Mostly arable, but low capability with severe limitations of short frost free period, low soil moisture holding capacities, stoniness and rough topography. Suitable for production of hardy forage crops only. High probability of winter killing in swales.

b. Forestry

Mean annual increments range from 51-90 cu.ft./ac./yr. for lodgepole pine and white spruce, with soil drought being the main limitation. Slash burning not recommended as organic matter removal only reduces soil moisture holding capacity. Trafficability excellent.

c. Engineering and Urban Development

Some shallow aggregate sources (deposits not void of fine particles). Excellent for road locations and road fill material. Compressability and bearing strength characteristics are variable and should be checked carefully when heavy structures are contemplated. Fluctuating water tables in swales. Seepage along compact till underlay could present effluent disposal problem.


d. Wildlife

A wide variety of vegetation at various successional stages could be expected as a long term situation in this environment. Both cover and food plants should remain abundant under natural conditions for upland game birds and ungulates. At higher elevations snow depths would limit winter use by ungulates. The dry humps and moist swales and associated shrub and forest vegetation provide excellent grouse habitat.

e. Recreation

Location in the uplant forest area makes it undesirable for most intensive uses, although it is suitable for such uses. A wide variety of vegetation (fire history and soil drainage differences) provide an interesting hiking and riding environment.

CRONIN ASSOCIATION

Physiographic Setting

A depressional to rolling and moderately steeply sloping (2-40% slopes) bedrock controlled plain on mountain tops above tree line. Some evidence of frost action (frost polygons) and related upheaving of the microtopography. Gullies disoriented with abrupt directional changes caused by underlying bedrock.

Parent Material

More than 5 feet of heterogeneous moderately coarse to medium textured (gravelly sandy loam to loam), mixtures of glacial till, colluvium and detritus with variable permeability. Material is stony, bouldery and moderately loose.

Environment (Soil-Climate-Vegetation Relationships)

These soils occur in the alpine above tree line under severe climatic conditions characterized by less than 30 days frost free period, approximately 40 inches of annual precipitation, a mean annual temperature near 32°, and severe winds which result in extremely short summers and long cold winters. Associated vegetation is dwarfed, and on moderately well drained soils includes hardy forbes, heathers and grasses and scattered stunted clumps of alpine fir. On imperfectly drained soils, sedges, heathers and dwarf willow predominate. Frost heaving is common, especially in the imperfectly and poorly drained soils.

Soil Ssociation Map Units	Major Soil (40-100%)	Minor Soil (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex Acreage
CN	Alpine Dystric Brunisol		well to moderately well	slightly convex shedding slopes	forbes, grasses, stunted alpine fir, heathers	772	7,332
		Gleyed Alpinc Dystric Brunisol	imperfect	swales and seepage channels	dwarf willow, sedges, forbes		
		Gleysolics	poor	depressions and slopes with continuous moisture source	wet Alpine forbes		

Table 8. Cronin Soils

Suitability for Different Uses

a. Agriculture

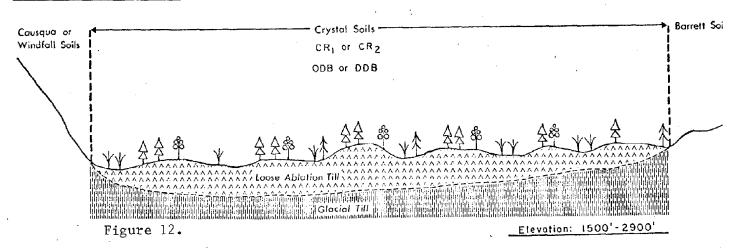
Limited natural grazing capability often in direct conflict with wild ungulates. Overgrazing could easily cause irreversible damage to the ecology.

b. Forestry

No wood production capability due to severe climatic limitations.

c. Engineering and Urban Development

Not suitable because of severe climate and difficult access.


d. Wildlife

Suitable as summer range for ungulates, but severe climate and deep snow accumulation limit winter use to wind swept slopes. Provides excellent ptarmigan habitat, especially those areas with imperfectly and poorly drained soils adjoining shallow to bedrock soils.

e. Recreation

Extremely attractive landscape in association with the surroundings. Panoramic views are common. These soils have a very low carrying capacity and ecological damage hazard is severe. Extensive use only with care.

CRYSTAL ASSOCIATION

Physiographic Setting

Landform

Low hummocky and kettled or sag-and-swale till plain relief is common. Topography varies from gently to strongly rolling (5-30% slopes). The repetitiveness and uniformity of topography usually makes an impression (regular irregularity). Surface drainage patterns are non-integrated and haphazard with little uniformity of pattern. A repetitive condition of short drainage channels ending in swales is common.

Parent Material

Loose, permeable, partially water sorted, occasionally stratified, stony, bouldery, moderately coarse ablation materials of variable thickness (usually 7 or 8 feet), over compact, hard, nearly impervious moderately fine textured glacial till. Variability in the ablation overlay and its characteristics is high due to differences in thickness, stratification, and textures because of its origin and deposition processes.

Environment (Soil-Climate-Vegetation Relationships)

The environment is characterized by approximately 7.5 inches of May to September precipitation and a frost free period of 60 to 80 days in combination with moderately coarse textured, permeable Brunisol soils supporting lodgepole pine and aspen on the humps and white spruce, willow and shrubs in the swales. The swale soils are not imperfectly drained as Cobb soils were due to the somewhat drier climate, but still obtain additional moisture as they are in a moisture receiving position. Variability of vegetation between the humps and swales is not as obvious as on the Cobb at higher elevations, but is still well reflected in forest composition, better productivity and abundance of shrubs and mosses. The depth to compact material although greater than 5 feet can have a considerable affect on the surface conditions and environment.

Table 9. Crystal Soils

Orthic					Acreage	Acreage
Dystric Grunisol		well	humps and shallow swales	lodgepole pine, aspen, white spruce	420	13,556
	Degraded Dystric Brunisol	well	humps and shallow swales	lodgepole píne, white spruce, shrubs		
Degraded Dystric Brunisol		well	humps and shallow swales	lodgepole pine, white spruce, shrubs	15,808	87,648
	Orthic Dystric Brunisol	well	humps and shallow swales	lodgepole pine, aspen, white spruce		
	legraded ystric	Degraded Dystric Brunisol egraded ystric runisol Orthic Dystric	Degraded well Dystric Brunisol egraded well ystric runisol Orthic well Dystric	brunisol Degraded well humps and shallow Dystric swales Brunisol degraded well humps and shallow ystric swales runisol Orthic well humps and shallow Dystric swales	Degraded well humps and shallow lodgepole pine, white Dystric swales spruce, shrubs Brunisol well humps and shallow lodgepole pine, white vegraded well humps and shallow lodgepole pine, white vstric swales spruce, shrubs runisol Orthic well humps and shallow Dystric swales spruce, shrubs	Degraded well humps and shallow lodgepole pine, white Dystric swales spruce, shrubs Brunisol well humps and shallow lodgepole pine, white vegraded well humps and shallow lodgepole pine, white vstric swales spruce, shrubs 15,808 runisol Orthic well humps and shallow lodgepole pine, white Dystric swales spruce, shrubs 15,808

Suitability for Different Uses

a. Agriculture

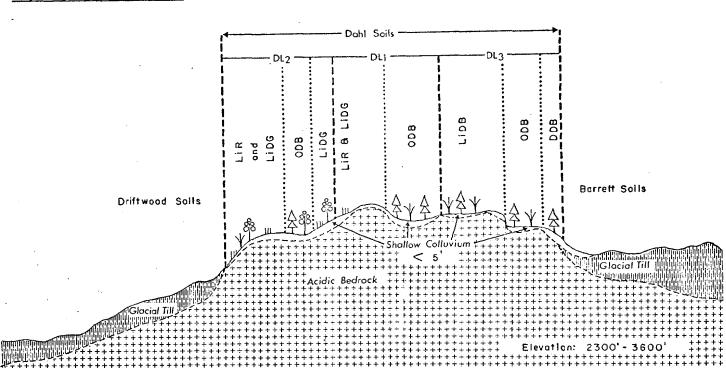
Mostly arable, but limitations of low moisture holding capacity, stoniness and in some cases rough topography along with a somewhat short frost free period. A moisture deficit during the growing season restricts crop range to forages without irrigation. With irrigation a somewhat wider range of crops including production of cereal grains, cool season vegetables and small fruits is possible under intensive management, although variability in texture of the plough layer could be a problem.

b. Forestry

Mean annual increments range from 51-70 cu.ft./ac./yr. for lodgepole pine with soil drought and growing season moisture deficit being the main limitations. Slash burning not recommended. Trafficability excellent.

c. Engineering and Urban Development

Some shallow aggregate sources (deposits not void of fine particles). Excellent for road location and road fill material. Compressability and bearing strength characteristics are variable and should be checked carefully when heavy structures are contemplated. Secpage along compact till underlay could present effluent disposal problems.


d. Wildlife

A wide variety of vegetation at various successional stages could be expected as a long term situation under natural conditions, but land use competition on these lower elevation soils and man's influence could be detrimental. Higher frost free periods and shallower snow depths help to provide a better wintering habitat for ungulates than the closely related Cobb soils at higher elevations.

e. Recreation

Suitable for most intensive uses and ideally situated adjacent to transportation routes. The establishment of campsite, hiking trails, and picnicking sites would present few problems on these soils. Stoniness and rough topography can be somewhat limiting.

DAHL ASSOCIATION

Physiographic Setting

Figure 13.

Landform

The surface form is typical of the underlying acidic bedrock as the surface mantle is less than 5 feet thick. Dome-shaped hills having rounded tops, and steep side slopes (40%+) are common. Where soil mantles are thin (lithic subgroups) a characteristic irregular pattern of curvilinear fractures modifys the surface. Surface dendritic drainage patterns are of varying density and channels tend to have a rounded shape with tributary intersections tending to resemble a right angle.

Parent Material

Shallow colluvium which is moderately coarse textured, permeable, stony, and loose glacial till. Material derived from rock materials which combine to form a surface mantle which moves down the steep rocky slopes. Hard or shattered rock is usually within 3 to 5 feet, where surface deposits are less than 20 inches lithic subgroups (shallow soils) are indicated.

Environment (Soil-Climate-Vegetation Relationships)

Soil developments would indicate that the plant ecology of the Dahl soils has been static for some time, (slow vegetation successional trends). The wide range of environment might best be attributed to the complexity of topography and aspect associated with these shallow soils. The sharp vegetation contrasts which occur on these soils were probably enhanced by frequent forest fires on the exposed, drier locations, Map Unit DL2 - grasses and shrubs, while the shaded, moister aspects immediately adjacent to Map Units DL1 and DL3 indicate a long term conifer cover. These map units most often rise above the general landscape, with relatively better air drainage and thus better climates than the surrounding land. Precipitation is approximately 7.5 inches during May to September and the frost free period is approximately 50-60 days. Exposed bedrock is included as a minor component of some map units.

						••	
Soil ssociation Hap Units	Hajor Soft (40-100%)	Hinor Soil (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acrenge	Complex Acreage
DL1	Orthic Dystric Brunisol		well	steeply sloping stabilized north and east slopes and flatter swales	lodgepole pine, asoen, white spruce	295	168
		Lithic Orthic Regosol	vell	steeply sloping active north and east slopes and convex rocky humps	shrubs, aspen		
		Lithic Dark Gray	well	steeply sloping stabilized south and west slopes	forbes, grasses, scunled aspen		
DT5	Lithic Orthic Regosol		well	steeply sloping active south and west slopes	forbes, shrubs, grasses	332	6,801
	Lithic Dark Gray		well	steeply sloping stabilized south and west slopes	forbes, grasses, stunted aspen		
		Orthic Dystric Brunisol	well	swales in rock or north and east slopes	aspen, lodgepole pine		
DLJ	Orthic Dystric Brunisol		well	ateeply sloping stabilized north and east slopes and flatter svales	lodgepole pine, aspen, white spruce	112	868
		Degraded Dystric Brunisol	well	steeply sloping stabilized north and east slopes and flatter swoles	lodgepole pine, aspen, white spruce	- -	
		Lithic subgroups	well	convex rocky bumps and steep slopes	lodgepole pine, aspen	•	
********	*********************				Total Acreage	740	7.837

Table 10, Dahl Soils

a. Agriculture

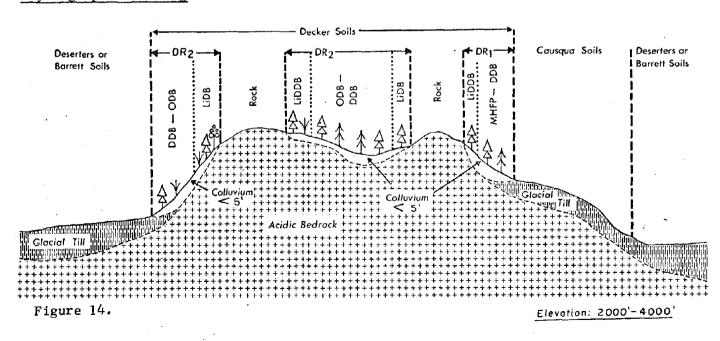
Non-arable as topography is too steep and soils are shallow to bedrock. These soils are easily damaged by overgrazing, but have good native forage production potential if carrying capacities are adhered to.

b. Forestry

Mean annual increments range from 11 cu.ft./ac./yr. on Map Unit DL2 to 50 cu.ft./ac./yr. on Map Unit DL3. Limitations are moisture deficiency and shallowness to bedrock. Logging not recommended and Dahl areas should be retained as protection forests as the soil is easily eroded from the bedrock.

c. Engineering and Urban Development

Steep topography and shallow depth to bedrock main engineering limitations. Bedrock characteristics variable, some blasting necessary, although much fracturing common. Generally best to avoid where possible.


d. Wildlife

Exposed slopes and sharp forest-openland vegetation transitions provide a limited area of suitable habitat for deer and moose and upland game birds. Associated rock outcrops provide escape terrain.

c. Recreation

Not suitable for intensive use, but very attractive landscape with contrasting vegetation for hiking and riding. Vegetation easily damaged by over-use.

DECKER ASSOCIATION

Physiographic Setting

The surface form is typical of the underlying acidic bedrock as the surface mantle is less than 5 feet thick. Dome-shaped hills having rounded tops, and steep side slopes (40%+) are common. Where soil mantles are thin (lithic subgroups) a characteristic irregular pattern of curvilinear fractures modifys the surface. Surface dendritic drainage patterns are of varying density and channels tend to have a rounded shape with tributary intersections tending to resemble a right angle.

Parent Material

Shallow colluvium which is moderately coarse textured, permeable, stony, and loose glacial till. Material derived from rock materials which combine to form a surface mantle which moves down the steep rocky slopes. Hard or shattered rock is usually within 3 to 5 feet, where surface deposits are less than 20 inches lithic subgroups (shallow soils) are indicated.

Environment (Soil-Climate-Vegetation Relationships)

This environment is somewhat moister (approximately 7.5-10.5 inches of May-September precipitation and colder <50 days frost free period common) than the Dahl Soils on the same landform and parent materials. The Dystric Brunisol and Podzol soils of the Decker Association reflect these conditions. Tree and shrub cover is sparce in areas composed mainly of very shallow, lithic soils, interspersed with bare rocks and boulders, while on deeper soils (2-5 feet) the soil moisture regime is improved with tree and shrub cover more dense. Major vegetation includes lodgepole pine, white spruce and some alpine fir, and scattered shrub species.

Soil Association Map Units	Major Soil (40-100%)	Minor Soil (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex
DR1	Deg raded Dystric Brunisol		well	steeply sloping stabilized slopes or flatter swales	lodgepole pine, white spruce	132	5,492
		Mini Humo- Ferric Podzol	well	steeply sloping stabilized east and north facing slopes	white spruce, alpine fir, lodgepole pine		
		Lithic sub- groups	well	convex rocky humps and exceptionally steep shallow slopes	lodgepole pine, shrubs		•
DR2	Degraded Dystric Brunisol	··	well	steeply sloping stabilized slopes or flatter swales	lodgepole pine, white spruce		*******
		Orthic Dystric Brunisol	well	steeply sloping stabilized south and west facing slopes	lodgepole pine, aspen	172	3,140
					Total Acreage	304	8,632

Table 11. Decker Soils

a. Agriculture

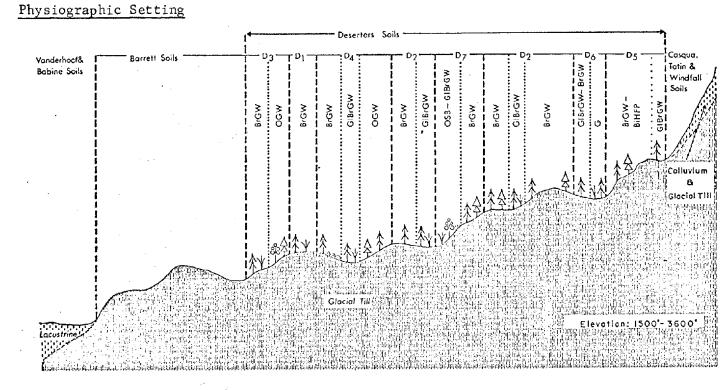
Non-arable with limited grazing following fires and before forest regeneration takes over the site.

b. Forestry

Mean annual increments range from 31 cu.ft./ac./yr. on the very shallow lithic soils to 70 cu.ft./ac./yr. in the deeper swales between bedrock or on north facing slopes. Shallowness to bedrock and soil moisture deficiency are the main limitations to tree growth. Logging not recommended because of the shallow soil depth.

c. Engineering and Urban Development

Steep topography and shallow depth to bedrock main engineering limitations. Bedrock characteristics variable, some blasting necessary, although much fracturing common. Generally best to avoid where possible.


d. Wildlife

Small units not particularly useful, except perhaps as a part of escape terrain.

e. Recreation

Intensive use not recommended. Often provides locations for viewing surrounding landscape. Vegetation could be easily damaged by over-use.

DESERTERS ASSOCIATION

An undulating to rolling (5-30% slopes) till plain of the interior plateau occasionally drumlinized but commonly a haphazard pattern of wave-like ridges, humps and swales of various sizes. A uniform modified dendritic surface drainage pattern with tributaries exhibiting little directional change on meeting major drainageways is common, and gullies have the characteristic u-shape of moderately fine textured materials.

Parent Material

A heterogeneous moderately fine textured (clay loam, silty clay loam) glacial till which is hard, compact, often stony and nearly impervious.

Environment (Soil-Climate-Vegetation Relationships)

These soils develop under higher precipitation (approximately 7.5-10.5 inches, May-September) than the associated Barrett soils. A wide range of drainage characteristics result from the irregular topography. The combination of variable drainage, temperature and precipitation result in a complex vegetation pattern. Conditions range from the open aspen, shrub vegetation of the Sombric Brunisol soils in Map Unit D7 to the white spruce and shrub dominance in the imperfectly drained swales of Map Units D2,4,5,6, and 7, and the higher elevation white spruce-alpine fir forest of Map Unit D5. Shrub and herb layers depend on forest stand density, but generally are more abundant than on Barrett soils. Lodgepole pine is common and occurrence depends on fire history. Due to the nearly impervious nature of the soil, roots have difficulty in penetrating and only moist sites have roots below 30 inches.

lasociation Map Buits	Hajor Soll (40-100%)	Ninor Soft (20-402)	Drainașe	Laudscape Position	Major Vegetation	Pure Units Acreage	Complex Acreage
D1	Brunisolic Gray Wooded		well to moderately well	motature shodding convex ridges, humps and relatively steeper slopes	lodgepole pine, white spruce	A,144	3,876
D2	Brunisolic Cray Wooded		well to moderately well	moisture shedding convex Fidges, himps and reintively steeper slopes	ladgepole pine, white spruce	30, 740	37,228
3		Cleyed Brunisolic Gray Wooded	ímperí ect	moisture receiving swales, flat plates and seepage channels	white spruce, lodgepole pino		
D3	Brunisolic Cray Wooded		well to moderately well	moisture shedding convex ridges, humps and relatively steeper slopes	lodgepole pine, white spruce	35,326	9,548
		Orthic Gray Wooded	vell	weisture shedding convex ridges, humps and relatively steeper slopes and exposed south slopes of ridges	lodgepole pine, white spruce, aspen	e e e	
D4	Brunisolic Gray Wooded		well to moderately well	moisture shedding convex ridgcs, humps and relatively steeper slopes	lodgepole pine, white spruce		
		Orthic Gray Wooded	vell	moisture shedding convex ridges, humps and relatively steeper slopes and exposed south slopes or ridges	lodgepole pine, white spruce, aspen	36,260	31,828
		Gleyed subgroups	imperfect	moisture receiving scales, flat plains and scepage channels	white spruce, lodge- pole pine		

Table 17. Desortors Soils

5	Brunisolic Cray Nooded		moderately well to well	moisture shedding convex ridges, humps and relatively steeper slopes	white spruce, lodge- pole pine	33,264	56,168
		Bisequa Humo- Ferric Podzol	moderately well to well	moisture shedding convex ridges, humps and relatively steeper slopes (north and east aspects common)	vhite spruce, lođge- pole pine		
		Cleyed su bgroups	imperfect	moisture receiving swales, flat plains and seepage channels	white spruce, alpine fir		
5	Gleyed Brunisolic Gray W ooded		imperfect	moisture receiving swales, flat plains and seepage channels	white spruce, lodge- pole pine		
		Brunisolic Cray Wooded	moderately well to well	woisture shedding convex Tidges, humps and Telatively Steeper slopes	lodgepole pine, white spruce		
		Gleysolics	poor to very poor	depressions with little drainage outlet	black Spruce and shrubs	4,808	7,636
97	Brunisolic Gray Wooded		well to moderately well	moisture shedding convex ridges, humps and relatively steeper slopes	lodgepole pine, white spruce	620	5,052
		Orthic Sombric Brunisol	moderately well	moisture shedding convex ridges, humps and relatively steeper slopes and steeper slopes common	aspen, shruba, forbes		
		Cleyed subgroups	imperfect	moisture receiving swales, flat plains, and seepage channels	white spruce, aspen, lodgepole pine, shrubs		
					Total Acreaze	169,172	151,356

Table 12. (Cont'd) Deserters Soils

Suitability for Different Uses

a. Agriculture

2.5

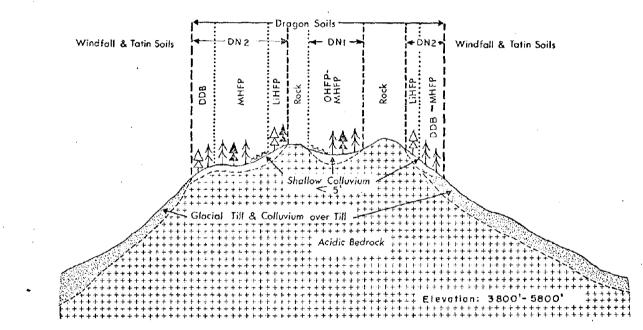
Mostly arable, marginal for agriculture, crop range severely restricted (forage crops only) by short frost free periods which generally range from 30-50 days with growing degree days <1650. A few areas near the mouth of the Bulkley Valley are much better but small in area. Soil limitations include hard, nearly impervious soil material, topography and some stoniness.

b. Forestry

Mean annual increments range from 91-110 cu.ft./ac./yr. on the imperfectly drained soils to 71-90 cu.ft./ac./yr. on the well and moderately well drained soils to 31-50 cu.ft./ac./yr. on the poorly drained soils. Limitations include soil moisture deficiency in shedding landscape positions, and poor rooting depth. Frost heaving and stream sedimentation hazards likely.

c. Engineering and Urban Development

Deserters soils are subject to frost heaving, have limited potential for effluent disposal. Trafficability generally poor when wet and while only limited cuts are necessary for road construction (flat topography) cutbanks have high erosion hazard. High frequency of fluctuating water tables associated with imperfectly and poorly drained soils in Map Units D2,4,5,6,7.


d. Wildlife

After fire and logging a wide range of food plants and cover suitable for ungulate and upland game birds could be expected. Although shrubs may last indefinitely in open stands, the trend will be toward closed stands and reduced shrub and understory cover. Shrub cover could be expected over a long term on the imperfectly and poorly drained soils, especially in Map Units D5 and 6.

e. Recreation

Generally unsuitable for intensive use because of the nearly impermeable, easily compacted and sticky soils. Some lakes and streams associated have higher capability, otherwise a relatively unattractive forested landscape.

DRAGON ASSOCIATION

Physiographic Setting

Figure 16.

Landform

The surface form is typical of the underlying acidic bedrock as the surface mantle is less than 5 feet thick. Dome-shaped hills having rounded tops, and steep side slopes (40%+) are common. Where soil mantles are thin (lithic subgroups) a characteristic irregular pattern of curvilinear fractures modifys the surface. Surface dendritic drainage patterns are of varying density and channels tend to have a rounded shape with tributary intersections tending to resemble a right angle.

Parent Material

Shallow colluvium which is moderately coarse textured, permeable, stony, and loose glacial till. Material derived from rock materials which combine to form a surface mantle which moves down the steep rocky slopes. Hard or shattered rock is usually within 3 to 5 feet, where surface deposits are less than 20 inches lithic subgroups (shallow soils) are indicated.

Environment (Soil-Climate-Vegetation Relationships)

The moist environment associated with Dragon soils is typified by the 10.5-13.5 inches of May-September precipitation and Podzol soil development which occurs on north and east slopes at the lower elevations and on all aspects at the higher elevations. These landforms often stick up above the surrounding landscape and wind damaged vegetation is evident at higher elevations. Tree (lodgepole pine, Engelmann spruce and alpine fir) and shrub cover is sparce, on the very shallow. lithic soils, interspersed with bare rocks and boulders while on deeper soils 2-5 feet the soil moisture regime is improved with tree and shrub cover more dense. On moister sites and at higher elevations with colder soil temperatures alpine fir is more abundant. Exposed bedrock occurs in some map units.

Table 13. Dragon Soils

Soil Association Map Units	Major Soil (40-100%)	Minor Soil (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex Acreage
DN1	Orthic Humo- Ferric Podzol		well	steeply sloping stabilized slopes or flatter swales be- tween rock outcrops	Engelmann spruce, lodgepole pinc, alpine fir	752	8,036
		Mini Humo- Ferric Podzol	well	steeply sloping stabilized slopes or flatter swales be- tween rock outcrops	Engelmann spruce, lodgepole pine, alpine fir		
		19005	?	Lween fock outcrops			
DN2 Mini Hu Ferric Podzol	Mini Humo- Ferric		well	steeply sloping stabilized slopes or flatter swales be- tween rock outcrops	Engelmann spruce, lodgepole pine, alpine fir	2,636	8,384
		Degraded Dystric Brunisol	well	(south and west slopes common)	Engelmann spruce, lodgepole pine		
		Lithic subgroups	well	convex rocky humps and exceptionally steep shallow slopes	lodgepole pine, Engelmann spruce, alpine fir		
					Total Acreage	3,388	16,420

Suitability for Different Uses

a. Agriculture

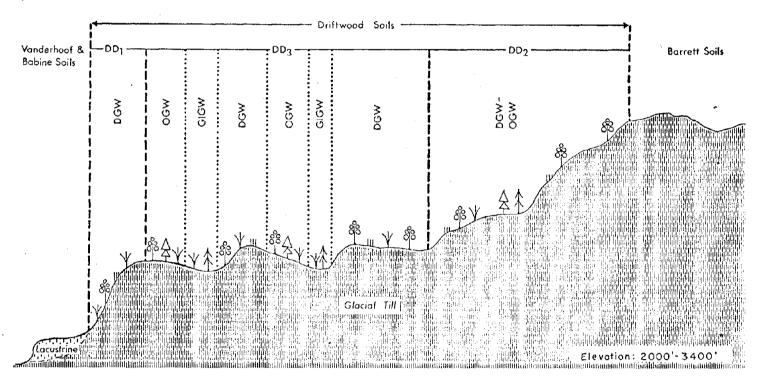
Unsuitable for any use.

b. Forestry

Mean annual increments range from 31-50 cu.ft./ac./yr. for lodgepole pine and alpine fir on the very shallow lithic soils of Map Unit DN2, to 51-70 cu.ft./ac./yr. for lodgepole pine on the deeper materials (still <5 feet). Limitations are shallowness to rock and moisture deficiency due to steep shedding slopes. Logging is not recommended.

c. Engineering and Urban Development

Steep topography and shallow depth to bedrock main engineering limitations. Bedrock characteristics variable, some blasting necessary, although much fracturing common. Cenerally best to avoid where possible.


d. Wildlife

Not suitable except as escape terrain. Only small scattered areas of suitable habitat (food plants and cover) for upland game birds and ungulates. Deep snow makes winter use difficult.

e. Recreation

Intensive use not recommended. Often provides locations for viewing surrounding landscape. Vegetation could be easily damaged by over-use.

DRIFTWOOD ASSOCIATION

Physiographic Setting

Figure 17.

Landform

Similar to Barrett and Deserters with steeper slopes (10-40%) and a tendency to more long simple slopes rather than the haphazard pattern of wave-like ridges.

Parent Material

A heterogeneous moderately fine textured (clay loam, silty clay loam) glacial till which is hard, compact, often stony and nearly impervious.

Environment (Soil-Climate-Vegetation Relationships)

The open or semi-open vegetation typical of this environment has been subjected to a long history of man's influence (burning and clearing). Uncultivated areas have scattered clumps of young aspen and an abundant shrub and herb cover. Steep and droughty southern exposures often have only stunted aspen growth and scattered understory. This environment is one of the most droughty in the area (7.5 inches or less May-September precipitation) and a tendency for long south and west facing slopes. Frost free periods range from 60-75 days. The dark surface layer (horizon) of soil is indicative of the general environment as it has developed from decomposing deciduous leaves, shrubs, grasses and herbs.

Orthic Gray Wooded soils have developed on north and east slopes and in swales, with an environment similar to that described for Barrett. Root penetration is impeded below the dark surface layer by the hard compact subsoil and in some cases may be the reason shrub and herb vegetation communities have taken over.

Table 14. Driftwood Soils

Soil Association Map Units	Major Soil (40-100%)	Minor Soll (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex
DDl	Dark Gray Wooded		well to moderately well	exposed south and west slopes often relatively steep	aspen, abundant shrubs, herbs and grasses	596	848
DD2	Dark Gray Wooded		well to moderately well	exposed south and west slopes often relatively steep		19,268	12,688
		Orthic Gray Wooded	well to moderately well	swales between ridges, flatter plains and north and east slopes			
DD3	Dark Gray Wooded		well to moderately well	exposed south and west slopes often relatively steep		72	
		Orthic Gray Wooded	well to moderately well	swales between ridges, flatter plains and north and east slopes			
·		Gleyed subgroups	Imperfect	swales and depressions	white spruce, aspen, shrubs and herbs		•
					Total Acreage	19,936	13,536

a. Agriculture

Mostly arable with a large acreage now cultivated and mainly used for pasture and hay production. Frost free periods range from 60-75 days with 1650-1900 degree days (heat units). Possible crop range includes forages, coarse grains and vegetables. Topography and scattered stoniness are the main limitations The surface horizon is particularly mellow and easy to cultivate but some difficulty might be expected with deep rooting crops. Grazing capability is high on non-arable steep slopes, but the forage is easily damaged by overgrazing.

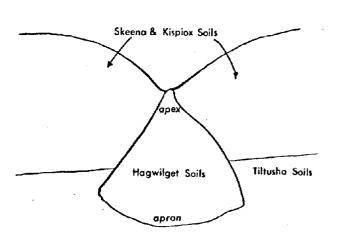
b. Forestry

Mean annual increments range from 31-50 cu.ft./ac./yr. for trembling aspen on the Dark Gray Wooded component to 51-70 cu.ft./ac./yr. for lodgepole pine on the Orthic Gray Wooded component of DD2. Limitations are moisture deficiency and shallow rooting depth. Frost heaving of seedlings likely.

c. Engineering and Urban Development

Soils are subject to frost heaving, have moderately high shrink-swell potential, limited potential for effluent disposal and generally poor trafficability when wet. Cutbanks have a high erosion hazard, and ditch maintenance requirement would be high. Attractive settings for low density residential development on long south and west facing slopes.

d. Wildlife


High capability winter range for ungulates with abundant shrub cover, relatively shallow snow depths and available escape cover under natural conditions. Transportation routes and settlement has made animal use difficult. The edge effect of open shrub and aspen areas, abandoned fields, cultivated areas and forested cover provide excellent upland game bird (grouse)habitat.

e. Recreation

Vegetation easily damaged. If used for intensive use (campsites), careful management and density control is essential. These soils are easily compacted and sticky and slippery when wet especially when the surface layer (horizon) is removed. Pastoral settings attractive.

HAGWILGET ASSOCIATION

Physiographic Setting

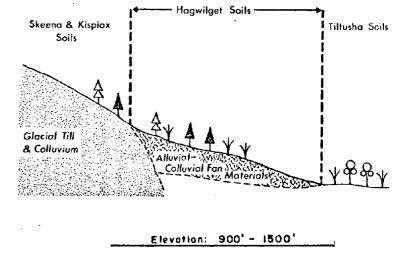


Figure 18.

Landform

Flat to steeply sloping (0-50% slopes) fan-like form occurring where a stream runs onto a level plain or meets a slower stream. No drainage pattern as such occurs but the surface is often marked by variegated current scars, abandoned and presently occupied channels. There is a noticeable slope towards the fan toe or apron.

Parent Material

The water sorted, partially stratified, coarse textured (gravelly), often stony, loose, permeable materials are located at the fan apex and finer materials (sands, silts and minor clays) sometimes slightly compact and less permeable occur toward the apron.

Environment (Soil-Climate-Vegetation Relationships)

The Hagwilget soils form on the above geological materials under a vegetation of hemlock, alder, willow, cottonwood, lodgepole pine, cedar, white spruce and hazelnut. The associated climate has 65-90 frost free days, 7.5-13.5 inches of May-September precipitation, frequent fog cover and a mean annual temperature of approximately 40°F. The well drained Podzol soils have a cover of hemlock, lodgepole pine and alder while the willow, cottonwood, cedar and hazelnut predominate on the imperfectly drained Regosol soils and the poorly drained Gleysolics, especially in abandoned channels and seepage spots. Seepage through these materials can change direction over short periods of time with resulting affects on vegetation and use capability. Some active channels tend to erode the soils rather severely during high water due to the steep stream gradients.

Table 15. Hagwilget Soils

Soil Secontion Map Units	Hajor Soil (40-1007)	Hinor Soil (20-407)	Drainage	Landscope Position	Hajor Vegetation	Pure Units Acteage	Complex Acreage
H1	Mini Humo-Ferric Podzol		moderately well to well	mainly fan apex and avoy From abandoned channeis and recent deposition	hemlock, alder, lodge- pole pine	5,112	2,888 -
		Orthic Regosol	vell	positions of recent deposition and fan aprons	hemlock, cottonwood, alder		
	•	Gleyed subgroups	imperfect	abandoned channels, scepage depressions and fan aprons	willow, alder, cedar, cottonwood, spruce, hazelnut		
н2	Degraded Dystric Brunisol		moderately well to well	mainly fan spex and away from abandoned channels and recent deposition	hemlock, lodgepol e pine, alder	1,316	3,128
		Mini Humo-Ferric Podzol	moderately well to well	mainly fan apex and away from abandoned channels and recent deposition	hemlock, lodgepole pine, alder		
		Gleyed subgroups	imperfect .	 abandoned channels, seepage depressions and fan aprons 	cottonwood, willow, hazelnut, alder, cedar, Spruce		
нз	Gleyed Orthic Regosal		imperfect	recent deposition and abandoned channels seepage depressions and fan aprons	cottonwood, willow, hazelnut, alder, cedar, spruce	1,876	
		Gleysolics	poor to very poor	scepage depressions and fan aprons	cedar, cottonwood, willow		
H4	Orthic Regosol		well to moderately well	recent deposition, fan apron	Cottonwood, willow, alder, hemlock	1,504	
		Gleyed Orthic Regosol	imperfect	ebandoned channels and seepage depressions	cottonwood, alder, willow Cedar, spruce	•	•
H5	Orthic Humo-Ferric Podzol		well to moderately well	mainly apex and away from channels	hemlock, lodgepole pine. cedar	696	392
		Orthic Regosol	well to moderately well	recent deposition	cottonwood, alder, Willow		
		Gleyed subgroups	Imperfect	abandoned channels and fan aprons	cottonwood, alder, cedar, willow spruce, hazelnut		
					Total Acreage	10,504	6,408

-

Suitability for Different Uses

a. Agriculture

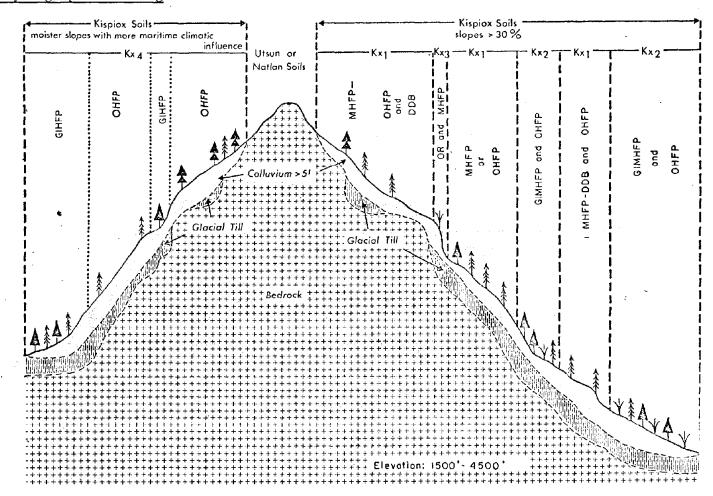
High capability for a wide range of crops including forages, grains, vegetables and small fruits. Apex of fans may have some stoniness limitation and stream channels may erode, wander, and flood occasionally if not carefully managed after natural vegetation is removed. Variable soil moisture holding capacities and drainage can present management problems.

b. Forestry

Mean annual growth increment ranges from approximately 60 cu.ft./ac./yr. on the Gleysol soils in Map Unit H3 to the more average situation of 110 to 130 cu.ft./ac./yr. for white spruce, lodgepole pine and western hemlock, on the imperfectly and moderately well drained soils typical of the major acreage. The main limitation to managing these soils for wood production is the site variability caused by varying soil moisture holding capacities, wandering channels and seepage spots. Productivity for cottonwood, especially on the imperfectly and poorly drained soils, could be expected to be very high. Brushing in problems could be severe on the best sites.

c. Engineering and Urban Development

Location near valley bottoms and gentle slopes towards the valley make these soils valuable for urban development where needed. Apexes of these fans are common sources of aggregate and are also suitable building or subdivision sites. The variable soil textures and drainage properties as well as stream channel wandering make fan aprons difficult engineering problems in road-bed construction and maintenance and foundation settling.


d. Wildlife

Although the successional trend is toward a hemlock forest, the variability of soil drainage on these landforms and the results of man's influence has produced a wide range of browse species of vegetation (willow, alder) and escape cover useful to ungulates and upland game birds. As stream gradients are steep, soil erosion and resulting sedimentation could be severe and detrimental to fish especially under conditions of clearcutting or cultivation.

e. Recreation

Location at stream confluences, gently sloping topography, rapid permeability in fan apexes and diversity of natural vegetation make the Map Units H1,2 and 5 attractive recreation sites for a wide range of uses. Map Units H3 and 4 have occasional high water tables and occasional flooding which reduce their desirability.

KISPIOX ASSOCIATION

Physiographic Setting

Figure 19

Very steeply sloping (40%+ slopes) mantle of detrital materials on valley walls in hilly and mountainous terrain. Drainage pattern variable but generally dendritic and parallel with abrupt directional changes when bedrock is encountered.

Parent Material

A heterogeneous, moderately coarse to coarse textured (gravelly, sandy) stony, loose permeable material deposited on steep slopes and base of slopes by gravity. These colluvial materials are of variable depths, but generally exceeds 5 feet and overlie glacial till or bedrock. The material contains coarse fragments of rock and are often closely associated with rock outcrops.

Environment (Soil-Climate-Vegetation Relationships)

These mountain side Podzol soils occur in the coastal transition region under cool, moist summers and relatively mild winters, May-September precipitation ranges from 10.5-16.5 inches with frost free periods of 65-90 days. Associated vegetation includes hemlock, scattered cedar, amabilis fir at higher elevations and a heavy cover of mosses. The western slopes on the coastal side of the divide(Zymoetz River) have soils and vegetation reflecting somewhat higher moisture. As these soils have formed by downslope movement of material they can be relatively unstable. This continuous downslope movement is often indicated by curved tree boles. The most striking thing about this environment is the extremely steep slopes.

Soil sociation ap Units	Hajor Soll (40-1007)	Minor Soil (20-40%)	Urainage	Landscape Position	Kajor Vegetation	Pure Units Acreage	Complex Acreage
KX1	Hini Humo-Perric Podzol		well to rapid	steeply sloping convex shedding slopes	hemlock, mosses	9,704	45,664
		Orthic llumo-Ferric Podzoł	well to rapid	steeply sloping convex shedding slopes	hemlock, mosses		
		Degraded Dystric Brunicol	vell to rapid	steeply sloping convex shedding slopes	hemlock, mossea		
****	A		imperfect	lower receiving slopes	hemlock, cedar,	10.450	23,234
KX2	Cleyed Hini Humo- Ferric Podzol		-	(concave) or scepage channels on steep slopes	mosses	10,450	13,194
÷.		Orthic Numo-Ferric Podzol	vell	steeply sloping shedding slopes	hemlock, mosses		
1073	Orthic Regosol		well to rapid	very steeply sloping convex shedding slopes	hemlock	B,97 6	15,756
	· · ·	Mini Humo-Ferric Podzol	well to rapid	very steeply sloping convex shedding slopes	hemlock.		
KX4	Orthic Humo-Ferric Podzol	· · · · · · · · · · · · · · · · · · ·	vell	steeply sloping convex shedding slopes	hemlock, amabilis fir, mosses	2, 560	8,168
		Gleyed Ferro Humic Podzol	imperfect	lower receiving slopes or seepage channels on steep slopes	cedar, hemlock, mosses		
		Gleyed Humo-Ferric Podzol	imperfect	lower receiving slopes or , seepage channels on steep slopes	cedar, hemlock, mosses		
		•		······	Total Acreage	31,690	92,822

Table 16. Kispiox Soils

a. Agriculture

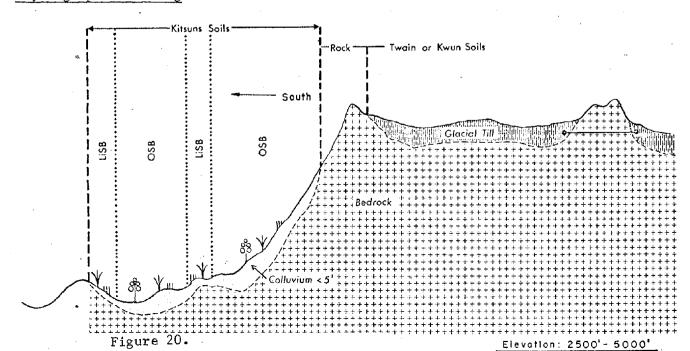
All non-arable due to extremely steep topography and unsuitable for grazing, (vegetative competition severe under the high rainfall).

b. Forestry

Mean annual increments range from 51-70 cu.ft./ac./yr. for alpine fir at the upper elevations and on exposed slopes of May Unit KX1, to 71-90 cu. ft./ac./yr. on middle slopes for white spruce and western hemlock with low soil moisture holding capacity being the main limitation. The lower slopes and other landscape positions receiving moisture are capable of producing 90-110 cu.ft./ac./yr. Some care should be taken in slash burning upper and middle slopes because exposure on steep slopes combined with soil droughtiness (coarse texture) and reduced organic matter content could be hard on regeneration (planted or natural).

c. Engineering and Urban Development

Unsuitable for urban development due to bouldery, unstable material on extremely steep slopes. Road or pipeline construction and maintenance could have minor problems due to the unstable nature of the material especially boulders tumbling downslope or seepage in areas mapped as KX2. Bedrock often closely associated.


d. Wildlife

Generally unsuitable because of short period of succession when desirable food plants are available. Notable area of protective cover and steeply sloping escape terrain.

e. Recreation

Unattractive and unsuitable for most uses except for viewing of mature hemlock forest on very steep slopes.

KITSUNS ASSOCIATION

Physiographic Setting

The surface form is typical of the underlying basic bedrock and is highly variable and expressed in many different surface forms. Topography may vary from level to strongly undulating to steeply sloping (2-60%+). Sharp peaks, vertical cliffs, steep slopes, large flat to rolling volcanic lava flows and dissected sedimentary shales are included. Surface drainage pattern varies from nil to a highly integrated parallel pattern.

Parent Material

Shallow, moderately coarse to medium textured colluvium which is permeable, stony, bouldery and loose. Deposits derived from weathered glacial till and rock material which combine to form a shallow mantle which moves slowly down the steep rocky slopes. Hard or shattered rock is usually within 3 to 5 feet, where surface deposits are less than 20 inches, lithic subgroups (shallow soils) are indicated.

Environment (Soil-Climate-Vegetation Relationships)

This environment occurs in a relatively moist climate (10.5-13.5 inches, May-September precipitation) and it appears the aspen and shrub vegetation has become dominant because of repeated fire history. This fire induced environment has predominated for a considerable period as reflected in the Sombric Brunisol soil development. Most of these soils occur on south and west facing slopes along well used pack trails and in the vicinity of favorite camp sites (near lakes) and hunting areas. Droughtiness caused by aspect and shallow soils helps to maintain the present vegetation. Vegetation on the lithic (very shallow soils) can be easily damaged. Abundance of vegetative cover increases in moisture receiving swales, where soils are somewhat deeper.

Soil Association <u>Map Units</u>	Major Soil (40-100%)	Minor Soil (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex Acreage
KS ¢	Orthic Sombric Brunisol		moderately well	south slopes of convex rocky humps as well as stabilized steep south and west facing slopes	aspen, shrubs, herbs, grasses	1,416	1,740
		Lithic Orthic Brunisol	well	shallow rocky humps and active south and west slopes	shrubs, stunted aspen, herbs, grasses		

Table 17. Kitsuns Soils

Suitability for Different Uses

a. Agriculture

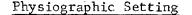
Non-arable. Grazing capability high, but very easily damaged by overgrazing.

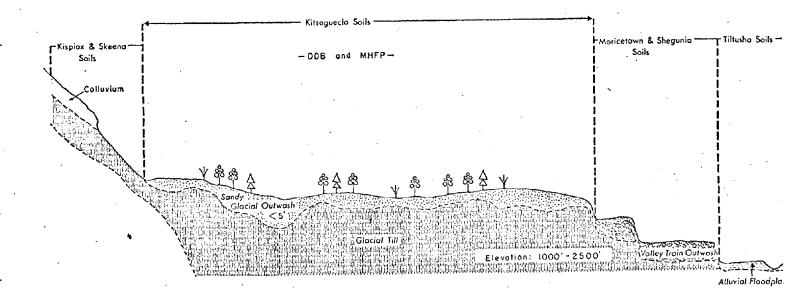
b. Forestry

Mean annual increments range from 31-50 cu.ft./ac./yr. for trembling aspen. Logging not recommended.

c. Engineering and Urban Development

Steep topography and shallow depth to bedrock main engineering limitations. Bedrock characteristics variable, some blasting necessary, although much fracturing common. Generally best to avoid where possible.


d. Wildlife


The high shrub (notably willow), herb and deciduous content of the semi-open vegetation and the adjacent escape cover and terrain provide a limited area of suitable habitat, and in some cases high capability habitat, for ungulates and upland game birds. Snow depths may be a problem in some cases.

e. Recreation

An attractive landscape with semi-open vegetation and rocky terrain often next to lakes and streams. Not suitable for intensive use.

KITSGUECLA ASSOCIATION

Figure 21.

Landform

Flat to gently rolling (2-20% slopes) smoothly molded till plain with a sand overlay which has the effect of smoothing out the topography. Drainage patterns are nonexistent to modified dendritic with abrupt changes in angularity of channels when the underlying till is reached. Associated gullies also have an unusual pattern as the v-shaped gully typical of noncohesive sandy materials changes to a steeper sloped u-shaped gully as the underlying cohesive till is encountered. Often gullies are a combination of both.

Parent Material

Less than 5 feet of loose, permeable, water sorted, stratified, moderately coarse textured (sandy) glaciofluvial material overlying a compact, hard, heterogeneous, often stony, nearly impermeable glacial till.

Environment (Soil-Climate-Vegetation Relationships)

The environment is characterized by 7.5-10.5 inches, May to September precipitation, 75-90 frost free days, good air drainage, highly permeable Brunisol and Podzol soils with low moisture holding capacity, and a nearly impervious underlying material which often keeps the lower part of the sand moist. The vegetation is a result of recurring fire history on these easily accessible valley lands, and includes trembling aspen, lodgepole pine and a heavy shrub cover.

Table 18, Kitsguecla Soils

Association Map Units	Major Soil (40-100%)	Minor Soil (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex Acreage
KA	Degraded Dystric Brunisol		well	over the whole land- form	aspen, lodgepole pine, and heavy shrub cover	1,392	3,524
		Mini Humo- Ferric Podzol	well	over the whole land- form	aspen, lodgepole pine, and heavy shrub cover		

Suitability for Different Uses

a. Agriculture

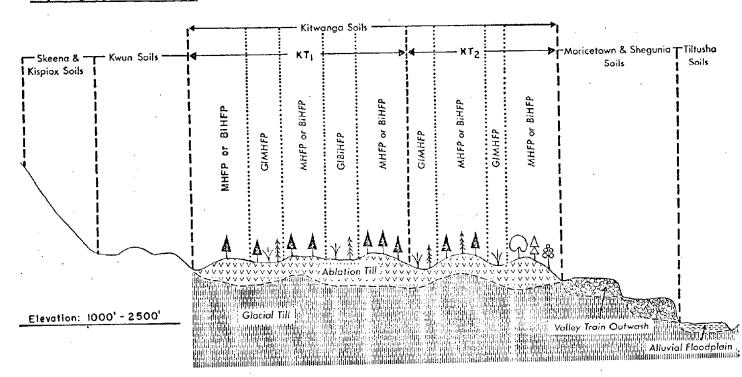
All arable, and a reasonably wide range of crops possible including vegetables, small fruits, cereals and forage crops. Irrigation is essential for commercial production of most crops on these sandy soils. Easily cultivated, high fertilizer requiring soils.

b. Forestry

Mean annual increment ranges from 71-90 cu.ft./ac./yr. for lodgepole pine. The only limitation is the low moisture holding capacity. Erosion hazard on slopes and slash burning not recommended.

c. Engineering and Urban Development

Erosion of sand during construction, slumping into pipeline and construction excavations could be expected. Suitable for effluent disposal, but some seepage along compact underlying glacial till likely. Because of variability in depth, the sandy overlay should be removed where heavy structures are contemplated. One of the better soils for subdivision and most urban uses.


d. Wildlife

Small area of excellent habitat for ungulates and upland game birds with a variety of shrub food plants and adjacent escape cover and terrain, but close to transportation routes and settled areas. The deciduous forest, open field, and edge provide excellent grouse habitat.

e. Recreation

Suitable for most intensive uses. Subject to blowing if the subsoil is exposed. Some ideal campsite locations.

KITWANGA ASSOCIATION

Physiographic Setting

Figure 22.

Landform

Similar to Cobb and Crystal with a higher frequency and larger flat and swale components in the landscape.

Parent Material

Similar to Cobb and Crystal, except that the underlying compact glacial till is moderately fine to fine textured (silty clay loam to clay) and often is closer to the surface, although usually greater than 5 feet.

Environment (Soil-Climate-Vegetation Relationships)

The most striking thing related to this environment is the contrasting variability in vegetative cover. Vegetation depends on the frequency of disturbances, mainly fire, soil drainage and depth to the compact glacial till, the relatively moist, humid climate (approximately 10.5-13.5 inches, of May-September precipitation), and approximately 80-90 days frost free period. Vegetation includes trembling aspen, lodgepole pine, white birch, alder, hazelnut, willow and a heavy cover of other shrubs in the areas with a high frequency of disturbance mainly fire. Regeneration is commonly either hemlock or white spruce. In mature stands, hemlock is dominant with occasional cedar in the swales with little shrub cover. This environment occurs under moister, milder climates than the Cobb and Crystal associations.

Table 19. Kitwanga Solls

Soil Association Map Units	Major Soil (40-100%)	Minor Soil (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex Acreage
KT1	Mini Humo- Ferric Podzol		well to moderately well	humps and moisture shedding positions	western hemlock, aspen, lodgepole pine, white spruce	13,524	7,764
		Bisequa Humo-Ferric Podzol	moderately well to well	usually on slopes of humps	lodgepole pine, western hemlock, aspen and heavy shrub cover		
		Gl e yed subgroups	imperfect	flatter areas and swales	western hemlock, cedar, alder, heavy shrub cover, white spruce		·
KT2	Bisequa Humo-Ferríc Podzol		moderately well to well	humps and moisture shedding positions	lodgepole pine, western hemlock, aspen, white spruce, alder	19,792	27,312
		Mini Humo- Ferric Podzał	well to moderately well	humps and moisture shedding positions	lodgepole pine, western bemlock, aspen, white spruce, alder		
		Gleyed subgroups	imperfect	flatter areas and swales	western hemlock, cedar, alder, white spruce and shrubs		
			******		Total Acreage	33,316	35,076

Suitability for Different Uses

a. Agriculture

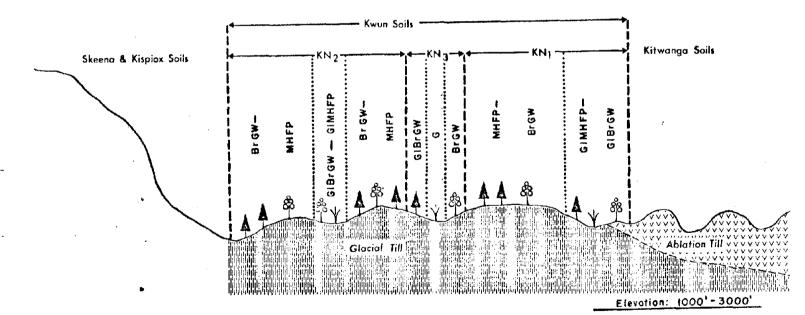
Although the climate is relatively good with 80-90 frost free days, stoniness, variable drainage, topography and low moisture holding capacity limitations reduce the range of crops possible to forages except for isolated pockets.

b. Forestry

Mean annual increments range from 111 to 130 cu.ft./ac./yr. for white spruce on the imperfectly drained soils to 71 to 90 cu.ft./ac./yr. for white spruce and lodgepole pine on the well drained sites. Note that white spruce and lodgepole pine used for species indicators. (See Use and Management section). Clean logging recommended.

c. Engineering and Urban Development

See Cobb and Crystal. Note higher frequency of areas with fluctuating water tables.


d. Wildlife

In areas of frequent disturbance such as fire, useful habitat for ungulates, particularly moose and upland game birds exists. This is likely to be a short term successional stage on most sites, although these soils could be managed to produce a large volume of browse species with controlled burning.

e. Recreation

Variable drainage, permeability, stoniness and undulating topography limite usefulness to extensive recreation. Vegetation contrasts provide interesting hiking, viewing and riding possibilities.

KWUN ASSOCIATION

Physiographic Setting

ŝ

See Barrett or Deserters. Gullies often have flat angles due to the higher clay content in the materials.

Parent Material

A heterogeneous, moderately fine to fine textured (silty clay loam, clay) glacial till, which is hard, compact, often stony and nearly impervious.

Environment (Soil-Climate-Vegetation Relationships)

This environment is characterized by a relatively humid climate receiving 10.5-13.5 inches, May to September precipitation and shallow soils having variable drainage. The vegetation is dominated by mature hemlock stands with a heavy ground cover of mosses, and some scattered pockets of deciduous cover consisting mainly of aspen, birch, alder and shrubs where fire has been frequent. The deciduous cover is much less frequent than on the adjacent Kitwanga and might be attributed to the much higher moisture holding capacity of the Kwun soils, since the fires most often occur on moderately well drained sites. The imperfectly drained soils have the occasional cedar mixed with the hemlock vegetation which is very seldom altered by fire. The poorly drained Gleysol soils occur in depressions and could be expected to be frost pockets, and vegetation is limited to shrubs.

Soil sociation ap_Unit <u>s</u>	Najor Soil (40-100%)	Minor Soll (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex Acreage
KN1	Mini Numo-Ferric Podzol		moderately well	moisture shedding convex ridges, humps and relatively steeper slopes	Western hemleck and heavy moss cover	4,220	10,692
		Brunisolic Gray Wooded	moderately well	moisture shedding convex ridges, humps and relatively steeper slopes	Western hemlock and heavy moss cover		
		Gleyed subgroups	imperfect	molsture receiving swales, flat plains and seepage channels	western hemlock, cedar, shrubs	•	
KN2	Brunisolic Gray Wooded		moderately well	moisture shedding convex ridges, humps and relatively steeper slopes	vestern hemlock and heavy moss cover	7,920	14,016
•		Mini Humo-Ferric Podzol	moderately well	moisture shedding convex ridges, humps and relatively steeper slopes	western hemlock and heavy moss cover		
		Gleyed sudgroups	imperfect	moisture receiving svales, flat plains and scepage channels	western hemlock, cedar, shrubs, mosses		
KX3	Brunisolic Gray Wooded		moderately vell	moisture shedding convex ridges, humps and relatively steeper slopes	western hemlock and heavy moss cover	832	6 60
		Gleysolics	poor to very poor	deep swales or enclosed depressions	shrubs		
		Gleyed Brunisolic Gray Wooded	imperfect	moisture receiving svales, flat plains and seepage channels	vestern hemlock, cedar, shrubs, mosses		

K N4	Bisequa Humo- Ferric Podzol		moderately well	moisture shedding convex ridges, humps and relatively steeper slopes	western hemlock, amabilis fir, mosses	1,336	3,992
		Orthic Ferro Humic Podzol	moderately well	shallow swales and lover parts of slopes	western hemlock, gmabilis fir, mosses		

Table 20, Kwun Soils

a. Agriculture

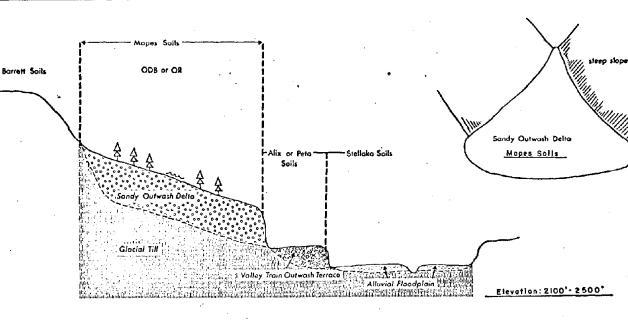
All arable but soils extremely sticky when wet, hard and impermeable when dry and have some topographic and stoniness limitations. Climate capability indicates production of a wide range of crops is possible but soil management problems are serious.

b. Forestry

Mean annual increments range from 111-130 cu.ft./ac./yr. for white spruce and western hemlock on the imperfectly drained soils to 71-110 cu. ft./ac./yr. for white spruce and western hemlock on the moderately well drained soils on moisture shedding slopes to 31-50 cu.ft./ac./yr. for white spruce in the very wet, poorly drained depressions. Frost heaving, compaction, erosion and stream sedimentation problems likely.

c. Engineering and Urban Development

Avoid where possible. Poor trafficability when wet, high shrink-swell potential, subject to frost heaving, high erosion potential and slumping hazard, fluctuating water tables and seepage and poor effluent disposal rates due to impermeability are a few of the problems likely on these soils.


d. Wildlife

Vegetation successional stages suitable for most widlife habitats would likely be short lived. May provide escape cover with more desirable soils adjacent, e.g. Kitwanga, providing the other habitat requirements.

e. Recreation

Unsuitable - see Engineering limitations.

MAPES ASSOCIATION

Physiographic Setting

Typical delta or fan shape (see diagram), relatively level with 0-5% slopes which usually end in a fairly steep face next to the valley. No drainage pattern, but visible current scars and abandoned channels may occur. V-shaped gullies are common.

Parent Material

Water sorted and stratified, deep sands which are moderately coarse textured, highly permeable and loose. Occasional stratified gravels at depth. Easily windblown when vegetation is removed and the surface exposed.

Environment (Soil-Climate-Vegetation Relationships)

This environment is characterized by very droughty, well to rapidly drained, highly permeable sandy Brunisol soils which receive approximately 7.5 inches of May-September precipitation. The frost free period is usually less than 60 days. Lodgepole pine vegetation is typical and the stands are often very open and subject to frequent fires. Because of frequent disturbance, mainly fire, and removal of sparse ground cover the soils are subject to wind erosion and deposition.

Table 21. Mapes Soils

Association Map Units	Major Soil (40-100%)	Minor Soll (20-40%)	Drainage	Landscape Positions	Major Vegetation	Pure Units Acreage	Complex Acreage
MSI	Orthic Dystric Brunisol		well to rapid	stabilized portions of delta	lodgepole pine	1,044	5,560
		Orthic Regosol	rapid	unstabilized, actively eroding by wind or water	very open lodgepole pine		

Suitability for Different Uses

a. Agriculture

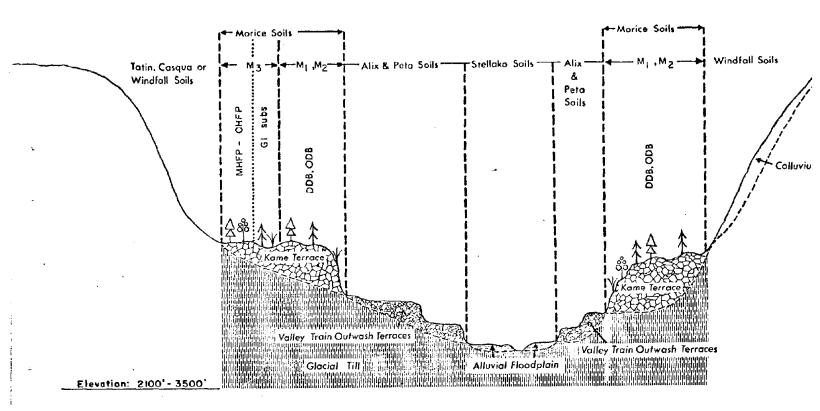
All arable, but with a high irrigation water requirement for most crop production due to the low available moisture holding capacity. Soils subject to wind erosion when cultivated.

b. Forestry

Mean annual increments range from 51-70 cu.ft./ac./yr. for lodgepole pine. Slash burning not recommended.

c. Engineering and Urban Development

Easy to subdivide (flat topography, sandy materials). Limitations include variable compressibility and bearing strength, sand blowing when subsoil exposed, high stream scdimentation hazard and excavation cave-ins likely. Excellent sand source.


d. Wildlife

Suitable only as a part of a larger habitat unit in association with adjacent units. Little suitable food vegetation or cover, but sites often function as movement corridors across valleys, access to adjacent streams. Snow depths relatively less so can form part of ungulate winter range.

e. Recreation

Suitable for most intensive and extensive uses. Sand blowing, and low moisture holding capacities limit some uses. Open stands provide interesting hiking and riding possibilities.

MORICE ASSOCIATION

Physiographic Setting

Figure 25.

Landform

Level to rolling and strongly irregular (0-50% slopes) of hummocks, mounds and terraces often conforming partly to valley walls or rock faces (hanging on valley sides). Gives the impression of collapsed topography. A very haphazard, disoriented, discontinuous drainage pattern is typical. Gullies variable shape, but usually short and discontinuous.

Parent Material

Partially water sorted and roughly stratified deposits which are moderately coarse to coarse (sandy and gravelly) textured, often stony, usually loose and of variable permeability and depth.

Environment (Soil-Climate-Vegetation Relationships)

Characterized by a range of precipitation from 7.5-10.5 inches May-September for Map Units M1 and M2 (Brunisol soils) and 10.5-13.5 inches for Map Unit M3 (Podzol soils) and with approximately 50-70 frost free days. The high variability in the sorting, permeability, depth, slope and textures of the materials influence site-specific considerations of the vegetation. In general lodgepole pine and aspen occur on Map Units M1 and M2 which have drier environments with a higher frequency of disturbance, usually from fire, whereas lodgepole pine, white spruce and some alpine fir occur on the higher elevation moister M3 Map Units. Seepage originating from higher valley slopes occurs at depth along layers which are more compact or finer textured.

Table 22. Morice Soils

Soil Association Map Units	Najor Soil (40-100%)	Minor Soil (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex Acreage
M1	Orthic Dystric Brunisol		rapid to well	predominantly humps and steep slopes	lodgepole pine, aspen, shrubs	1,916	8,404
		Degraded Dystric Brunisol	rapid to well	predominantly humps and steep slopes	lodgepole pine, aspen, shrubs		
M2	Degraded Dystric Brunisol		rapid to well	predominantly humps and steep slopes	lodgepole pine, aspen, shrubs	5,892	23,316
		Orthic Dystric Brunisol	rapid to well	predominantly bumps and steep slopes	lodgepole pine, aspen, shrubs	X,	
M3	Mini Humo- Ferríc Podzol		rapid to well	moisture chedding, humps and steep Slopes	lodgepole pine, white spruce, aspen	13,348	23,140
		Orthic Humo- Ferric Podzol	rapid to well	moisture shedding, humps and steep slopes			
		Gleyed subgroups	imperfect	moisture receiving, swales and depressions	white spruce, aspen, lodgepole pine, alpine fir		
					Total Acreage	21,156	54,860

Suitability for Different Uses

a. Agriculture

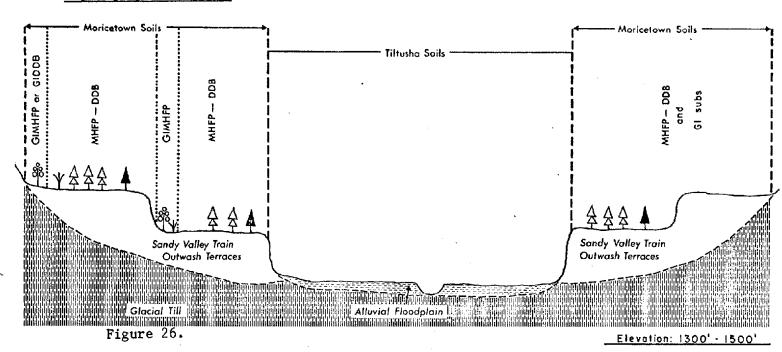
Only very small pockets arable due to rough topography and highly variable soils. The frost free periods of approximately 50-70 days, are relatively better than the surrounding landforms because of valley side position and better air drainage. Forage crops are most suitable.

b. Forestry

Mean annual increments range from 31-50 cu.ft./ac./yr. for lodgepole pine on the drier sites of Map Units M1 and M2 to 90-100 cu.ft./ac./ yr. for white spruce on the imperfectly drained moister sites of Map Unit M3. Slash burning is not recommended.

c. Engineering and Urban Development

Some seepage and slump problems can be expected along valley face. Variable quality aggregate source - sometimes excellent but most often a high percentage of finer particles. Highly variable compressibility and bearing strength, therefore, check carefully. Sewage effluent disposal potential variable but most often good except for seepage hazard along impermeable layers.


d. Wildlife

Not a particularly suitable habitat; little browse and cover; some use for movement corridors along valley sides; often droughty.

e. Recreation

Interesting topography for viewing and hiking, and suitable for most intensive recreational uses.

MORICETOWN ASSOCIATION

Physiographic Setting

Landform

Flat to gently sloping (0 to 6% slopes) valley-side glacial terraces or deltas with occasional upland gravel-filled channels. Surfaces are occasionally pitted, and pits have no obvious drainage outlets. Surface drainage patterns are non-existent and short v-shaped gullies typical of gravel materials are common on terrace edges.

Parent Material

Water sorted, stratified, moderately coarse to coarse, highly permeable loose sands of variable thickness but always exceeding 5 feet in depth. Stratified gravels common at depth.

Environment (Soil-Climate-Vegetation Relationships)

Characterized by a wide range of vegetation with most interior species including lodgepole pine, white spruce, aspen and birch common and in close association with more coastal-like species such as hemlock, cedar, alder and hazelnut. This environment, because of its location in the lower parts of the valley has been subjected to a high frequency of fire. As well, a moderate climate of 80-100 frost free days and 7.5 to 10.5 inches May-September precipitation and soils with rapid permeability, deep rooting pessibilities and flat topography provide a desirable environment for many uses.

Table 23. Moricetown Soils

Soil Association Map Units	Major Soil (40-100%)	Minor Sofl (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex Acreage
мт	Mini Humo- Ferric Podzol		well	major flat section and terrace faces	lodgepole pine, western hemlock	4,084	8,196
		Degraded Dystric Brunisol	well	major flat section and terrace faces	lodgepole pine, western hemlock		
		Gleyed subgroups	imperfect	back of terrace against slope (moisture receiving)	lodgepole pine, western hemlock, cedar, shrubs		

Suitability for Different Uses

a. Agriculture

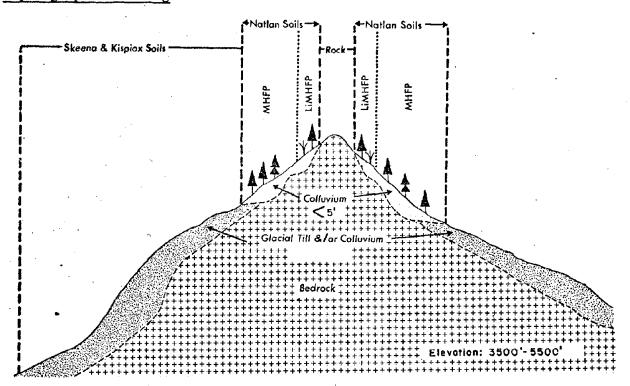
Very desirable climate and soil combination. Irrigation and heavy fertilizer application necessary for commercial production of the full range of climatically adapted crops which includes cereals, forages, vegetables, and small fruits.

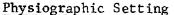
b. Forestry

Mean annual increments range from 51-90 cu.ft./ac./yr. for lodgepole pine. Slash burning is not recommended.

c. Engineering and Urban Development

Excellent sand source. Landform provides excellent flat transportation route locations. Variable compressibility and bearing strength and sand blowing when subsoil exposed. Easily subdivided due to flat topography. High sedimentation hazard with some hazard of excavation cave-in.


d. Wildlife


Suitable habitats for ungulates and upland game birds during vegetation successional stage immediately following fire for a short period of time. Drier sites on terrace faces or bluffs may remain suitable for a longer period of time and form part of ungulate winter range.

e. Recreation

Suitable for most intensive and extensive uses. Sand blowing, and low moisture holding capacities limit some uses. Open stands provide interesting hiking and riding possibilities.

NATLAN ASSOCIATION

Landform

The surface form is typical of the underlying basic bedrock and is highly variable and expressed in many different surface forms. Topography may vary from level to strongly undulating to steeply sloping (2-60%+). Sharp peaks, vertical cliffs, steep slopes, large flat to rolling volcanic lava flows and dissected sedimentary shales are included. Surface drainage pattern varies from nil to a highly integrated parallel pattern.

Parent Material

Shallow, moderately coarse to medium textured colluvium which is permeable, stony, bouldery and loose. Deposits derived from weathered glacial till and rock material which combine to form a shallow mantle which moves slowly down the steep rocky slopes. Hard or shattered rock is usually within 3 to 5 feet, where surface deposits are less than 20 inches, lithic subgroups (shallow soils) are indicated.

Environment (Soil-Climate-Vegetation Relationships)

Characterized by a moist climate having 13.5-16.5 inches, May-September precipitation, but a very short frost free period of approximately 30-50 days. Associated soils are relatively shallow and rocky, and support a vegetation of western hemlock, occasional mountain hemlock and much alpine fir at higher elevations. Shrubs are found on the drier sites (very shallow soils). Rock outcrops are frequent.

Table 24. Natlan Soils

Soil Association Map Units	Major Soil (40-100%)	Minor Soil (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex
NA	Minf Humo- Ferric Podzol		well	convex rocky bumps as well as stabilized steep slopes	western hemlock, alpine fir, mosses	2,488	19,332
		Lithic Mini Humo-Ferric Podzol	well	shallow rocky humps and steep slopes	stunted western hemlock, alpine fir, shrubs		

Suitability for Different Uses

a. Agriculture

Unsuitable for any use.

b. Forestry

Mean annual increments range from 31-50 cu.ft./ac./yr. for lodgepole pine and alpine fir on the very shallow drier sites to 51-70 cu.ft./ac./yr. for lodgepole pine on the deeper materials. Logging is not recommended. Steep topography and shallow depth to bedrock main engineering limitations. Bedrock characteristics variable, some blasting necessary, although much fracturing common. Generally best to avoid where possible.

d. Wildlife

Useful only as escape terrain and for limited summer range.

e. Recreation

Can serve as attractive viewpoints.

NECHAKO ASSOCIATION

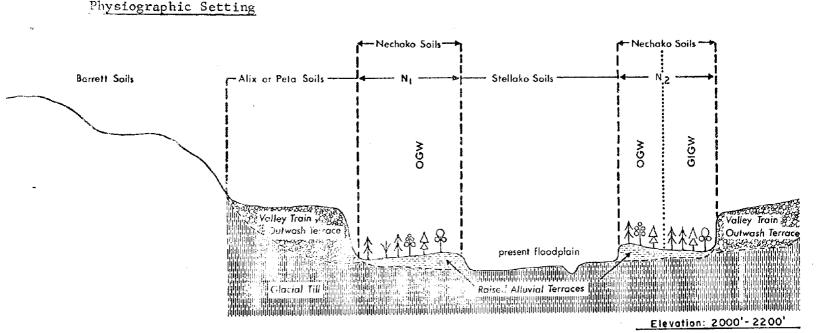


Figure 28.

Landform

Flat to gently undulating (0-5% slopes) raised alluvial terraces which are 20-30 feet above the present floodplain and often are terraced in sequence. Some are marked by current scars and abandoned channels. No particular drainage pattern and gully profiles are usually u-shaped (silty materials).

Parent Material

Water deposited, stratified and moderately fine textured (silty), stream alluvium of variable permeability and compactness up to 3 feet. Underlain by fine or medium loose, permeable sands and occasional gravels.

Environment (Soil-Climate-Vegetation Relationships)

Characterized by approximately 7.5 inches May-September precipitation and frost free periods from 60-75 days, soils with high moisture holding capacity, reasonably good rooting characteristics and with variable permeability and compactness depending on the nature of the original stream deposit. Although almost all these soils are cultivated at present, remnant vegetation suggests aspen, white spruce, lodgepole pine and a heavy shrub cover on the well drained soils, with white spruce, cottonwood and even more abundant shrubs on the imperfectly drained soils.

Table 25. Nechako Soils

Soil Association <u>Map Units</u>	Major Soil (40-100%)	Minor Soil (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex Acreage
NL	Orthic Gray Wooded		moderately well	raised well drained portions of the terrace	aspen, white spruce, lodgepole pine and abundant shrubs	228	324
N2 .	Orthic Gray Wooded		moderately well	raised well drained portions of the terrace	aspen, white spruce, lodgepole pine and abundant shrubs	88	
		Gleyed Orthic Gray Wooded	imperfect	depressions or abandoned channels without drainage outlets	white spruce, cotton- wood and abundant shrubs		
		Hooded			Total Acteage	316	

Suitability for Different Uses

a. Agriculture

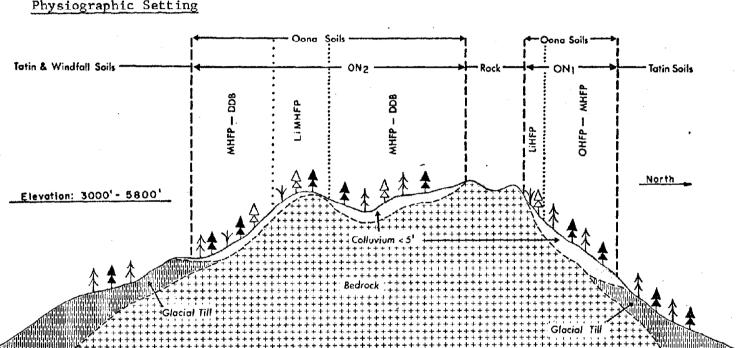
Almost all areas cultivated at present. Capable of producing a fairly wide range of climatically adapted crops under dry farming with improved productivity under irrigation.

b. Forestry

Mean annual increments range from 51-70 cu.ft./ac./yr. for lodgepole pine on the well drained soils to 71-90 cu.ft./ac./yr. for white spruce on the imperfectly drained soils. Some stream sedimentation hazard.

c. Engineering and Urban Development

Moderately slow permeability and fluctuating water tables on imperfectly drained soils limit sewage effluent disposal capability. Bearing strength and compressibility characteristics should be checked carefully when heavy structures are contemplated. Trafficability when wet can be poor.


d. Wildlife

Quite suitable habitat for ungulates (wintering especially) and upland game birds under natural conditions, but only remnant areas remain as most have been cultivated. Some forest, brushland and cultivated edge remains, providing habitat for upland game birds.

e. Recreation

Moderately suitable for intensive use, but slippery and sticky when wet and subject to compaction.

OONA ASSOCIATION

Physiographic Setting

Figure 29.

Landform

の私告われたないなどのあがの見た

The surface form is typical of the underlying basic bedrock and is highly variable and expressed in many different surface forms. Topography may vary from level to strongly undulating to steeply sloping (2-60%+). Sharp peaks, vertical cliffs, steep slopes, large flat to rolling volcanic lava flows and dissected sedimentary shales are included. Surface drainage pattern varies from nil to a highly integrated parallel pattern.

Shallow, moderately coarse to medium textured colluvium which is permeable, stony, bouldery and loose. Deposits derived from weathered glacial till and rock material which combine to form a shallow mantle which moves slowly down the steep rocky slopes. Hard or shattered rock is usually within 3 to 5 feet, where surface deposits are less than 20 inches, lithic subgroups (shallow soils) are indicated.

Environment (Soil-Climate-Vegetation Relationships)

Characterized by a moist climate 13.5-16.5 inches May-September precipitation with relatively short frost free periods (50 days common), and cold soil temperatures. Vegetation is typical of the spruce-alpine fir zone and includes Engelmann spruce, alpine fir, lodgepole pine and scattered shrubs. Shrubs are abundant particularly on the deeper soils for some time after fire, but as the forest canopy closes they rapidly disappear. Map Unit ON2 commonly occurs at lower elevations and in somewhat drier situations than Map Unit ON1 and supports less alpine fir but more lodgepole pine.

Table 26. Oona Soils

Map Units	Major Soil (40-100%)	Minor Soil (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex Acreage
ON1	Orthic Huma- Ferric Podzol		well	convex rocky himps and moisture shedding steep slopes	alpine fir, Engelmann spruce, lodgepole pine	8,012	56,432
		Mini Humo- Ferric Podzol	well	convex rocky humps and moisture shedding steep slopes	alpine fir, Engelmann spruce, iodgepole pine		
		Lithic subgroups	well	shallow convex rocky humps and very steep slopes	lodgepole pine, alpine fir		
ON2	Mini Humo- Ferric	~	well	convex rocky humps and moisture shedding	lodgepole pine, Engelmann spruce.	3,348	23,588
•	Podzol			steep slopes	alpine fir		
	Podzo1	Degraded Dystric Brunisol	well	steep slopes convex rocky humps and moisture shedding steep slopes			

Total Acreage

11,360 80,020

Suitability for Different Uses

a. Agriculture

Unsuitable for any use.

b. Forestry

Mean annual increments range from 31-50 cu.ft./ac./yr. for lodgepole pine and alpine fir on the very shallow lithic soils to 51-70 cu.ft./ac./yr. for lodgepole pine on the deeper soils with better moisture availability. Logging is not recommended.

c. Engineering and Urban Development

Steep topography and shallow depth to bedrock main engineering limitations. Bedrock characteristics variable, some blasting necessary, although much fracturing common. Generally best to avoid where possible.

d. Wildlife

Escape terrain and limited summer ungulate range. Can support abundant shrub cover for short periods after fire, especially on the deeper soils.

e. Recreation

Viewpoints only.

ORMOND ASSOCIATION

Physiographic Setting

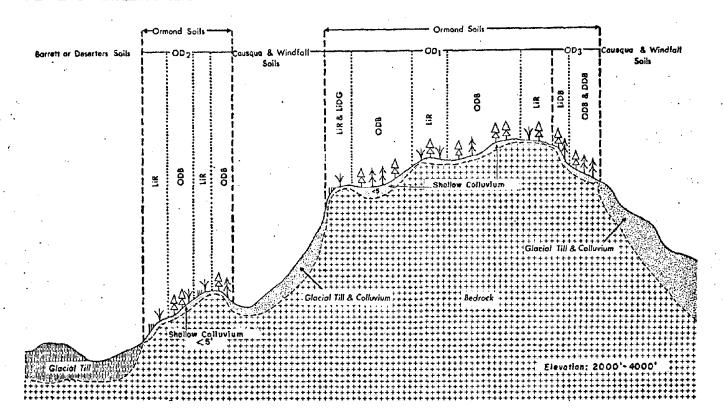


Figure 30.

Landform

The surface form is typical of the underlying basic bedrock and is highly variable and expressed in many different surface forms. Topography may vary from level to strongly undulating to steeply sloping (2-60%+). Sharp peaks, vertical cliffs, steep slopes, large flat to rolling volcanic lava flows and dissected sedimentary shales are included. Surface drainage pattern varies from nil to a highly integrated parallel pattern.

Parent Material

Shallow, moderately coarse to medium textured colluvium which is permeable, stony, bouldery and loose. Deposits derived from weathered glacial till and rock material which combine to form a shallow mantle which moves slowly down the steep rocky slopes. Hard or shattered rock is usually within 3 to 5 feet, where surface deposits are less than 20 inches, lithic subgroups (shallow soils) are indicated.

Environment (Soil-Climate-Vegetation Relationships)

The environment of the Ormond Association is characterized by a 7.5-10.5 inch May-September precipitation with 50-75 frost free days and a wide range in soil development (total environment indicator) because of the complexity of topography, aspect, elevation, soil depth and fire history. The dry southern exposures, especially at lower elevations, are subject to frequent fires and are either sparsely forested or in places void of any trees except stunted aspen. Such areas tend to have heavy ground cover of shrubs and grasses and the Dark Gray soil development indicates a temporary grassland environment. Deeper soils adjacent indicate a longer term forested environment (lodgepole pine, aspen, shrubs) which reflects the higher soil moisture availability. The extremely steep, shallow slopes (mostly Lithic Regosols) often have materials actively moving downslope due to gravity. The OD3 Map Units usually occur on north and east slopes or at higher elevations where moisture efficiency is somewhat better and a component of white spruce vegetation is common. In general, tree cover is sparse and interspersed with bare rocks and boulders on the very shallow soils, while on deeper portions the tree canopy is thicker and shrubs are often more abundant.

Soil Association Map Units	Major Soil (40-100%)	Minar 5011 • (20-40%)	Drainag∉	Landscape Position	Major Vegetation	Pure Units Acreage	Complex Acreage
ODI	Orthic Dystric Brunisol		well	convex rocky humps and swales between rock humps	lodgepole pine, aspen, shrubs	4,192	24,876
		Lithic Orthic Regosol	well	shallow very steep slopes and rocky bumps	shrubs, grasses and stunted aspen		
		Lithic Rego Dark Gray	vell .	more stabilized south and west facing slopes	shrubs, grasses and stunted aspen		
002	Lithic Orthic Regosol		vell	shallow very steep slopes and rocky humps	shruba, grasses and stunted aspen	1,268	7,112
•		Orthic Dystric Brunisol	vall	swales between rocky humps and north and east facing slopes	lodgepole pine, aspen, shrubs		

Table 27. Ormond Soils

Table 27. Ormond Soils (Cont'd)

603	Orthic Dystric Brunisol		well	convex rocky humps and swales between rock humps	lodgepole pine, white spruce	3,716	19,872
		Degraded Dystric Brunisol	well	between rock and north and east facing slopes	white spruce, lodge- pole pine		•
		Lithic subgroups	veli	shallow very rocky humps and very steep slopes	shrubs, lodgepole pine		·
- 302.004 <i>2.0</i> 04.64	***************************************						**-**
		· · · ·			Total Acreage	9,176	51,860

Suitability for Different Uses

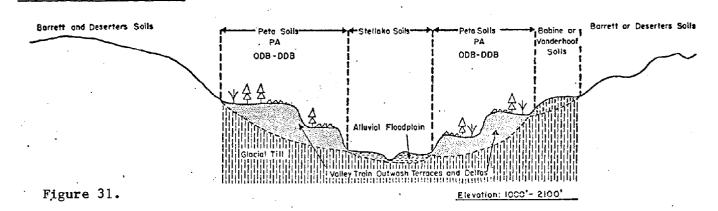
a. Agriculture

All non-arable. Some grazing capability on Map Units OD1 and OD2 but low carrying capacity and vegetation very easily damaged by overgrazing.

b. Forestry

Mean annual increments from 31-50 cu.ft./ac./yr. for trembling aspen on May Units OD1 and OD2 to 51-70 cu.ft./ac./yr. for lodgepole pine on Map Unit OD3. Logging is not recommended and areas should remain in protection forest.

c. Engineering and Urban Development


Some attractive views for low density residential development. See Dahl for similar limitations plus the fact that this underlying rock is often shattered and effluent disposal seepage could be expected.

d. Wildlife

High capability wintering habitat on Map Units OD1 and OD2 for ungulates (moose), with long term probability of native food plants and escape terrain. Relatively shallow snow depths. Use conflict is somewhat of a problem as most of these areas are readily accessible. Desirable upland game bird habitat as well.

e. Recreation

Excellent viewpoints, otherwise limited use because of shallowness, easily damaged vegetation, stony surface and steep topography.

PETA ASSOCIATION

Physiographic Setting

Landform

Flat to gently sloping (0 to 6% slopes) valley-side glacial terraces or deltas with occasional upland gravel-filled channels. Surfaces are occasionally pitted, and pits have no obvious drainage outlets. Surface drainage patterns are non-existent and short v-shaped gullies typical of gravel materials are common on terrace edges.

Parent Material

Water sorted, stratified, moderately coarse to coarse, highly permeable loose sands of variable thickness but always exceeding 5 feet in depth. Stratified gravels common at depth.

Environment (Soil-Climate-Vegetation Relationships)

The environment of the Peta Association is characterized by 7.5-10.5 inches of May-September precipitation, frost free periods of 60-80 days, some fog protection from being adjacent to rivers, and very permeable sandy soils which function as an excellent rooting medium, but with low moisture holding capacities. Associated vegetation consists of lodgepole pine, aspen, scattered white spruce and a sparse shrub cover due to the droughty soil.

Table 28. Peta Soils

Soil Association Map Units	Major Soil	Minor Soil	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex Acreage
PAI	Depradeó Dystric Brunisol		well to rapid	flat terraces	lodgepole pine, aspen, white spruce	2,858	3,132
		Orthic Dystric Brunisol	well to rapid	flat terraces	lodgepole pine, aspen		

Suitability for Different Uses

a. Agriculture

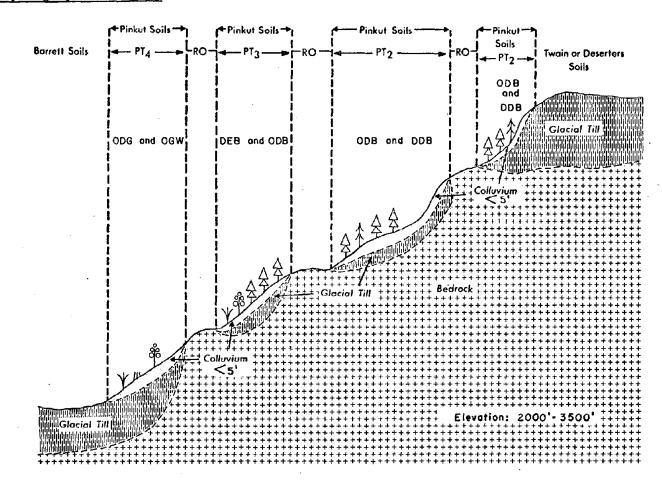
Suitable for a fairly wide range of climatically adapted crops under irrigation. Limited productivity under dry farming.

b. Forestry

Mean annual increments range from 51-70 cu.ft./ac./yr. for lodgepole pine. Slash burning is not recommended.

c. Engineering and Urban Development

Excellent sand source. Landform provides excellent flat transportation route locations. Variable compressibility and bearing strength and sand blowing when subsoil exposed. Easily subdivided due to flat topography. High sedimentation hazard with some hazard of excavation cave-in.


d. Wildlife

Physiographic location next to streams and the flat topography near valley bottoms (lesser snow depths usually) make these terraces a useful part of ungulate winter range, although the droughty soils themselves do not produce useful food plants. The dry environment provides excellent upland bird nesting sites with water adjacent and feeding areas often close at hand in the upland or on agriculture lands. Much of the widlife use is hampered by other use (transportation routes, homesites, agriculture).

e. Recreation

Suitable for most intensive and extensive uses. Sand blowing, and low moisture holding capacities limit some uses. Open stands provide interesting hiking and riding possibilities.

PINKUT ASSOCIATION

Physiographic Setting

Figure 32.

Very steeply sloping (40%+ slopes) mantle of detrital materials on valley walls in hilly and mountainous terrain. Drainage pattern variable but generally dendritic and parallel with abrupt directional changes when bedrock is encountered.

Parent Material

A heterogeneous, moderately coarse to coarse textured (gravelly, sandy) stony, loose permeable material deposited on steep slopes and base of slopes by gravity. These colluvial materials are of variable depths, but generally exceeds 5 feet and overlie glacial till or bedrock. The material contains coarse fragments of rock and are often closely associated with rock outcrops.

Environment (Soil-Climate-Vegetation Relationships)

Characterized by relatively drier sites than those surrounding with precipitation ranging from 7.5-10.5 inches May-September and frost free periods from 40 to 60 days. The drier Dark Gray soils of Map Unit PT4 which are subject to a high frequency of fire, are at the lowest elevations, and aspen, lodgepole pine and shrub vegetation is typical. Soils of Map Unit PT3 are intermediate in moisture efficiency and elevation and support a vegetation of lodgepole pine, aspen and shrubs, while Map Unit PT2 reflects moister environments due to higher elevations and on north and east facing slopes. Here the vegetation consists of lodgepole pine and white spruce.

Soil Issociation Map Units	Major Soil (40-100%)	Hinor Soil (20-402)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex
PT2	Orthic Dystric Brunisol		well to rapid	steeply sloping convex shedding slopes	lodgenoie pine, white spruce	4,688	9,196
		Degraded Dystric Brunisol	well to rapid	steeply sloping convex shedding slopes, often north and east facing slopes	white spruce, lodgepole pine		
PT3	Degraded Eutric Brunisol		well to rapid	steeply sloping convex shedding slopes (south and west slopes common)	lodgepole pine, aspen, shrubs		
		Orthic Dystric Brunisol	well to řapid	steeply sloping convex shedding slopes morth and east slopes common	lodgepole pine, white spruce		1,368
PT4	Orthic Dark Grey		well to rapid	very steeply sloping lower elevation shedding slopes	aspen, shrubs, herbs	288	2,220
		Orthic Gray Wooded	well to Tapid	steeply sloping stabilized slopes	aspen, lodgepole pine, shrubs		
		************************		*******	Total Acreage	4.976	12.784

Table 29. Pinkut Soils

Suitability for Different Uses

a. Agriculture

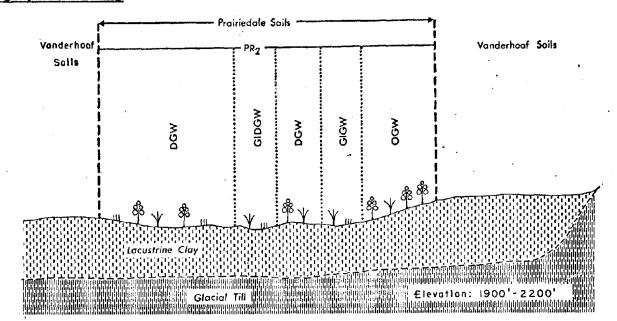
Limited grazing capability on Map Units PT3 and PT4 but easily overgrazed. Otherwise not suitable.

b. Forestry

Mean annual increments range from 31-50 cu.ft./ac./yr. for trembling aspen on Map Unit PT4 to 51-70 cu.ft./ac./yr. on Map Unit PT2. Steep, unstable slopes and logging across slopes suggested.

c. Engineering and Urban Development

Unsuitable for urban development due to bouldery, unstable material on extremely steep slopes. Road or pipeline construction and maintenance could have minor problems due to the unstable nature of the material especially boulders tumbling downslope or seepage in areas mapped as PT2. Bedrock often closely associated.


d. Wildlife

Excellent potential for food plants and cover for ungulate and upland game bird habitat on Map Units PT3 and PT4, while Map Unit PT2 is suitable only as cover and escape terrain.

e. Recreation

Unsuitable as topography is too steep. Can be an attractive part of viewed landscape from a distance.

PRAIRIEDALE ASSOCIATION

Physiographic Setting

Figure 33.

Landform

Flat to gently undulating (0-5% slopes) glaciolacustrine plain. The general flatness is broken by entrenched stream valleys and occasional progressing gullies which are rounded.

Parent Material

Moderately fine textured deep, (clayey) stone-free, layered, compact slowly permeable lakebed sediments.

Environment (Soil-Climate-Vegetation Relationships)

This small unit which is part of a much larger laking basin, has a unique micro-environment with the following characteristics:

- approximately 7.5 inches of May-September precipitation with 50-75 frost free days.
- soils with dark surface layers (horizons) unusual in this environment. The organic matter accumulation may be a result of successive forest fires followed by invasion of shrubs and grasses of of poor drainage which was subsequently improved by man. The soils are compact, slowly permeable, with high moisture holding capacities and fluctuating water tables in the swales.
- although now mostly cultivated, natural vegetation remnants include aspen, and a thick cover of shrubs, grasses and herbs.

Table 30. Prairiedale Soils

Soil Association Map Units	Major Soil (40-100%)	Minor Soil (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex Acreage
PR2	Dark Gray Wooded		moderately well to well	flat and undulating plain	aspen, grasses and shrubs	188	564
		Orthic Gray Wooded	well to moderately well	flat and undulating plain	aspen, shrubs		
		Gleyed subgroups	imperfect	swales and depressions	aspen, shrubs, grasses		

Suitability for Different Uses

a. Agriculture

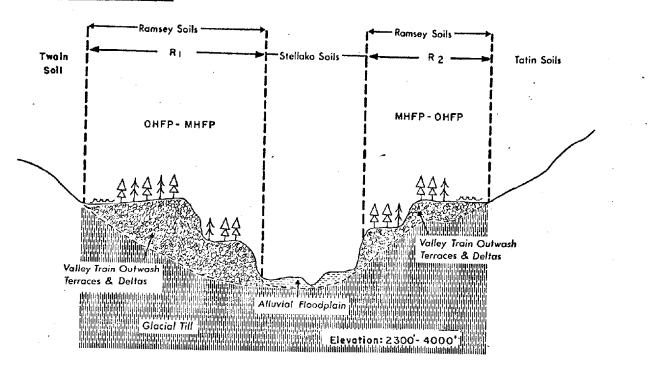
Somewhat restricted crop range because of the short frost free period but a very desirable dry farming soil with a friable topsoil.

b. Forestry

Mean annual increments range from 31-50 cu.ft./ac./yr. for trembling aspen to 51-70 cu.ft./ac./yr. for lodgepole pine. Compaction, erosion, frost heaving, stream siltation hazards.

c. Engineering and Urban Development

These nearly impermeable medium to fine textured soils are subject to frost heaving, have limited potential for effluent disposal, generally poor trafficability when wet and cutbanks have high erosion hazard. The only advantage is relatively flat topography.


d. Wildlife

Almost all cultivated edges useful upland game bird habitat and native vegetation remnants would indicate reasonable wintering habitat for moose.

e. Recreation

Moderate to severe for intensive use. Pastoral setting attractive.

RAMSEY ASSOCIATION

Physiographic Setting

Figure 34.

Landform

Flat to gently sloping (0 to 6% slopes) valley-side glacial terraces or deltas with occasional upland gravel-filled channels. Surfaces are occasionally pitted, and pits have no obvious drainage outlets. Surface drainage patterns are non-existent and short v-shaped gullies typical of gravel materials are common on terrace edges.

Parent Material

Water sorted, stratified gravels which are coarse to moderately coarse textured, often stony, highly permeable and loose. Of variable thickness but always exceeding 5 feet in depth with stratified gravels and sands common at depth.

Environment (Soil-Climate-Vegetation Relationships)

The environment of this soil association is characterized by very droughty, rapidly drained gravelly soils (low moisture holding capacity) in a relatively moist climate having approximately 13.5 inches of precipitation during May to September, and a very short frost free period of less than 50 days. Droughtiness is further enhanced by a high fire frequency which destroys the organic surface litter. Typical of drier sites in the spruce-alpine fir zone, lodgepole pine with little ground cover is the predominant vegetation although black and Engelmann spruce and alpine fir are common. The shrub cover tends to be more abundant at the higher elevations.

Table 31. Ramsey Soils

Soil Association Map Units	Major Soil (40-100%)	Minor Soil (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex Acreage
RÌ	Orthic Humo- Ferric Podzol		rapid	flat terraces with steep edges next to valley center	lodgepole pine, scattered spruce, alpine fir	1,384	4,654
		Mini Humo- Ferric Podzol	rapid	flat terraces with steep edges next to valley center	lodgepole pine, scattered spruce, alpine fir		
R2 Mini Humo- Ferric Podzol	Ferric		rapid	flat terraces with steep edges next to valley center	lodgepole pine, scattered spruce, alpine fir	2,388	8,328
		Orthic Humo- Ferric Podzol	rapíd	flat terraces with steep edges next to valley center	lodgepole pine, scattered spruce, alpine fir		

Total Acreage

3,772 12,482

Suitability for Different Uses

a. Agriculture

Very limited possibilities of forage production in small pockets, Limitations include short frost free period, stoniness and low moisture holding capacity.

b. Forestry

Simples were bright transmission and the

Mean annual increments range from 51-70 cu.ft./ac./yr. for lodgepole pine on extremely droughty sites to 71-90 cu.ft./ac./yr. for white spruce on somewhat moister sites at higher elevations. Slash burning is not recommended.

c. Engineering and Urban Development

Excellent aggregate source. Road location and subdivision development possibilities excellent. Compressibility and bearing strength characteristics are variable and should be checked carefully when heavy structures are contemplated. Sewage effluent disposal potential is high, but some contamination of groundwater is possible under high density development.

d. Wildlife

These small upland valley terraces serve as movement corridors from summer to winter range for ungulates, particularly moose. Otherwise not a particularly useful habitat component.

e. Recreation

Useful and attractive landform for most intensive recreation uses. Stoniness and low soil moisture holding capacity impose some limitations to such uses as campsites.

ROARING ASSOCIATION

Physiographic Setting

Landform

Irregular, long, sinuous, round-topped ridges with 10-50% slopes. Side slopes are usually very steep. An intricate topographic criss-cross pattern of ridges occurs in one unit. No visible surface drainage pattern. V-shaped gullies are common.

Parent Material

Water sorted and stratified deep coarse textured gravels and sands with occasional layers of silt. Stony, highly permeable and loose.

Environment (Soil-Climate-Vegetation Relationships)

The Roaring Association is characterized by a very droughty environment caused by the coarse, rapidly drained and highly permeable soils on steep slopes, and a 7.5-10.5 inch May-September precipitation. The two extremes in micro-environment on the eskers are the very steep southern exposed slopes (Regosol soils) which are particularly dry, often partly bare, or with a forest of stunted aspen and lodgepole pine versus the shaded swales between ridges which have a maximum moisture efficiency as indicated by Degraded Dystric Brunisol soils and a vegetation of lodgepole pine and white spruce.

Table 32. Roaring Soils

Soil Association Map Units	Major Soil (40-100%)	Minor Soil (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex Acreage
RG1	Degraded Dystric Brunisol		rapid to well	swales and north and east facing slopes	lodgepole pine, scattered white spruce	300	
		Orthic Dystric Brunisol	r ap1d	top of ridges south and west facing slopes	lodgepole pine		
		Orthic Regosol	rapid	very steep side slopes	stunted aspen, lodgepole pine		
RG2 Orthic Dystric Brunisol	Dystric		rapid to well	top of ridges and slopes	lodgepole pine	392	
		Degraded Dystric Brunisol	rapid to well	swales and some north and east facing slopes	lodgepole pine, scattered white spruce		
		Orthic Regosol	rapid	very steep side slopes	stunted aspen, lodgepole pine		
	*******			******	Total Acreage	692	

Suitability for Different Uses

a. Agriculture

and the second second

Unsuitable for any use.

b. Forestry

Mean annual increment of 31-50 cu.ft./ac./yr. for lodgepole pine. Slash burning is not recommended. Skid roads should be limited.

c. Engineering and Urban Development

As for Alix plus steep topography limitation. Silt layers can be a problem when materials used as aggregate source.

d. Wildlife

Generally unsuitable, except as escape terrain or possibly as dry, warm nesting areas for upland game birds.

e. Recreation

Attractive unusual landform for viewing. Few limitations to extensive use except for steep topography, some stoniness and low moisture holding capacity.

SAUNDERS ASSOCIATION

Sounders Soils Shass Sails Skins SD2L -SD3-1SD21 -SD1 Sails Slope C ยื่ å BiHFP-OHFP and GI subs HFP-OHFP 5 Gl subs HQł Area œ œ g Receiving σ Colluvium < 5' eepade Bedrock Elevation; 4500'- 5800'

Physiographic Setting

Landform

Very steeply sloping (over 30% - average 45% slopes) glacial till on steep valley walls and strongly rolling upland plateaus. Parallel surface drainage patterns down the steep slopes are common. Variable gully profiles due to variation in the compactness of the material and frost action.

Parent Material

A heterogeneous, moderately coarse to medium textured (gravelly loam to silt loam), stony, compact glacial till which most often has some surface modification due to downslope movement of material as a result of gravity. The surface modification may be a reworking of the local glacial till or an admixture of detritus from further upslope.

Environment (Soil-Climate-Vegetation Relationships)

The Saunders Association is characterized by steeply sloping Podzol and Gleysol soils which developed under relatively moist (approximately 13.5 inches of May-September precipitation) and cold (approximately 30-50 days frost free period) conditions typical of the highest elevations of the Spruce-Alpine fir vegetation zone. Moisture often seeps down these slopes from higher elevations so that Gleyed and Gleysolic soils are major components of many map units. Alpine fir and scattered Engelmann spruce is the dominant vegetation on these cold and moist soils, with forbes and shrubs dominating the wet seepage slopes where conifer trees cannot establish. Alpine fir is most often stunted at the higher elevations.

Table 33. Sounders Soils

Soil Lesociation Map Units	Major Soil (40-1007)	Minor Soil (20-407)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex Acreage
\$D1	Bisequa Humo- Ferric Podzol		moderately well to well	convex moisture shedding slope	alpine fir, scattered Engelmann spruce	45.417	62,946
• .		Orthic Humo- Ferric Podzol	well to moderately well	convex moisture shedding slope	alpine fir, scattered Engelmann spruce		
		Cleyed aubgroups	1mperfect	conceve moisture receiving positions or secpage channels on slope	forbes and shrubs, scattered alpine fir		
\$02	Gleyed Orthic Regosol		Imperfect	temporary seepage slope or concave moisture receiving position on slope	forbes and shrubs, scattered sipine fir	2,740	6,912
		Orthic Humo- Ferric Podzol	moderately well to well	convex moisture shedding slope	aipine fir, scattered Engelmann spruce		·
		Gleysolics	poor to very poor	seepage slope	wet forbes, shrubs scattered	•	
803	Gleymolics		poor to very poor	seepage slope	wet forbes, shrubs Brattered	940	2,140
		Orthic Humo- Ferric Podzol	moderstely well to well	convex moisture shedding slopes	alpine fir, scattered Engelmann spruce		
		Gleyed Orthic Regosol	imperfect	temporary seepage slope or concave moisture receiving position on slope	forbes and shrubs, scattered alpine fir	÷	
	 .				Total Acreage	49,092	71,998

Total Acreage 49,092

Suitability for Different Uses

a. Agriculture

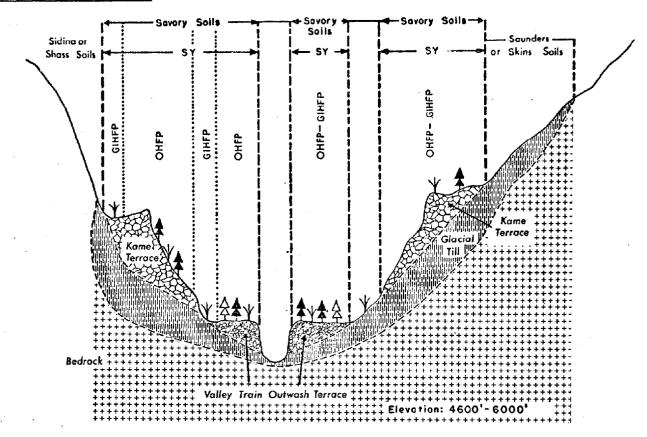
Unsuitable. Some seepage slopes have palatable forage, but grazing season is very short.

b. Forestry

Mean annual increments range from 11-30 cu.ft./ac./yr. for alpine fir on the moist, cold soils of Map Unit SD2 to 51-70 cu.ft./ac./yr. for alpine fir at the lower elevations and warmer sites of Map Unit SD1. Frost heaving and slumping hazards often severe. Logging is not generally recommended except on Map Unit SD1.

c. Engineering and Urban Development

Frost heaving, slumping, slow permeability, erosion and seepage hazards. High snowfall. Low sewage effluent disposal potential.


d. Wildlife

Map Units SD2 and SD3 provide some summer range potential for moose and deer plus some escape terrain for caribou, as well as upland game bird habitat for ptarmigan and grouse. Map Unit SD1 provides only escape cover.

e. Recreation

Some hiking and viewing potential. Not suitable for intensive use.

SAVORY ASSOCIATION

Physiographic Setting

Figure 37.

Landform

Flat to gently sloping (0 to 6% slopes) valley-side glacial terraces or deltas with occasional upland gravel-filled channels. Surfaces are occasionally pitted, and pits have no obvious drainage outlets. Surface drainage patterns are non-existent and short v-shaped gullies typical of gravel materials are common on terrace edges.

Parent Material

Water sorted, stratified, moderately coarse textured glaciofluvial gravels of variable thickness. Deposits highly permeable, loose and often stony. Often considerable amount of fine particles (silts and clays) mixed in the gravels.

Environment (Soil-Climate-Vegetation Relationships)

The Savoury Association is characterized by a cold, moist environment as indicated by a 30-40 day frost free period and approximately 13.5 inches of May-September precipitation, and heavy winter snowfall at timberline. The associated well drained Podzol soils are permeable and have a low moisture holding capacity and support a vegetation of stunted alpine fir and shrubs. The moister, Gleyed soils of the map unit occur against the back slopes and support a larger component of shrubs.

Table 34, Savory Soils

Soil Association <u>Map Units</u>	Major Soil (40-100%)	Minor Soil (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex Acreage
SY	Orthic Humo- Ferric Podzol		well	flat terraces and steep bluffs next to valley center	alpine fir, lodge- pole pine, shrubs	2,452	1,828
		Gleyed Orthic Humo- Ferric Podzol	imperfect	moisture receiving position at back edge of terrace	alpine fir, shrubs		

Suitability for Different Uses

a. Agriculture

Unsuitable.

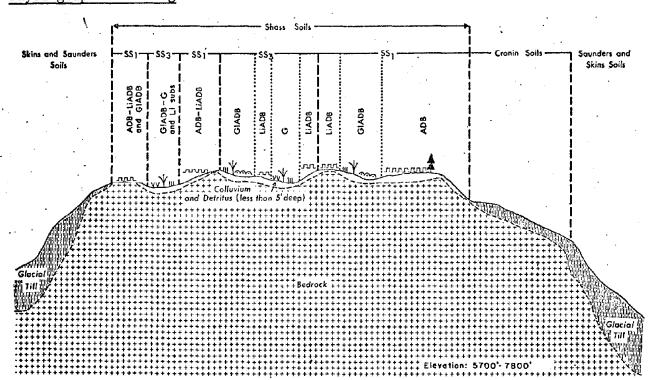
b. Forestry

Mean annual increments range from 11 to 30 cu.ft./ac./yr. for alpine fir to 31-50 cu.ft./ac./yr. for alpine fir and Engelmann spruce on the very best sites. Logging is not recommended.

-

c. Engineering and Urban Development

Only source of aggregate at high elevations. Soil characteristics suitable for residential or cottage development but climate severe. Excellent trafficability.


d. Wildlife

Suitable habitat as part of summer range for ungulates and upland game birds, especially ptarmigan.

e. Recreation

Soils suitable for most intensive uses, but climate severe. Excellent campsite possibilities.

SHASS ASSOCIATION

Physiographic Setting

Figure 38.

Landform

A rolling to very steeply sloping (15-60% slopes) bedrock controlled surface often closely associated with rock outcrops. The landforms take on the characteristics of the underlying bedrock as the surface mantle is less than 5 feet thick. The surface form can range from dome-shaped hills having rounded tops and steep side slopes with a characteristic irregular pattern of curvilinear fractures, to sharp peaks with very steep slopes. Drainage patterns and gully profiles are highly variable depending on the characteristics of the underlying bedrock. Dissection is strongest where shales form the underlying bedrock. Evidence of frost action and related upheaving of the micro-topography.

Parent Material

Shallow, moderately coarse to medium textured colluvium derived from weathered rock material which can either remain in place or move downslope by gravity and frost action. The material is permeable, loose, stony and bouldery, and hard or shattered bedrock is usually encountered within 3 to 5 feet. Where surface deposits are less than 20 inches thick, shallow lithic soils are indicated. Surface layers are often more stony than the subsoil and some locations are paved with angular pieces of fractured rock.

Environment (Soil-Climate-Vegetation Relationships)

Shass soils occur above timberline and the environment is characterized by a very short, cool growing season, cold temperatures, high snowfall and strong winds. The associated cold and shallow turfy-topped alpine soils support only dwarfed vegetation. This ranges from wet alpine forbes on the moist Gleyed and Gleysolic soils to lichen on the very shallow soils and alpine heather and dwarfed clumps of alpine fir in protected locations. Many slopes and ridges are extremely windswept and exposed to all the elements. Frost heaving is common, especially on the imperfectly and poorly drained soils. The severe climate is the dominating feature.

Table 35. Shass Soils

Soil Association Map Units	Major Soil (40-100%)	Minor Soil (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex Acreage
SS1	Alpine Dystri: Brunisol		well to moderately well	rocky humps and shallow swales between	lichen, alpine heather	21,860	80,808
		Gleyed Alpine Dystric Brunisol	imperfect	swales, seepage slopes and channels	wet alpine forbes and shrubs		
		Lithic subgroups	well	shallow convex rocky humps and minor seepage slopes	lichen ·		
883	Gleyed Alpine Brunisol		imperfect	swales, seepage slopes and channels	wet alpine forbes and shrubs	5,756	19,592
		Gleysoli cs	poor	deep depressions and seepage slopes	wet alpine forbes and shrubs		
÷		Lithic subgroups	imperfect to poor	seepage slopes	wet alpine forbes, alpine heathers		
	*****				Total Acreage	27,616	100,400
		•	2	Ň			

- 88 -

Suitability for Different Uses

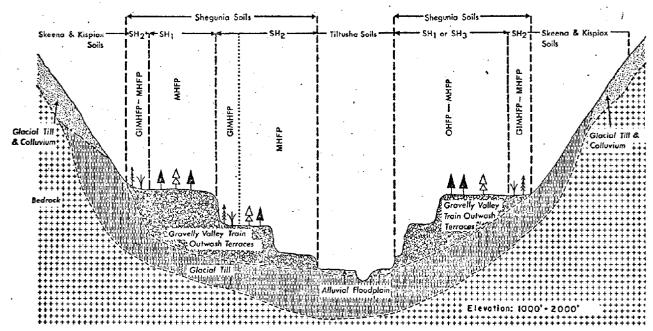
a. Agriculture

Non-arable. Limited short season grazing possible, but vegetation can be easily irreversably damaged by over-use.

b. Forestry

Unsuitable due to climatic limitations.

c. Engineering and Urban Development Severe climate and easily damaged alpine ecology; avoid where possible.


d. Wildlife

Suitable habitat for summer use by ungulates (moose) and winter use of lichen by caribou on the windswept ridges and slopes. Excellent ptarmigan habitat. Suitable goat habitat including rock cliffs and outcroppings often associated.

e. Recreation

Excellent scenery of mountains and vegetation for extensive use such as hiking and riding. Ecology very easily damaged. This environment has a very low carrying capacity so extensive use only is recommended, and then only with extreme care.

SHEGUNIA ASSOCIATION

Physiographic Setting

Figure 39.

Landform

Flat to gently sloping (0 to 6% slopes) valley-side glacial terraces or deltas with occasional upland gravel-filled channels. Surfaces are occasionally pitted, and pits have no obvious drainage outlets. Surface drainage patterns are non-existent and short v-shaped gullies typical of gravel materials are common on terrace edges.

Parent Material

Water sorted, stratified gravels which are coarse to moderately coarse textured, often stony, highly permeable and loose. Of variable thickness but always exceeding 5 feet in depth and with stratified gravels and sands common at depth.

Environment (Soil-Climate-Vegetation Relationships)

Characterized by the coastal transition vegetation of western hemlock and lodgepole pine on the well to rapidly drained, droughty, Podzol soils, and western hemlock, cedar, scattered white spruce and shrubs on the imperfectly drained Gleyed Podzol soils. The climate is relatively mild with 75-100 frost free days and moist with approximately 13.5-16.5 inches of May-September precipitation. The excellent air drainage which occurs on these terraces in the wider valleys provides the best climate in the area. SH3 map units (Orthic Humo-Ferric Podzol soils) indicate a somewhat moister climate than the SH1 map units, (Mini Humo-Ferric Podzol soils).

Soil ssociation Map Units	Major Soil (40-100%)	Minor Soil (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex Acreage
SH1	Mini Humo- Ferric Podzol		rapid	flat terrace and terrace bluff	western hemlock, lodgepole pine	7,012	11,796
SH2	Gleyed Mini Humo- Ferric Podzol		imperfect	back of terrace against valley wall	hemlock, cedar, shrubs, mosses	1,716	496
		Mini Humo- Ferric Podzol	rapid to well	flat terrace and terrace bluff	western hemlock, lodgepole pine		
SH3	Orthic Humo- Ferric Podzol		rapid	flat terrace and terrace bluff	western hemlock, lodgepole pine	⁻ 1,824	2,300
		Mini Humo- Ferric Podzol	rapid	flat terrace and terrace bluff	western hemlock, lodgepole pine		
					Total Acreage	10,552	 14,592

Table 36. Shegunia Soils

Suitability for Different Uses

a. Agriculture

Although the climate is quite suitable, stoniness and low soil moisture holding capacities limit the range of crops possible. Irrigation would improve crop range and productivity.

b. Forestry

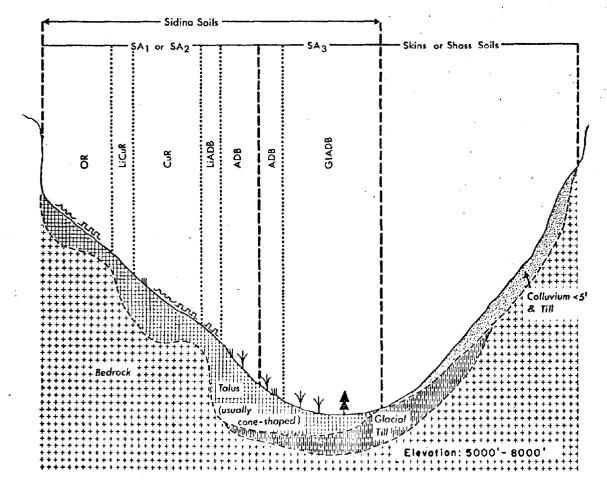
Mean annual increments range from 71-90 cu.ft./ac./yr. for lodgepole pine on the rapidly drained soils to 110-130 cu.ft./ac./yr. for western hemlock on the imperfectly drained soils.

c. Engineering and Urban Development

Excellent aggregate source. Road location and subdivision development possibilities excellent. Compressibility and bearing strength characteristics are variable and should be checked carefully when heavy structures are contemplated. Sewage effluent disposal potential is high, but some contamination of groundwater is possible under high density development. Imperfectly drained soils with fluctuating water tables can present problems for sewage effluent disposal and road maintenance, as well as causing seepage into borrow pits.

d. Wildlife

2


Unsuitable except for movement corridors along valleys. Regeneration to conifers fairly rapid after disturbance.

e. Recreation

Suitable for most intensive uses, except where imperfectly drained soils occur. Stoniness and low soil moisture holding capacity limitations.

SIDINA ASSOCIATION

Physiographic Setting

Landform

Very steeply sloping (50%+ slopes), most often cone-shaped form, consisting of detrital material which has accumulated at the base of a steeper slope or bluff. No surface drainage pattern.

Parent Material

Coarse textured angular, bouldery, loose, permeable colluvial material which has been deposited by gravity. The distribution of materials on the landform is variable but most often the larger fragments are located on the talus apron while finer materials are located near the apex. Often finer particles are distributed between angular rock fragments and boulders.

- 92 -

Environment (Soil-Climate-Vegetation Relationships)

The environment is characterized by unstable, droughty materials (except for SA3) associated with rock bluffs and sharp peaks mainly above timberline where short, cool, growing seasons, cold temperatures, high snowfall, strong winds and cold soil temperatures predominate. Vegetation establishment is difficult under these severe conditions with lichen and scattered shrubs on the less stabilized materials of Map Unit SA1 to grasses, lichen and shrubs on Map Unit SA2 with its many buried surfaces (Cumulic Regosols), and the abundant forbes and shrubs of Map Unit SA3. This latter has a different micro-environment in that it is usually somewhat protected from the elements and has a better moisture regime.

. Table 37. Sidina Soils

Soil Association Map Units	Major Soil (40-100%)	Minor Soil (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex Acreage
SA1	Orthic Regosol		rapid	steep unstabilized slope	nil to scattered lichen and shrubs	21,666	13,271
		Alpine Dystric Brunisol	well to rapid	steep stabilized slope	shrubs, lichen		
		Lithic subgroups	well	shallow steep rocky slope	nil to scattered lichen and shrubs		
SA2	Cumulic Regosol		rapid	steep semi-stabilized slope	lichen, grasses	5,780	10,076
		Orthic Regosol	rapid	steep unstabilized slope	nil to scattered lichens and shrubs		
	• .	Lithic subgroups	well	shallow steep rocky slope	nil to scattered lichens and shrubs		
SA3	Gleyed Alpine Dystric Brunisol		1mperfect	base of slope (moisture receiving position)	abundant alpine forbes and shrubs	324	1,984
·····		Alpine Dystric Brunisol	moderately well to well	moderate slopes	abundant alpine forbes and shrubs		
					Total Acreage	27,770	25,331

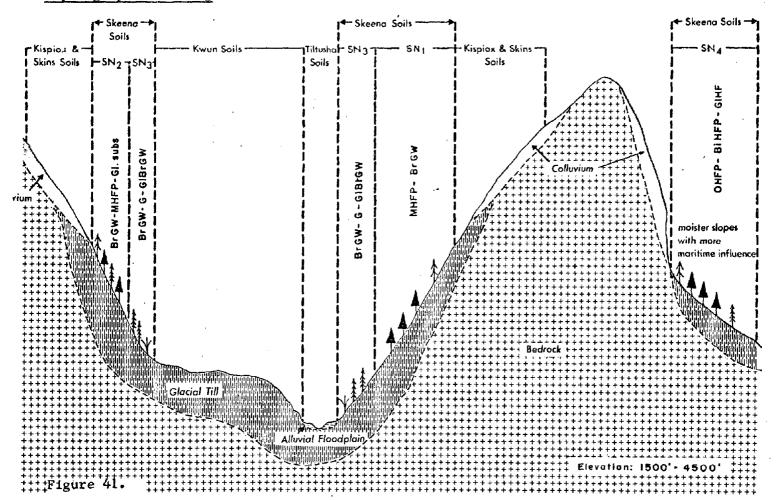
- 93 -

Suitability for Different Uses

- a. <u>Agriculture</u> Unsuitable.
- b. Forestry Unsuitable.

c. Engineering and Urban Development

Source of fragmental rock for construction processes although access is often difficult. Very unstable landform, avoid for road construction and building sites where possible. Seepage problems and fluctuating water tables in SA3.


d. Wildlife

Suitable goat habitat, especially in association with escape terrain in adjacent rock bluffs and sharp peaks. Where talus slopes are stabilized, suitable food plants are usually available. Ptarmigan habitat excellent, especially with combinations of SA3 and SA1 environments.

e. Recreation

Excellent scenery. Easily damaged alpine ecology. Extensive hiking, wilderness camping, and viewing only - low carrying capacity.

SKEENA ASSOCIATION

Physiographic Setting

Landform

Very steeply sloping (over 30% - average 45% slopes) glacial till located on steep valley walls. Parallel or modified dendritic (branched) surface drainage pattern, with abrupt directional changes where underlying bedrock is encountered. Gullies are cut deeply into the surface with u-shaped profiles.

Parent Material

A heterogeneous medium to moderately fine textured (loam to silty clay loam), occasionally stony, very compact, sticky (when wet), relatively impermeable glacial till which often has some surface modification due to downslope movement of material as a result of gravity. The surface modification may be a reworking of the local glacial till or an admixture of detritus from further upslope. Often pockets of clay till at depth.

Environment (Soil-Climate-Vegetation Relationships)

The Skeena soils are characterized by a relatively moist (13.5-16.5 inches of May-September precipitation), mild (70-95 frost free days), climate associated with steep valley side slopes, relatively impermeable, highly erodable, compact, sticky soils and a hemlock, cedar and moss vegetative cover. After disturbance shrub competition can be extensive but conifer regeneration rapidly takes over in most cases. SN4 Map Units occur in somewhat moister environments than SN 1 or 3. Following disturbance of vegetation, soil erosion can be excessive due to the combination of highly erodable soils on steep slopes and a relatively high precipitation.

Table 38. Skeens Soils

Soil Association Map Units	Major Soil (40-100%)	Minor Soil (20-40%)	Drainsge	Landscape Position	Major Vegetation	Pure Units Acreago	Complex Acreage
SNI	Mini Humo-Ferric Podzol		moderately well to well	steep convex moisture shedding slopes	western hemlock, dense moss cover	4,988	31,720
		Brunisolic Gray Wooded	moderately well to well	steep convex moisture shedding slopes	western hemlock, dense moss cover		
SH2	Brunisolic Gray Wooded		moderately well to well	steep convex moisture shedding slopes	Western hemlock, dense moss cover	• • • • • • • • • • • • • • • • •	
		Mini Humo-Ferric Podzol	moderstely well to well	steep convex moisture shedding slopes	western hemlock, dense moss cover		
		Gleyed subgroups	imperfect	concave, moisture receiving position or seepage channei	western hemlock, cedar, mosses		
5N3	Brunisolic Gray Wooded		moderately vell to well	steep convex moisture shedding slopes	western hemlock, dense moss cover	4,320	3,268
•	•	Cleysolics	poor to very poor	depressions without drainage outlet and continuous seepage Blopes	shrubs, scattered cedar	· .	
		Gleyed Brunisolic Gray Wooded	imperfect	concave, moisture receiving position or seepage channel or slope	vestern hemlock, cedar, mosses		
s#4	Orthic Humo-Ferric Podzol		moderately well to well	steep convex moisture shedding slopes	vestern hemlock, dense moss cover	496	10,008
		Bisequa Humo- Ferric Podzol	moderately well to well	steep convex moisture shedding slopes	western hemlock, dense moss cover		•
•		Gleyed subgroups	imperfact	concave, moisture receiving position or seepage channel on slope	western hemlock, cedar, mosses		
••••	*************************************				Total Acreege	9,804	44.996

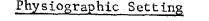
a. <u>Agriculture</u> Unsuitable.

b. Forestry

Mean annual increments range from 110-130 cu.ft./ac./yr. for western hemlock and white spruce on the imperfectly drained soils to 71-90 cu.ft./ ac./yr. for white spruce and alpine fir at the higher elevations. Slide, slump and erosion hazards, frost heaving and stream sedimentation hazard.

c. Engineering and Urban Development

High erosion, slump, slide, frost heaving and sedimentation hazards. Avoid where possible. Much cut and fill necessary for road construction.


d. Wildlife

Generally unsuitable. Short term ungulate habitat following fire as the useful succession stage likely is short. Very high stream sedimentation hazard is detrimental to fish.

e. Recreation

Unsuitable.

SKINS ASSOCIATION

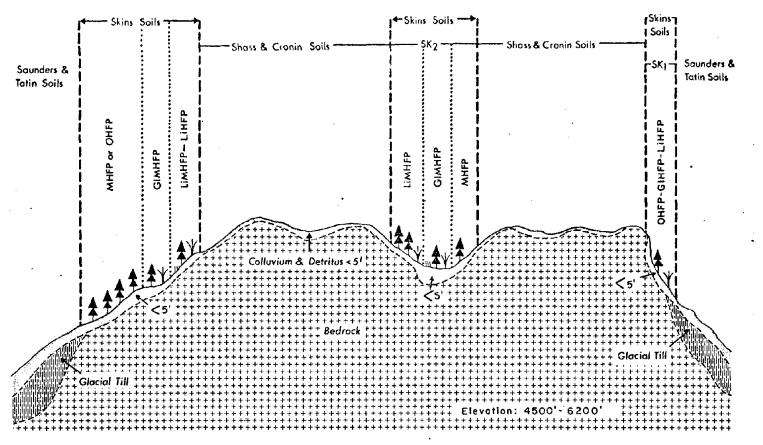


Figure 42.

Landform

A rolling to very steeply sloping (15-60% slopes) bedrock controlled surface often closely associated with rock outcrops. The landforms take on the characteristics of the underlying bedrock as the surface mantle is less than 5 feet thick. The surface form can range from dome-shaped hills having rounded tops and steep side slopes with a characteristic irregular pattern of curvilinear fractures, to sharp peaks with very steep slopes. Drainage patterns and gully profiles are highly variable depending on the characteristics of the underlying bedrock. Dissection is strongest where shales form the underlying bedrock. Evidence of frost action and related upheaving of the micro-topography.

Parent Material

Shallow colluvium which is moderately coarse textured, permeable, stony, and loose glacial till. Material derived from rock materials which combine to form a surface mantle which moves down the steep rocky slopes. Hard or shattered rock is usually within 3 to 5 feet, where surface deposits are less than 20 inches lithic subgroups (shallow soils) are indicated.

Environment (Soil-Climate-Vegetation Relationships)

Skins soils are located at timberline where the severe climate, including a very short growing season, cold temperatures, high moisture and snowfall, and strong winds are the predominating influences on the environment. The associated shallow, rocky, cold, often steeply sloping Podzol soils support a vegetation dominated by stunted and dwarfed alpine fir. The trees often grow in clumps, with variable shrub cover depending on stand density, and a component of forbes on imperfectly drained soils. This is the upper limit of continuous forest cover and the upper edges are only sparsely covered.

Soil Association Map Units	Major Soil (40-100%)	Minor Soil (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex Acreage
SK1	Orthic Humo- Ferric Podzol		well	convex moisture shedding slopes	alpine fir	36,496	141,904
		Gleyed Orthic Humo- Ferric Podzol	imperfect	swales and seepage slopes (moisture receiving positions)	alpine fir, shrubs, forbes		
		Orthic Humo-	well to moderately well	shallow convex rocky ridges and steep slopes	alpine fir, shrubs		

Table 39. Skins Soils

Table 39. Skins Soils (Cont'd)

sk2	Mini Humo- Ferric Podzol		well	convex moisture shedding slopes	alpine fir	2,552	20,036
		Gleyed Mini Humo-Ferric Podzol	imperfect	swales and seepage slopes (moisture receiving positions)	alpine fir, shrubs, forbes		
		Lithic Mini Humo-Ferric Podzol		shallow convex rocky ridges and steep slopes	alpine fir, shrubs		
					Total Acreage	39.048	1 61,94 0
					sorar mercage	59,040	101,940

Suitability for Different Uses

a. Agriculture

÷ ... •

Unsuitable. Some grazable forbes but too scattered and easily damaged by livestock.

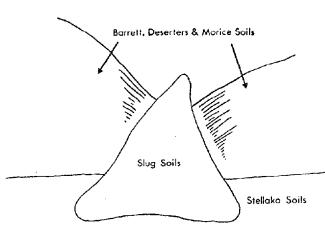
b. Forestry

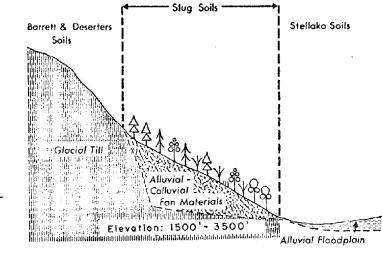
Mean annual increments range from 51-70 cu.ft./ac./yr. for alpine fir on the best sites to 11-30 cu.ft./ac./yr. for alpine fir on the shallow sites. Logging is not recommended.

c. Engineering and Urban Development

Severe climate, shallow rocky soils with some seepage, and fluctuating water tables in the swales are the main limitations. Easily damaged ecology.

d. Wildlife


This environment occurs at timberline and can provide escape cover as a part of the alpine habitat (i.e. summer range for moose or ptarmigan; cover for caribou and goat). Some food plants likely but not abundant usually.


e. Recreation

Attractive scenery (clumps of stunted alpine fir and rock outcrops on the edge of the alpine region). Extensive use only.

SLUG ASSOCIATION

Physiographic Setting

Figure 43.

Landform

Flat to steeply sloping (0-50% slopes) fan-like form occurring where a stream runs onto a level plain or meets a slower stream. No drainage pattern as such occurs but the surface is often marked by variegated current scars, abandoned and presently occupied channels. There is a noticeable slope towards the fan toe or apron.

Parent Material

The water sorted, partially stratified, coarse textured (gravelly), often stony, loose, permeable materials are located at the fan apex and finer materials (sands, silts and minor clays) sometimes slightly compact and less permeable occur toward the apron.

Environment (Soil-Climate-Vegetation Relationships)

The environment is characterized by a wide range of soil development, climate, and vegetation conditions even within one small map unit. May to September precipitation ranges from 7.5-13.5 inches, with much local variation in frost free periods depending on cold air sources from side valleys leading in from above the landform. The soil pattern is complex and highly variable. Drainage, permeability, stoniness and time of deposition are also variable. The resulting vegetation is also variable and is complicated further by a history of high fire frequency. Vegetation ranges from pure lodgepole pine stands on the well and rapidly drained soils of older deposits to trembling aspen and shrubs on the recently deposited, well drained (Regosol) soils, to shrubs, aspen, white spruce and cottonwood on the imperfectly drained soils to shrubs, white spruce, and cottonwood on the poorly drained soils. Table 40. Spag busca

Soil ssociation Map Units	Majoz Soll (40-100%)	Minor Soll (20-40%)	Drainage	Landscape Position	Hajor Vegetation	Puro Units Acreage	Complex Acreage
SG1	Orthic Dystric Brunisol		well to rapid	mainly fan epex	lodgepole pine	4,456	4,516
		Orthic Regosol	well to rapid	positions of recent deposition and fan aprons	aspen, shrubs		
SC2	Orthic Dystric Brunisol		vell	mainly fan apex	lodgepole pine	8,240	2,416
		Orthic Regosol	well to rapid	position of recent deposition and fan aprons	spen, shrubs		
		Cleyed subgroups	imperfect	abandoned channels, seepage depressions and fan aprons	lodgepole pine, white spruce		
SG3	Mini Humo-Ferric Podzol		vell	mainly fan spex	lodgepole pine, white spruce	9,728	3,040
		Drehic Regosol	well	position of recent deposition and fan aprons	aspen, shrubs		
		Gleyed subgroups	imperfect	abandoned channels, seepage depressions and fan aprons	white spruce, lodgepole pine, birch, aspen,shrubs		
\$G4	Orthic Regosal		vell	pomitions of recent deposition next to streams	aspen, shrubs	1,732	608
		Gleyed Orthic Regusol	imperfect	abandoned channels, seepage depressions and fan aprons	sbrubs, aspen, cotton- wood, white spruce		
\$05	Gleyed Orthic		imperfect	abandoned channels, seepage	shrubs, espen, cotton-	2,032	744
	Reg¢sol	Gleysolics	poor to very poor	depressions and fan aprons swales, depressions and seepage sites on fan aprons	wood, white spruce shrubs, white spruce, cocconwood		
••••••••••	793-16-26-16- 16-1 7-16-16-16-16-16-16-16-16-16-16-16-16-16-	***************	. ************************************		Total Acreage	26,188	11,524

Suitability for Different Uses

a. Agriculture

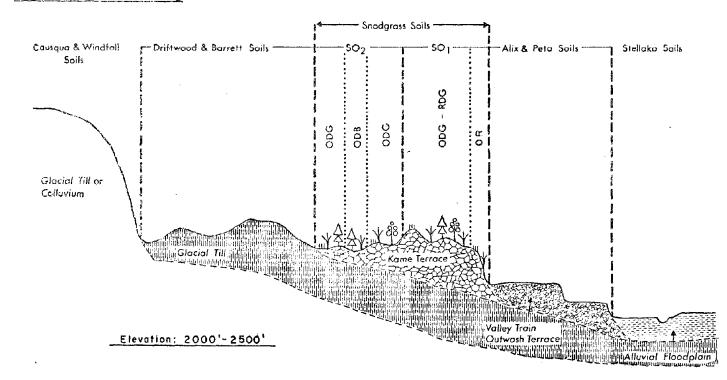
The climate is often limiting as in general it is severe and complicated by local frosts. Stoniness, flooding hazard, variable soil moisture-holding capacities and drainage limit the range of crops to forages in general, although there are some exceptions.

b. Forestry

Mean annual increments range from 31-60 cu.ft./ac./yr. for white spruce on the poorly drained soils to 90-110 cu.ft./ac./yr. for white spruce on the imperfectly drained soils. A wide range in site. Slash burning is not recommended.

c. Engineering and Urban Development

Location near valley bottoms and gentle slopes towards the valley make these soils valuable for urban development where needed. Apexes of these fans are common sources of aggregate and are also suitable building or subdivision sites. The variable soil textures and drainage properties as well as stream channel wandering make fan aprons difficult engineering problems in road-bed construction and maintenance and foundation settling.


d. Wildlife

A wide range of babitat types and variability of site within one landform. A useful habitat for upland game birds and winter range for ungulates, but usually in small units and therefore must be considered as part of larger adjacent units. Adjacent to streams, therefore some hazard of erosion and sedimentation detrimental to fish.

e. Recreation

High capability. Location at stream confluences, gently sloping topography, rapid permeability in fan apexes and diversity of vegetation make the well drained Map Unit SG1, parts of Map Units SG2,3 and 4 attractive recreation sites for a wide range of uses. The imperfectly drained parts of Map Units SG2,3,4 and SG5 have occasional high water tables and occasional flooding which reduce their desirability.

SNODGRASS ASSOCIATION

Physiographic Setting

Figure 44.

Landform

Level to rolling and strongly irregular (0-50% slopes) of hummocks, mounds and terraces often conforming partly to valley walls or rock faces (hanging on valley sides). Gives the impression of collapsed topography. A very haphazard, disoriented, discontinuous drainage pattern is typical. Gullies variable shape, but usually short and discontinuous.

- 102 -

Parent Material

Partially water sorted and roughly stratified deposits which are moderately coarse to coarse (sandy and gravelly) textured, often stony, usually loose and of variable permeability and depth.

Environment (Soil-Climate-Vegetation Relationships)

Snodgrass Soils support a contrasting vegetation as related to surrounding landscapes. In this somewhat drier environment of approximately 7.5 inches of May-September precipitation, associated with a coarse textured, droughty soil, and a high fire frequency, south and west slopes take on some grassland characteristics. These conditions favour a vegetation of shrubs, grasses, forbes and stunted aspen and Dark Gray soils. Only shaded swales and north and east slopes have the more typical characteristics of the northern forast with Brunisol soils and lodgepole pine and shrub vegetation.

Table 41. Snodgrass Solis

Soil Association Map Units	Major Soil (40-100%)	Minor Soil (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex Acreage
S 01	Orthic Dark Gray		rapid to well	steeply sloping usually south and west slopes	shrubs, grasses, forbes, stunted aspen	748	2,224
		Rego Dark Gray	rapid to well	steeper slopes than above	grasses, forbes, shrubs		
		Orthic Regesei	vapid to Well	very steep exposed slopes	grasses, forbes, shrubs		
so2	Orthic Dark Gray		rapid to well	steep south and west slopes	shrubs, grasses, forbes, stunted aspen	184	548
		Orthic Dystric Brunisol	rapid to well	north and east slopes and protected swales	lodgepole pine, shrubs		
	. ay in 40 an an an 10 an 20 an an an an an an				Total Acreage	932	2,872

Suitability for Different Uses

a. Agriculture

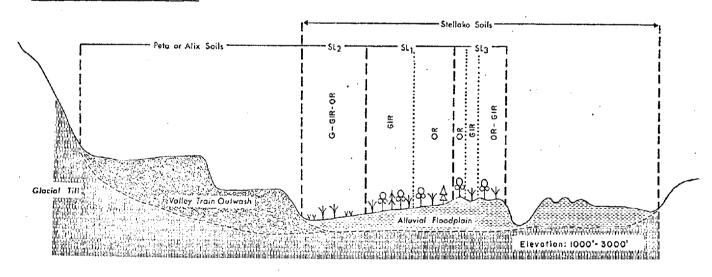
Mostly non-arable due to steep topography. Reasonable grazing capability, but these droughty soils can be easily overgrazed and permanently damaged.

b. Forestry

Mean annual increments range from 11-30 cu.ft./ac./yr. for trembling aspen on the drier sites and 31-50 cu.ft./ac./yr. for lodgepole pine on the moister sites. Logging is not recommended.

c. Engineering and Urban Development

Variable quality aggregate source, sometimes excellent but most often containing a high percentage of finer particles. Variable compressability and bearing strength. Sewage effluent disposal potential variable but most often good except for some seepage hazard along impermeable layers. Attractive physical setting for subdivision.


d. Wildlife

Early spring greening on these exposed slopes forms a useful part of ungulate winter habitat. Long term shrub and forb cover likely, with escape cover provided by the associated conifer forest of Map Unit SO2. Forest edge provides long term grouse habitat as well.

e. Recreation

An attractive landscape with high capability for a wide range of intensive and extensive uses.

STELLAKO ASSOCIATION

Physiographic Setting

Figure 45.

Landform

An alluvial floodplain characterized by:

(1) Curvilinear ridge and swale (lateral accretion) pattern with topography ranging from 0-7% slopes immediately adjacent to the present stream channels. A poorly integrated or discontinuous surface drainage pattern connecting swales is common.

(2) between the ridge and swale section and the valley wall a flat depressional plain (0-2% slopes) - (vertical accretion) often occurs. These two forms are often very complex and integrated, with the ridgeswale type often very narrow or missing completely as a result of erosion and deposition sequences.

Parent Material

Water sorted, stratified and variable textured alluvial materials which are deep, moderately permeable and slightly compact. The surface layers are usually silty, underlain by sands and at depth occasionally gravels.

Environment (Soil-Climate-Vegetation Relationships)

The floodplains are susceptible to flooding and have variable frost free periods of 40 to 80 days and receive approximately 7.5 inches May-September precipitation. Local variations in frost free periods are caused by fog cover and frost pooling in Map Unit SL2, but in general the further east and south, the shorter the frost free period. The soil-vegetation interrelationships are very complex depending on soil texture, drainage and flooding frequency. In general these floodplains support heavy shrub (mostly willow) and cottonwood cover, with scattered black and white spruce and loggepole pine on the well and imperfectly drained soils of Map Units SL1 and SL3 with shrubs, usually very dense on the imperfectly drained soils. The poorly drained soils of Map Unit SL2 have a dense cover of mostly willow, shrubs and forbes. Fluctuating water tables control the general environment, especially in Map Units SL1 and SL2.

Soil Association Map Units	Major Soil (40-100%)	Minor Soil (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex Acreage
SL1	Gleyed Orthic Regosol		imperfect	shallow swale or gentle slope away from stream	shrubs, cottonwood, white spruce	17,256	8,004
		Orthic Regosol	well to moderately well	slope or ridge on flood- plain	shrubs, cottonwood		
SL2	Gleysolics		poor to very poor	depressions, swales and back of floodplain	wet forbes, shrubs, (mostly willow)	13,156	8,980
		Gleyed Orthic Regosol	imperfect	slight ridges or edge of depressions	shrubs, cottonwood, white spruce		_
		Orthic R e gosol	well to moderately	ridges or upper slopes of floodplain next to	shrubs, cottonwood		

Table 42. Stellako Soils

Table 42. Stellako Soils (Cont'd)

----- BLELIARO DOIES (GONE

SL3	Orthic Regosol		well to moderately well	ridges	cottonwood, shrubs	7,444
		Gleyed Orthic Regosol	imperfect	swales	shrubs, cottonwood	

Total Acreage . 37,856 16,984

Suitability for Different Uses

a. Agriculture

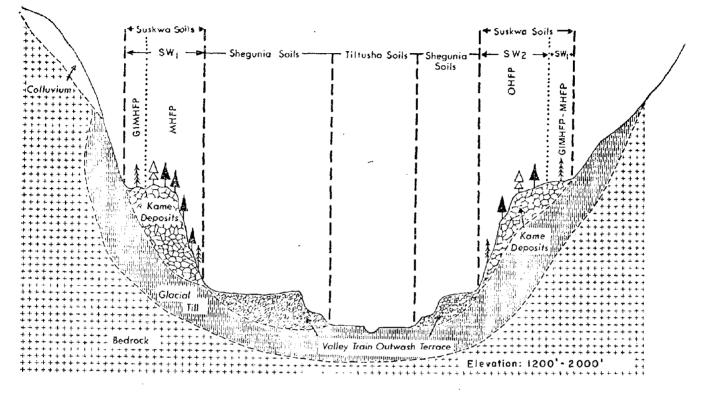
The crop range possible depends on the complex climate-soil drainage and texture combination. In some areas, a wide range of climatically suited crops is possible, while others are limited to forages only.

b. Forestry

Mean annual increments range from 31-50 cu.ft./ac./yr. for white spruce on the poorly drained soils of Map Unit SL2, to as high as 231-250 cu.ft./ac./yr. for black cottonwood on Map Units SL1 and SL3. Yield varys with soil texture, drainage, permeability and flooding frequency. Some stream sedimentation hazard.

c. Engineering and Urban Development

Flooding and lateral stream erosion hazard, variability in compressibility and bearing strength due to texture variation and fluctuating water tables. Aggregate source at depth in some locations.


d. Wildlife

Very high capability, especially ungulate (moose) wintering habitat. Excellent upland game bird habitat as well.

e. Recreation

Unsuitable in general, although well drained areas have only moderate limitations for intensive use.

SUSKWA ASSOCIATION

Figure 46.

Landform

Level to rolling and strongly irregular (0-50% slopes) of hummocks, mounds and terraces often conforming partly to valley walls or rock faces (hanging on valley sides). Gives the impression of collapsed topography. A very haphazard, disoriented, discontinuous drainage pattern is typical. Gullies variable shape, but usually short and discontinuous.

Parent Material

Partially water sorted and roughly stratified deposits which are moderately coarse to coarse (sandy and gravelly) textured, often stony, usually loose and of variable permeability and depth.

Environment (Soil-Climate-Vegetation Relationships)

A coastal transition-like vegetation of western hemlock and lodgepole pine occurs on the well to rapidly drained Podzol soils while western hemlock, cedar, scattered white spruce and shrubs grow on the imperfectly drained Podzol soils. The climate is relatively mild with 75-100 frost free days, and quite moist with approximately 13.5-16.5 inches, May-September precipitation. The air drainage is excellent on this valley-side landform. Soils subject to seepage occur against the valley wall, but usually form minor components in Map Unit SW1. SW2 Map units indicate a somewhat moister environment.

- 106 -

Physiographic Setting

Rebia 43, Suskwa Soils

Soil Association Map Units	Major Soil (40-100%)	Minor Soil (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Comple Acreag
SW1	Mini Humo- Ferric Podzol		well to rapid	humps and steep slopes (moisture shedding)	western hemlock, lodgepole pine	11,412	23,776
		Gleyed Mini Humo- Ferric Podzol	imperfect	swales, seepage slopes and section adjacent to valley wall	cedar, white spruce, western hemlock		
SW2	Orthic llumo- Ferric Podzol		well to rapid	humps, terraces and steep slopes	western hemlock	3,584	3,596
					Total Acreage	14,996	27,372

Suitability for Different Uses

a. Agriculture

Only small pockets are arable due to the rough topography. Forage crops only are recommended due to soil limitations, although climate would allow a wider range of crops.

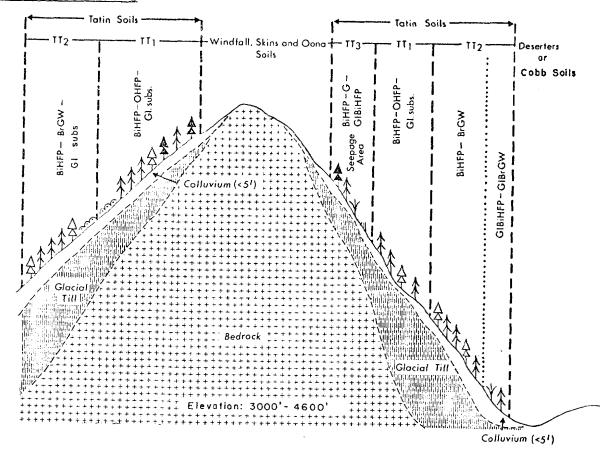
b. Forestry

Mean annual increments range from 71-90 cu.ft./ac./yr. for lodgepole pine on the drier sites of Map Unit SW1, to 110-130 cu.ft./ac./yr. for western hemlock in the moister environment of Map Unit SW2.

c. Engineering and Urban Development

Some seepage and slump problems can be expected along the valley face. Variable quality aggregate source - sometimes excellent but most often a high percentage of finer particles. Highly variable compressibility and bearing strength, therefore, check carefully. Sewage effluent disposal potential variable but most often good except for seepage hazard along impermeable layers.

d. Wildlife


Unsuitable.

e. Recreation

Interesting topography for viewing and hiking, and suitable for most intensive recreational uses.

TATIN ASSOCIATION

Physiographic Setting

Figure 47.

Landform

Very steeply sloping (over 30% - average 45% slopes) glacial till located on steep valley walls. Parallel or modified dendritic (branched) surface drainage pattern, with abrupt directional changes where underlying bedrock is encountered. Gullies are cut deeply into the surface with u-shaped profiles.

Parent Material

A heterogeneous medium to moderately fine textured (loam to silty clay loam), occasionally stony, very compact, sticky (when wet), relatively impermeable glacial till which often has some surface modification due to downslope movement of material as a result of gravity. The surface modification may be a reworking of the local glacial till or an admixture of detritus from further upslope. Often pockets of clay till at depth.

- 108 -

Environment (Soil-Climate-Vegetation Relationships)

The environment is characterized by a relatively moist (10.5-13.5 inches, May-September precipitation), cool (approximately 50 days frost free period), climate, associated with cold, compact soils and a vegetation typical of the spruce-alpine fir zone. Engelmann spruce, lodgepole pine and alpine fir occurs on the well and moderately well drained soils, with Engelmann spruce, alpine fir, and shrubs on the imperfectly drained soils and shrubs, forbes and alpine fir on the poorly drained soils subject to seepage. Map Unit TT3 is always at the higher elevations with colder temperatures, numerous seepage slopes and a larger component of alpine fir in the stands. Map Unit TT2 most often occurs at the lowest elevations on the slopes. Following disturbance of vegetation, soil erosion can be excessive due to the combination of somewhat erodable soils on steep slopes and relatively high precipitation.

Table 44. Totin Soils

Soil ssociation Map Units	Najor Soll (40-100%)	Hinor Soil (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex Acreage
TTI	Bisequa Humo-Ferric Podzul		moderately well to well	steep, convex moisture shedding slopes	Engelmann spruce, lodgepolo pine, alpine . fir	11,292	50,516
		Orthic Humo-Ferric Podzol	well to moderately well	steep, convex moisture shedding slopes	Engelmann spruce, lodgepole pine, alpine fir		
		Cleyed subgroups	imperfect	concave, moisture receiving position or scopage channel	Engelmann spruce, alpine fir		
Tr2	Bisequa Humo-Ferric Podzol		moderately well to well	steep, convex moisture shedding slopes	Engelmann spruce, lodgepole pine, alpine fir	31,960	119,322
		Brunisolic Gray Wooded	moderately well to well	steep, convex moisture shedding slopes	Engelmann spruce, lodgepole pina, alpine fir		
		Gleyed subgroups	imperfect	concave, moisture receiving position or seepage channel	Engelmann spruce, Bipine fir		
TT3	Bisequa Humo-Ferric Fodzol		moderately well	shedding slopes	alpine fir, Engelmann spruce	7,608	63,752
		Gleysolics	poor to very poor	depressions, secpage channels	shrubs, forbes, alpine fir, Engelmann spru⊂e		
		Cleyed Bisequa Humo-Ferric Poduol	imperfect	concave, moisture receiving positions or scopage channels	Engelmann soruce, alpine fir		
				*********************************	Total Acreage	50,860	233,59

Suitability for Different Uses

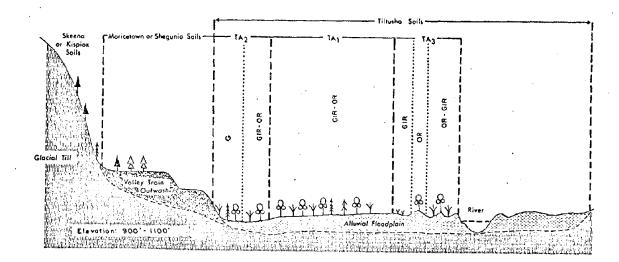
a. Agriculture Unsuitable.

b. Forestry

Mean annual increments range from 90-110 cu.ft./ac./yr. for white spruce on the imperfectly drained soils to 51-70 cu.ft./ac./yr. for alpine fir on the cold soils at the highest elevation. Slide, slump and erosion hazards, frost heaving and stream sedimentation hazards.

c. Engineering and Urban Development

As for Skeena except lower precipitation perhaps decreases slide, slump and erosion hazard somewhat.


d. Wildlife

Generally unsuitable except for Map Unit TT3 where food plant and cover combination provides suitable long-term summering habitat for moose and upland game birds.

e. Recreation

Generally unsuitable, but TT3 Map Units are attractive from a vegetation viewing standpoint and offer some extensive use possibilities for hiking and viewing.

TILTUSHA ASSOCIATION

Physiographic Setting

Figure 48.

Landform

An alluvial floodplain characterized by:

(1) Curvilinear ridge and swale (lateral accretion) pattern with topography ranging from 0-7% slopes immediately adjacent to the present stream channels. A poorly integrated or discontinuous surface drainage pattern connecting swales is common.

(2) between the ridge and swale section and the valley wall a flat depressional plain (0-2% slopes) - (vertical accretion) often occurs. These two forms are often very complex and integrated, with the ridgeswale type often very narrow or missing completely as a result of erosion and deposition sequences.

Water sourced, stratified and variable cextured alluvial materials which are deep, moderately permeable and slightly compact. The surface layers are usually silty, underlain by sands and at depth occasionally gravels.

Environment (Soil-Climate-Vegetation Relationships)

Characterized by the relatively flat, long, flood susceptible floodplains adjacent to the major streams, which have relatively mild climates (65-100 days frost free period) with some frost pooling (TA2 especially) and fog cover with approximately 7.5 to 10.5 inches, May-September precipitation. Fluctuating water tables control the general environment, especially on Map Units TA1 and TA2. The soil-vegetation relationships are very complex and depend on soil texture, drainage and flooding frequency. In general these floodplains support a coastal-transition type vegetation which includes a heavy shrub (hazelnut dominant) and cottonwood cover. Scattered white spruce and western hemlock predominate on the well to moderately well drained soils of Map Units TAl and TA3, with the same plus a heavier shrub layer and a cedar component on the imperfectly drained soils. The poorly drained soils of Map Unit TA2 usually have a dense cover of shrubs and forbes.

Soil isociation (ap Units	Major Soil (40-100%)	Minor Soil (20-40%)	Drainage	Landscape Position	Major Vegetation	Pore Units Acreage	Complex Acreage
TAI	Gleyed Orthic Regosol		imperfect	shailow swale or gentle slope away from stream		4,480	368
		Oithic Regnsol	moderately well	slope or ridge on floodplain	shrubs, cottonwood		
TA2	Gleysolics		poor	depression, swales and back of floodplain	wet forbes, shrubs	1,464	1,308
		Gleyed Orthic Regosol	imperfect	slight ridges or edge of depression	shrubs, cottonwood, cedar, hemlock, white spruce		
		Orthic Regosol	well to moderately well	ridges or upper slopes of floodplain next to stream	shrubs, cottonwood		
TA3	Orthic Regosol		well to moderately well	ridges	shrubs, cottonwood	692	
		Gleyed Orthic Regosol	imperfect	swales	shrubs, cottonwood, hemlock, cedar, white spruce		
		****			Total Acreage	6,636	1,876

Wable 45. Tiltusha Soils

Suitability for Different Nees

a. Agriculture

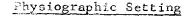
Suitable for a wide range of climatically adapted crops, but some flooding hazard, and management on this landform can be complicated due to variable soil textures and drainage.

b. Forestry

Mean annual increments range from 31-50 cu.ft./ac./yr. for white spruce on the poorly drained soils of Map Unit TA2, to 91-110 cu.ft./ac./ yr. for white spruce and western hemlock and a probable 250 cu.ft./ac./yr. productivity for black cottonwood on the imperfectly drained soils. Some stream sedimentation hazard.

c. Engineering and Urban Development

Flooding and lateral stream erosion hazard, variability in compressibility and bearing strength due to texture variation and fluctuating water tables. Aggregate source at depth in some locations.


J. Wildlife

See Stellako. Shrub cover very dense, although regeneration to conifers may be somewhat faster and useful successional stages may be depleted more rapidly without fire.

e. Recreation

Unsuitable in general, although well drained areas have only moderate limitations for intensive use.

TWAIN ASSOCIATION

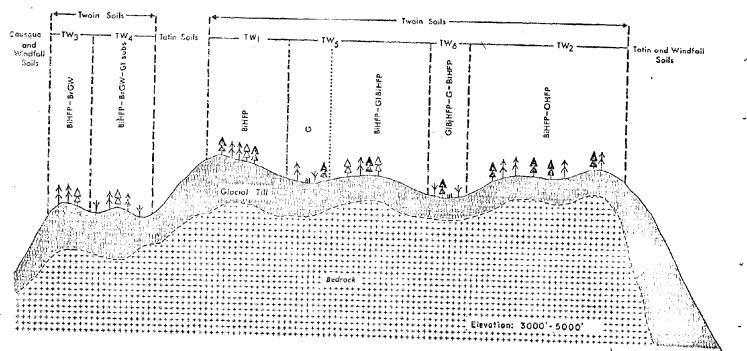


Figure 49.

Landform

An undulating to rolling (5-30% slopes) till plain located on high plateaus and with a haphazard pattern of wave-like ridges, often bedrock controlled, with humps and swales of various sizes. A uniform dendritic surface drainage pattern with tributaries exhibiting little directional change, except where diverted by bedrock, on meeting major drainageways. Gullies have the characteristic u-shape of moderately fine textured material.

Parent Material

A heterogeneous moderately fine textured (clay loam, silty clay loam) glacial till which is hard, compact, often stony and nearly impervious.

Environment (Soil-Climate-Vegetation Relationships)

The Twain Association is characterized by a relatively moist (10.5-13.5 inches of May-September precipitation), cool (approximately 50 days frost free period) climate, associated with cold, compact soils and a vegetation typical of the spruce-alpine fir zone. Engelmann spruce, lodgepole pine and alpine fir occur on the well and moderately well drained soils, with Engelmann spruce, alpine fir and shrubs on the imperfectly drained soils and shrubs, forbes and alpine fir on the poorly drained soils. The components of imperfectly and poorly drained soils form a much greater proportion of the landscape than on the associated Tatin soils. Shrub abundance depends largely on tree stand density, and is highly variable.

Table 46. Twain Soils

ap Units	Major Sofl (40-100%)	Minor Soll (20-40%)	Drainage	Landscope Position	Major Vegetation	Pure Units Acreage	Complex Acreace
TWI	Bisequa Humo-Ferric Podzol		moderately well	moisture shedding convex ridges, humps and relatively steep slopes	Engelmann spruce, lodge- pole pime, alpine fir	35.220	16,288
T ⊎2	Bisequa Humo-Ferric Podzol		moderately voli	moisture shedding convex ridges, humps and relatively steep slopes	Engelmann spruce, lodge- pole pine, alpine fir	8,292	23,192
		Orthic Humo+Ferric Podzol	moderately well to well	steepest slopes	Engelmann spruce, lodge- pole pine, alpine fir		
TW 3	Bisequa Humo-Ferric Podzol		moderately well	moisture shedding convex ridges and shallow swales	Engelmann spruce, lodge- pole pine, alpine fir	12,216	44,258
		Bruntsolic Gray Wooded	moderately well to well	moisture shedding convex ridges and shallow swales (south and west aspects common)	Engelmann spruce, lodge- pole pine, alpine fir		
TN 4	Bisequa Humo-Ferric Podzol		moderately well	moisture shedding convex ridges and shallow swales	Engelmann spruce, lodge- pole pine, alpine fir	25,000	48,289
		Brumisolic Gray Wooded	moderately vell to vell	moisture shedding convex ridges and shallow swales (south and west aspects common)	Engelmann spruce, lodge- pole pine, alpine fir		
		Gleyed subgroups	Imperfect	moisture receiving swales, flat plains and seepage channels	Engelmann spruce, alpine fir, shrubs		

tw 5	Bisequé Ruzo-Ferris Podzol		moderately well	moisture shedding convex ridges, humps and relatively steeper slopes	Engelmann spruce, alpine fir, lodgepole pine	7,884	18.752
		Cieyed Bisequa Humo- Ferr ic Podzol	imperfect	moisture receiving suales, flat plains and seepage channels	Engelmann spruce, alpine fir, shrubs	-	
		Gleysolics	paor	depressions with little drainage outlet	shrubs, forbes, alpine fir		
TW6	Dleyed Bisequa Rumo- Ferric Podzol		imperfect	molecure receiving ewales, flat plains and seepage channels	Engelmann spruce, sipine fir, shrubs	2,552	1,408
		Gleypolics	poor	depressions without drainage outlet	shrubs, forbes, alpine fir		
		Bisequa Numo-Ferric Podzol	moderately vell to vell	moisture shedding convex ridges, humps and relatively steep slopes	Engelmann spruce, lodge- pole pine, alpine fir		

Total Acreage

91,164 152,187

Suitability for Different Uses

a. Agriculture

Although most of the soils are topographically suitable for cultivation, very short frost free periods and cold soil temperatures would limit crop range to very hardy varieties of forage.

b. Forestry

Mean annual increments range from 31-50 cu.ft./ac./yr. for white spruce on the poorly drained soils to 91-110 cu.ft./ac./yr. for white spruce on the imperfectly drained soils. Frost heaving, stream siltation, compaction hazards.

c. Engineering and Urban Development

Twain soils are subject to frost heaving and have limited potential for effluent disposal. Trafficability generally poor when wet and while only limited cuts are necessary for road construction (flat topography) cutbanks have high erosion hazard. Higher frequency of areas with fluctuating water tables in Map Units TW4,5, and 6. Depth to bedrock also shallow, but always greater than 5 feet.

d. Wildlife

The imperfectly and poorly drained soils provide some useful habitat for moose and upland game birds. After disturbance, length of time food plants are available varies with stand history (density) but usually is short lived.

e. <u>Recreation</u>

Unsuitable.

UTSUN ASSOCIATION

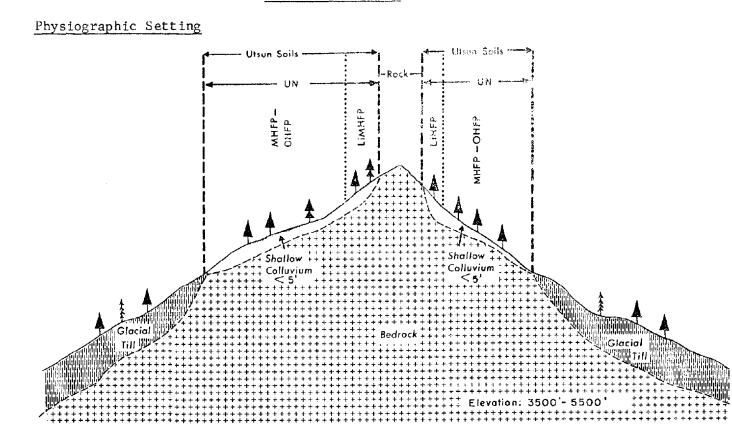


Figure 50.

Landform

The surface form is typical of the underlying acidic bedrock as the surface mantle is less than 5 feet thick. Dome-shaped hills having rounded tops, and steep side slopes (40%+) are common. Where soil mantles are thin (lithic subgroups) a characteristic irregular pattern of curvilinear fractures modifys the surface. Surface dendritic drainage patterns are of varying density and channels tend to have a rounded shape with tributary intersections tending to resemble a right angle.

Parent Material

Shallow colluvium which is moderately coarse textured, permeable, stony, and loose glacial till. Material derived from rock materials which combine to form a surface mantle which moves down the steep rocky slopes. Hard or shattered rock is usually within 3 to 5 feet, where surface deposits are less than 20 inches lithic subgroups (shallow soils) are indicated.

Environment (Soil-Climate-Vegetation Relationships)

Utsun soils are characterized by a moist climate having 13.5-16.5 inches of May-September precipitation and a very short frost free period of approximately 30-50 days. The associated soils are relatively shallow, and cold and support a vegetation of western hemlock, occasional mountain hemlock and alpine fir, the latter becoming dominant at higher elevations and on exposed sites.

Table 47. Utsun Soils

Soil Association Map Units	Major Soil (40-100%)	Minor Soil (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex Acreage
UN	Mini Humo- Ferric Podzol		well	shallow rocky ridges and steep slopes	western hemlock, alpine fir, mosses	640	7,516
		Orthic Humo- Ferric Podzol	well	swales, north and east slopes	western hemlock, alpine fir, mosses		v
		Lithic subgroups	well	very shallow rocky ridges and very steep slopes	stunted western hemlock, alpine fir, shrubs		

Suitability for Different Uses

a. Agriculture

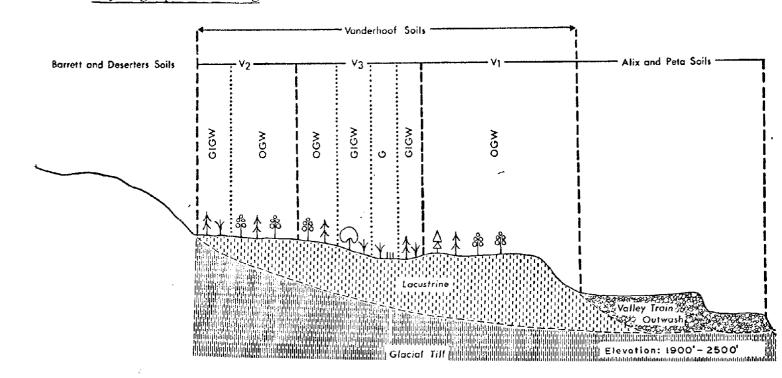
Unsuitable.

b. Forestry

Mean annual increments range from 31-50 cu.ft./ac./yr. for lodgepole pine and alpine fir on the very shallow drier sites to 51-70 cu.ft./ac./yr. for lodgepole pine on the deeper materials. Logging is not recommended.

c. Engineering and Urban Development

Steep topography and shallow depth to bedrock main engineering limitations. Bedrock characteristics variable, some blasting necessary, although much fracturing common. Generally best to avoid where possible.


d. Wildlife

Useful only as escape terrain and for limited summer range.

e. Recreation

Can be attractive viewpoints from which to look at surrounding land-scape.

VANDERHOOF ASSOCIATION

Physiographic Setting

Figure 51.

Landform

A flat to undulating (0-9% slopes) glaciolacustrine plain, occasionally dissected by deeply entrenched gullies, especially where only remnants of the plain remain on the valley side. An intense dendritic drainage pattern with associated rounded gullies typical of moderately fine and fine textured materials is common.

Parent Material

Moderately fine to fine textured (silty clay loam to clay) glaciolacustrine sediments which are water sorted, stone-free, layered, sticky, compact and nearly impervious. While these lakebed deposits are of variable thickness they always exceed 5 feet in thickness and silts underly the clays at depths of 10 to 15 feet.

Environment (Soil-Climate-Vegetation Relationships)

The environment is characterized by Gray Wooded soils which developed in a relatively dry and cool climate having 7.5 inches, May-September precipitation and approximately 50-70 frost free days. The associated vegetation has been subjected to a high fire frequency and includes trembling aspen with scattered white spruce and lodgepole pine and shrub cover on the well to moderately well drained soils. The fluctuating water tables of the imperfectly drained soils of Map Units V2 and V3 result in better rooting depths with more abundant shrubs and vigorous tree growth. The poorly drained soils of Map Unit V3 with continuous high water tables, support a vegetation of white and black spruce, scattered aspen and birch, plus moisture tolerant shrubs and forbes. Root penetration through the subsoil is difficult on the well drained soils.

Soil Association Hap Units	Hajor Sofi (40-100%)	Hinar Soil (20-40%)	Drainage	Landscape Position	Najor Vegetation	Pure Units Acreage	Complex Acreage
v 1	Drthic Gray Wooded		veli to moderately ucli	on crests or topographic highs in undulating topography	aspen, lodgepole pine, white spruce, shrubs	10,680	6,728
¥2	Orthic Gray Wooded		well to moderately well	on crests or topographic highs in undulating topography	aspen, lodgepole pine, white spruce, shrubs	184	1,836
		Gleyed Orthic Gray Wooded	imperfect	swales or flat plains	aspen, white spruce, lodgepole pine, shrubs		
v3	Orthic Gray Wooded		well to moderately well	on crests or topographic highs in undulating topography	aspen, lodgepole pine, white spruce, shrubs	2,060	
		Gleyed Orthic Gray Wooded	imperfect	swales or flat plains	espen, white spruce, lodgepole pine, shrubs		
		Gleysolics	peor	depressions without drainage outlet	black and white spruce, aspen, shrubs and forbes		
					Total Acresge	12,924	8,564

Suitability for Different Uses

a. Agriculture

Table 48. Vanderboof Soils

Mostly arable. Difficult to cultivate due to heavy texture but relatively good dry farming soil. Crop range limited by the short frost free period and impermeability of the soil.

b. Forestry

Mean annual increment ranges from 31-50 cu.ft./ac./yr. for white spruce on the poorly drained soils to 71-90 cu.ft./ac./yr. for white spruce on the imperfectly drained soils. Frost heaving, compaction and stream siltation hazards.

c. Engineering and Urban Development

These nearly impermeable medium to fine textured soils are subject to frost heaving, have limited potential for effluent disposal, generally poor trafficability when wet and cutbanks have high erosion hazard. The only advantage is relatively flat topography.

d. Wildlife

Generally unsuitable for waterfowl, but suitable to varying degrees for ungulate wildlife depending upon successional stages of vegetation. After logging or fire, browse species will predominate for a short period, after which they will survive only in the moist swales (Gleyed Orthic Gray Wooded soils). As most areas are near major valleys, moderate wildlife suitability is hampered by other uses.

e. <u>Recreation</u> Unsuitable.

WINDFALL ASSOCIATION

Physiographic Setting

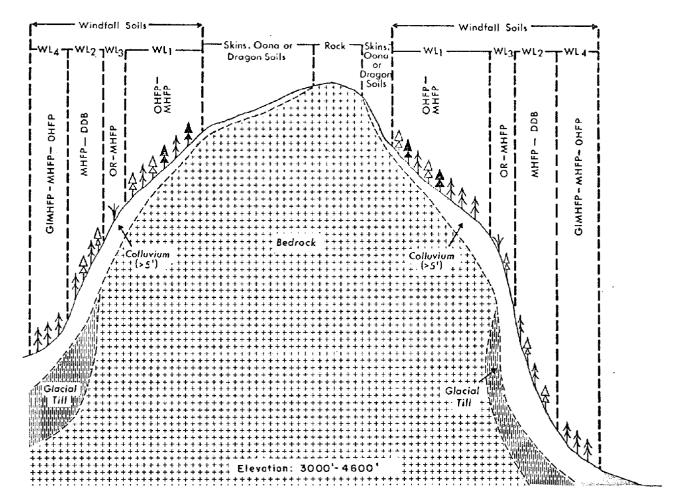


Figure 52.

Landform

Very steeply sloping (40%+ slopes) mantle of detrital materials on valley walls in hilly and mountainous terrain. Drainage pattern visible but generally dendritic and parallel with abrupt directional changes when bedrock is encountered.

Parent Material

A heterogeneous moderately coarse to medium textured layer of colluvium greater than 5 feet in depth deposited on steep slopes and the base of slopes by gravity. The material is gravelly, bouldery, stony, loose and permeable.

Environment (Soil-Climate-Vegetation Relationships)

The soils of the Windfall Association developed under a climate having moist, (approximately 10.5 inches precipitation) and cool (40-65 days frost free period), growing season and cold winters. Under these conditions, Podzols usually occur, however on very steep areas soil development can be retarded due to the unstable nature of the material. Coarse fragments of rock and rock outcrops are often closely associated. Associated vegetation includes lodgepole pine and white spruce on the well to rapidly drained soils of Map Units WL1 and WL2 with a component of alpine fir at the higher elevations. White spruce dominates on the imperfectly drained soils with a component of shrubs, and at higher elevations alpine fir. Conifers have difficulty establishing on the very steep slopes of Map Unit WL3 and shrubs take over. These steep, exposed slopes of soils with low moisture holding capacities are subject to a high fire frequency.

Table 49. Windfall Soils

Soil Association Map Units	Major Soil (40-100%)	Minor Soil (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex Acreage
WLL	Orthic Humo- Ferric Podzol		well to rapid	steeply sloping convex shedding slopes	lodgepole pine, white spruce, alpine fir	12,728	70,718
		Mini Humo- Ferríc Podzol	well to rapid	steeply sloping convex shedding slopes	lodgepole pine, white spruce, alpine fir		
' WL2	Mini Humo- Ferric Podzol		well to rapid	<pre>steeply sloping convex shedding slopes</pre>	lodgepolc pine, white spruce, alpine fir	3,868	30,652
		Degraded Dystric Brunisol	well to rapid	steeply sloping convex shedding slopes	lodgepole pine, white spruce, alpine fir		
			******	*********		**********	
WL3	Orthic Regosol		rapid	very steeply sloping convex shedding slopes	shrubs, lodgepole pine, scattered aspen	5,124	17,516
		Mini Humo- Ferric Podzol	rapid	very steeply sloping convex shedding slopes	lodgepole pine, shrubs		-

~

WL4

Gleyed Mini Humo-Ferric Podzol		imperfect	lower moisture receiving slopes (concave) or seepage channels on steep slopes	white spruce, shoubs	4 ,98 6	to , '
	Mini Humo- Ferric Podzol	well to moderately well	<pre>steeply sloping convex shedding slopes</pre>	lodgepole pine, white spruce, alpine fir		
	Orthic Humo- Ferric Podzol	well to moderately well	steeply sloping convex shedding slopes	lodgepole pine, white spruce, alpine fir		

Total Acreage

26,704 125,838

Suitability for Different Uses

a. <u>Agriculture</u> Unsuitable

b. Forestry

Mean annual increments range from 51-70 cu.ft./ac./yr. for alpine fir at the higher elevations to 91-110 cu.ft./ac./yr. for white spruce on the imperfectly drained soils near the base of slopes.

c. Engineering and Urban Development

Unsuitable for urban development due to bouldery, unstable material on extremely steep slopes. Road or pipeline construction and maintenance could have minor problems due to the unstable nature of the material especially boulders tumbling downslope or seepage in areas mapped as WL4. Bedrock often closely associated.

d. Wildlife

Unsuitable except for short-term ungulate range following fire.

e. Recreation

Unsuitable.

LAND TYPES

ORGANIC ASSOCIATION

Physiographic Setting

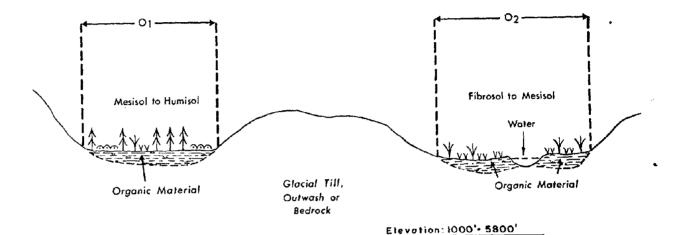


Figure 53.

Landform

Generally depressional topography with little drainage outlet. The surface form consists of relatively flat, slightly elevated, peatland with minor irregularities. The elevated surface is due to peat accumulation at lower elevations and frost upheaval at higher elevations.

Parent Material

Organic material in various stages of decomposition. Depths, stratification and permeability are variable.

Environment (Soil-Climate-Vegetation Relationships)

Characterized by the wet, poorly to very poorly drained organic soils, which are usually located in frost pockets, although climate in general is highly variable and ranges from 7.5-16.5 inches of May-September precipitation and approximately 30-70 days frost free period. Vegetation on the 01 Map units consists of black spruce, shrubs, mosses and sedges, while 02 Map units consist of more open sedge meadows with different degrees of wetness. Combination of sedge meadow forest and shrub and moss are also included. Very often the edges of the organic areas are forested with the middle part open sedge bog. Table 50. Organic Soils

sociation Tap Units	Major Soil (40-100%)	Minor Soil (20-40%)	Drainage	Landscape Position	Major Vegetation	Pure Units Acreage	Complex Acreage
01	Mesisols		poor to very poor	depressional restricted drainage outlets	black spruce, shrubs, mosses, sedges	28,208	31,134
		Humisols	poor to very poor	depressional restricted drainage outlets	black spruce, shrubs, mosses, sedges		
02	Fibrosols		poor to very poor	depressional restricted drainage outlets	sedges, reeds, mosses, shrubs, black spruce	12,772	7,532
		Mesisols	poor to Very poor	depressional restricted drainage outlets	sedges, reeds, mosses, shrubs, black spruce		

```
Total Acreage 40,980 38,666
```

Suitability for Different Uses

a. Agriculture

Limited potential for native hay production particularly on Map Units 02. Not usually worth draining (climate limitations).

b. Forestry

Unsuitable.

c. <u>Engineering and Urban Development</u> High water tables and organic materials; avoid where possible.

d. Wildlife

Important component of ungulate (moose) and upland game bird habitat, as well as providing some useful waterfowl habitat.

e. Recreation

Unsuitable for intensive use. Attractive ecology for hiking or nature study.

BEDROCK

Rock outcrops with no surface mantle. For general description of various rock types see the Geology section and References.

RO	pure unit acreage	==	54,336
RO	complex acreage	=	118,896
	Total		173,232

GLACIER

Areas of permanent snow and ice generally above 6000 feet elevation; lower on north and east aspects and higher on south and west aspects. Important viewing attractions.

G acreage = 20,048

USE AND MANAGEMENT OF THE SOILS

AGRICULTURE

Although the soils are often excellent, <u>the severe climate</u> (mainly short frost free season) restricts the agricultural use of much of the arable land. Forage crop and livestock production provide the base for a stable agriculture. Climate and soil factors favor the production of perennial grasses and legumes but impose severe limitations on most cereal grains and other annual crops.

In favoured locations, almost exclusively in the Bulkley and Skeena River valleys west of Houston, a wider range of crops such as cool-season vegetables, berry fruits, cereal grains and forages can be produced commercially. Where water is available increased yields can be expected from irrigation. Adjacent to these higher capability lands and to the north and east, (See Figure 5.) hardier varieties of the cultivated crops mentioned above can be grown but the highest potential is in forage production. Scattered throughout the area are large acreages which have severe physical limitations, are suitable only for forage production and can seldom stand alone as production units. Natural grazing lands are limited, but extremely useful for livestock production. Carrying capacity of these lands is often comparatively low.

See the following tables for more detail related to agricultural management of the various mapping units:

Table 51. Capability for Agriculture

The agriculture capability classification is based on the effects of combinations of climate and soil characteristics, on limitations in use of the soils for agriculture, and there general productive capacity for common field crops. Good management practices are assumed. Distance to market, kind of roads, location, size of farms, characteristics of land ownership and cultural patterns, and the skill or resources of individual operators are not criteria for capability groupings.

Climatic characteristics used include the following:

- length of frost free period, growing degree days (heat units), annual precipitation, length of growing season, and growing season moisture deficit.

Soil characteristics used include the limitations due to:

- stoniness, topography, excess water, soil droughtiness, salinity, flooding hazard, erosion, low permeability, and shallowness to bedrock.

Capability Classes

- Class 1 Soils and climate combinations in this class have no significant limitations in use for crops.
- Class 2 Soils and climate combination in this class have moderate limitations that restrict the range of crops or require moderate conservation practices.
- Class 3 Soils and climate combination in this class have moderately severe limitations that restrict the range of crops or require special conservation practices.
- Class 4 Soils and climate combination in this class have severe limitations that restrict the range of crops or require special conservation practices or both.
- Class 5 Soils and climate combination in this class have very severe limitations that restrict their capability to producing perennial forage crops, and improvement practices are feasible.
- Class 6 Soils and climate combination in this class are capable only of producing perennial forage crops, and improvement practices are not feasible.
- Class 7 Soils and climate combination in this class have no capability for arable culture or permanent pasture.

Capability Class*	Acreage	Main Landforms and Location
No class 1 or 2 in the area Class 3 Moderate limitations for cultivated crops - vegetables, grains and forages.	48,488	River floodplains, terraces and adjacent topographically suit- able slopes from Houston west in the Bulkley Valley and the Skeena and Bulkley valleys.
Class 4 Severe limitations for cultivated crops - forages, hardy grains and vegetables.	235,168	Topographically and climatic- ally suitable land adjacent to Babine and Francois Lakes, the Bulkley, Skeena and Kispiox valleys.
Class 5 Very severe limitations – forages only.	602,279	Scattered throughout the area, mainly higher elevation till plain with severe climates and areas with topographic limita- tions on main valley slopes.

- 127 -LAND CAPABILITY FOR AGRICULTURE (SOILS & CLIMATE)

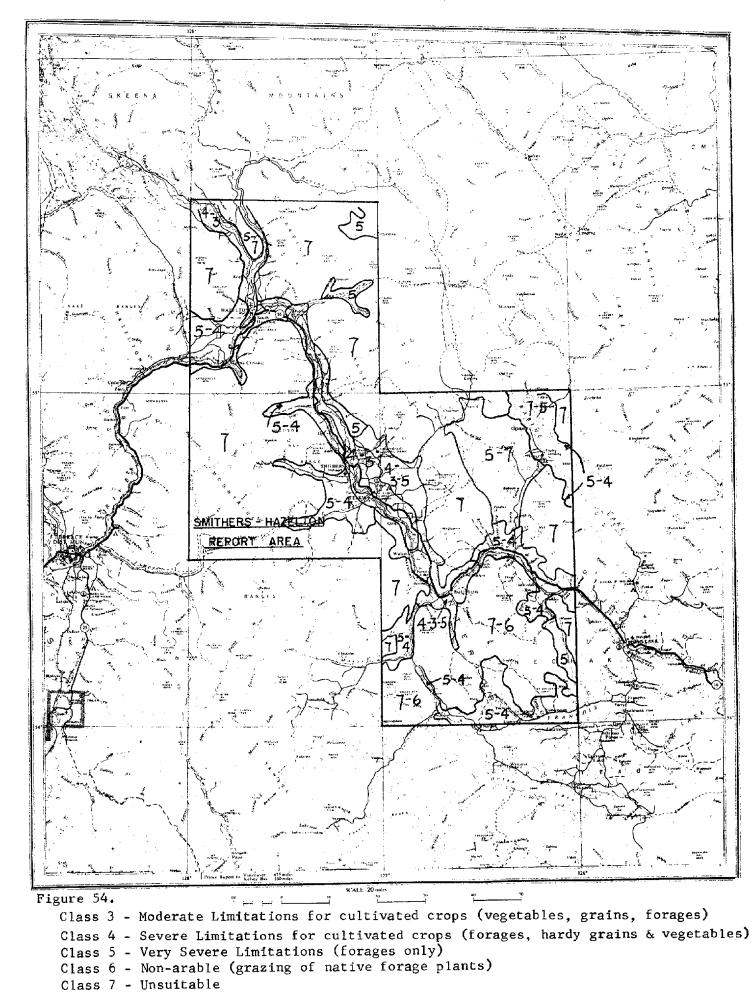


Table 51. Capability for Agriculture (Cont'd)

Class 6 Non-arable; grazing of native forage plants.	238,717	Eastern half of area on steep south and west slopes.
Class 7 Unsuitable	2,227,899	Mostly higher elevation mountainous lands with severe climates and steep topography.
0 organics	62,539	Scattered throughout area mainly at higher elevations with severe climates. Generally not economically feasible to reclaim.

* See Canada Land Inventory, Soil Capability Classification for Agriculture, for description of classes.

Table 52. Crop and Soil-Climate Suitability

Crop	Most Suitable Soils and Climate
l. Pasture Bromegrass - alfalfa	AX; BA; CR; DD1, 2; H1, 2; KA; MS; M1, 2; MT; PA; R; SH; SG1, 2; SO; SW. (Irrigation necessary for optimum yields).
Red clover, alsike clover	BE; BA1 - 5; BN; D1 - 5; DD3; H4, 5; KT; KN1, 2, 4; N; PR; SG3, 4; SL1, 3; TA1, 3; V1, 2; BA6; D6; H3; KN3; SG5; SL2; V3; O1, 2.
Reed canary grass	BA6; D6; H3; KN3; SG5; SL2; TA2; V3; O1, 2.
2. Hay and Silage	
Bromegrass - alfalfa	AX; BA7; CR; DD1, 2; H1, 2; KA; MS; MT; PA; SH; SG1, 2; SO.
Timothy, red clover, alsike clover	BE; BA1 -4; BN; D1 -5; DD3; H4, 5; KT; KN1, 2, 4; N; PR; SG3; TA3; V1, 2.
Reed canary grass, red clover, alsike clover	BA5, 6; D6; H3; KN3; SG4, 5; SL1, 2; TA1, 2; V3.

 Oats, barley - wheat hazardous (Houston area and west in Bulkley and Skeena valleys and adjacent to large lakes only).

BE; BA; BN; DD; H; KA; KN; MT; N; PA; PR; SG; SL; TA; V.

4. Vegetables (potatoes, turnips, carrots, cabbage, lettuce and other cool season crops) and berry fruits (Houston west in Bulkley and Skeena valleys).
BN; DD; H1, 2, 4, 5; KA; MS; MT; N; PA; SG1-4; SL1, 3; TA1, 3.

Table 53. Surface Erosion Potential

This rating is based on expected losses of surface soil when all vegetative cover, including litter, is removed. Evaluations of climate, slope gradient and length, soil characteristics, hydrologic characteristics of the soil and bedrock materials of each mapping unit are considered in making ratings. Average topography of the map unit is used although variation can influence the erosion potential significantly.

- <u>Very Slight</u> Practically no loss of surface soil material is expected. AX, DL, DR, DN, MT, PA, R, SY, SH, UN, O.
- <u>Slight</u> Little loss of soil materials is expected. Some minor sheet and rill erosion may occur. CB, CR, H1 3, KS, KA, KT, M, MS, ON, OD, SA, SG1 3, SO, SW.
- <u>Moderate</u> Some loss of surface soil materials can be expected. Rill erosion and some small gullies on sheet erosion may be occurring. BA, CA, D, DD, H4, 5, KX, N, PT, SS, SK, SG4 - 5, SL, TA, TW, WL.
- <u>Severe</u> Considerable loss of surface soil materials can be expected. Rill erosion, numerous small gullies or evidence that considerable loss from sheet erosion may occur. BE, CN, PR, SD, TT.
- <u>Very Severe</u> Large loss of surface soil material can be expected in the form of many large gullies and/or numerous small gullies or large loss from sheet erosion. BN, KN, SN, V.

Table 54. Agriculture Management Problems

The following refers to arable soils only (except 1 & 13):

- 1. Soils and climate combinations with severe to very severe erosion hazard: BE, CN, PR, SD, TT, BN, KN, SN, V.
- 2. Soils with lower moisture holding capacities (droughty) and highest irrigation water requirements: AX, CR, H, KA, KT, MS, MT, PA, R, SH, SG, SO.

- 3. Soils requiring drainage: BA6, D6, H3, KN3, SG5, SL2, TA2, TW6, V3, O.
- 4. Soils subject to flooding: BA5, 5, D6, H3, KN3, N2, SG2-5, SL, TA, TW5-6, V3.
- 5. Soils of heavy texture and poor structure with heavy power requirement for cultivation: BE, BA, D, KN, N, PR, TW, V.
- 6. Soils subject to wind erosion and sand blasting: KA, MS, MT, PA.
- 7. Soils likely to be nitrogen deficient: AX, BE, BA, BN, CR, D, H1, 2, 5, KA. MS. M. MT. N. PA. R. SH, SG1-4, SL3, TA3, TW1-4, V.
- 8. Soils likely to be sulfur deficient: BE, BA, BN, D, N, V, O.
- 9. Soils subject to compaction, poor root penetration, surface puddling and crusting: BE, BA, BN, KN, N, PR, V.
- 10.Soils low in organic matter: all except DD, PR, SO.
- 11.Soils likely to have highest land clearing costs: KN, KT, TA, MT, KA, H, SH, SW.
- 12.Soils in locations with extremely short frost free periods: parts of BA, CR, D, R, SG5, SL2, TA2, TW, O.
- 13.Soils easily overgrazed (native vegetation): SO, DD, DL, OD, SS, CN.

RECREATION

In Table 55, "Limitations for Recreational Use", soils are rated for different recreational purposes according to the soil properties listed in the last column of the table. Limitations and ratings are based on soil characteristics, not demand or proximity to population centers.

<u>None to Slight</u> soil limitations mean that soil is free of limitations or limitations can be easily eliminated, like slight stoniness or mild slopes.

<u>Moderate</u> soil limitations indicate that soil still can be used satisfactorily for a particular purpose with correct planning and good management. Main limitations include: somewhat poor drainage, moderate or not too steep slopes, silty or sandy texture, moderate stoniness, shallower water table, restricted depth, occasional flooding, occasional seepage or ponding, moderately slow permeability.

Severe soil limitations almost exclude use of soil for the stated purpose. In certain cases it can be overcome, but would require major reclamation work. Severe limitations include: steep or very steep slopes, high water table, poor drainage, flooding, serious ponding and seepage, unfavorable texture (loose sand, clay), acidity, excessive stoniness and rockiness, shallow depth, very slow permeability and organic deposits.

The column "Ecological Damage Hazard" is a relative rating and includes hazards to vegetation and soil under relatively intensive recreational use.

The Table 56, "Landscape Personality", groups soil map units into broad scenic and esthetic groups to provide some indication as to attractiveness for viewing, hiking, photography, driving and nature study. Table 56. Landscape Personality

Map units grouped as to attractiveness for viewing, photography, driving, nature study.

- 1. Lands with alpine scenic features resulting in extremely attractive landscapes: SS, SK, CN, SA, SY and associated bedrock and glaciers.
- 2. Lands of the alpine coniferous forest transition with contrasting vegetation very attractive: SD, SK, TT3, SN3, TW6, CA6.
- 3. Coniferous forests on lands of the steep mountainous slopes, somewhat monotonous landscapes within themselves, but with some scenic attractions especially in combination with the above landscapes: TT, WL, SN, KX, DN, DR, ON, UN, NA, OD1, 3, CA.
- 4. Coniferous forests on rolling uplands often interspersed with variable sized lakes and organic bogs or swamps. A somewhat monotonous landscape, but the lakes and bogs provide contrast and often attractive shorelands: D. DR, OD3, ON, UN, NA, TW, KN, CB, CR, KT, KA, SG3.
- 5. Mixed coniferous and deciduous forest on rolling to flat uplands often interspersed with variable sized lakes and streams. A somewhat attractive landscape due to contrasting vegetation patterns and often attractive shorelands: BA, OD1, DL1, D7, CA7, PT2, 3, MS, BN, M1, SG1, 2, 4, 5, H3, 4, SL, N, TA, V, BE.
- 6. Mixed grassland-deciduous landscape of vegetation and use contrasts. Pastoral setting often extremely attractive where lands are partially cultivated and associated with lakes or streams: PR, DD, DL1, 2, OD1, 2, KS, BA, PT4, SO.
- 7. Lands most often providing panoramic views of surrounding landscapes: SS, SK, CN, SA, DD, DN, DR, DL, ON, OD, KS, UN, NA, AX, MT, R, SH, PA.
- 8. Lands of the flat valley bottoms with contrasting vegetation, use patterns and with close-to-home, less strenuous hiking and nature study capabilities: SG, H, KA, SL, N, TA, SW, MT, SH, M, SO, MS, PA, R, AX, RG.
- 9. Lands with unique landforms and rock formations: Landforms - RG, M, SO, SA, Glaciers. Rock formations - bedrock land types - DN, DL, DR, ON, OD, KS, NA.
- 10.Lands with high frequency of associated organic bogs and swamps: CR, CB, D, SL, TA, SD, SS.

So[l_Name_	Map Unit Symbol	Intensive Camp and Picnic		Paths and Trails	Intensive Play Areas	COLLASING	Ecological Demage Hazard	So(1 Festures Influencing Use
Alix	AX	none to slight	Areas none	none	moderate	none	none	Rapidly drained, very rapid permeability, flat, minor surface stoniness.
Babine	BĒ	moderate.	moderate	moderate	moderate to severe	moderate	moderate	Very slow permeability, sticky and slippery when wet, subject to compaction.
Barrett	BA1-4	moderate	moderate	none to slight	moderace to severe	moderate	nome to slight	Noderately slow permeability, sticky and slippery when wet, rolling to undulating topography.
	BA5	moderate	moderate to severe	moderate	moderate	moderate co severe	moderate	Seasonal high water table otherwise as above.
	BAG	\$476 <u>7</u> 8	B&VEC 0	Bevere	5¢V876	severe	moderate	Poor drainage, high water table for long periods, subject to ponding, poor trafficebility.
	BA7	moderate	moderate	none	moderate to mevera	moderate to severé	BEVETE	Steeply sloping to rolling topography, moderately slow permeability, sticky and alippery when wet.
Berman	BN1	moderate	moderate	moderate	moderate	moderate to severe	severt	Variable topography, moderately slow permeability, sticky and slippery when wet, subject to compaction.
Causqua	CA1-5	moderate to severe	moderate	moderate	severe	BEVETE	none to slight	Steeply sloping topography, moderately alow permeability, sticky and slippery when wet, some stoniness.
	CA6	SCVEIS	6ever e	60ver8	84461 4	sever.	moderate	Depressional landscape position, imperfect to pootly drained, some ponding, high water tables, sticky and slippery when Wet.
	CA7	moderate to severe	moderate	none	\$67614	BEVETE	164618	Steeply sloping Copography, some stoniness moderately slow permeability, sticky and slippety when wet.
Cobb	СВ	moderate to slight	none to slight	none Sa slight	\$2V6[\$	moderate to alight	none	Often stony, rapid permeability, gently undulating topography.
Cronin	CN	\$evera	severs	moderate	BEVET C	BOVETE	Very Severe	Stony, undulating to rolling topography, subject to wind and water erosion, poor trafficability, variable permeability.
Crystal	CR	moderate to slight	none to alight	none to slight	SEVETE	moderate to slight	none	Often stony, rapid permeability, gently undulating topography.
Dahl	DL1-2	Sever4	severe to moderate	moderate	severe	8ever#	BEVOTO	Shallow depth to bedrock, steeply sloping topography, stony surface, variable permeability.
	dl3	BEVETE	moderate	moderate	Severs	BEVETE	moderate	Shallow depth to bedrock, steeply sloping topography, stony surface, variable permeability.
Decker	DR	\$ & ¥ € T9	moderate to Bevert	moderate	Beve re	Severe	moderste	Shallow depth to bedrock, steeply sloping topography, atomy surface, variable permeability.
Deserters	D1-5	moderate	moderate	none to moderate	moderate to severe	moderate	none to slight	Moderately slow permeability, sticky and slippery when wet, rolling to undulating topography.
	D6	moderate	moderate to severe	moderate	severe	86¥6 F 8	moderate	Depressional topography, seesonal high water tables, sticky and slippery when wet.
	D7	moderate	poderate	none to slight	moderat#	moderate	SEVEFE	Moderately slow parmeability, sticky and slippery when wet, rolling to undulating topography.
Dragon	DN	\$ever¢	moderate to severs	moderate	severe	S&Yer\$	moderate.	Shallow depth to bedrock, steeply sloping topography, stony surface, variabla permeability.
Driftwood	DD	moderate	moderate	moderate	moderate to sovere	moderste	Levere	Steeply sloping to rolling topography, moderately slow permeability, sticky and slippery when wet.
Hagwilget	H1,2,5	none to slight	DODE .	none	moderate	none to slight	none to slight	Some stoniness, rapid permeability, gently sloping topography, no ponding.
	н3,4	Boderate	moderste to severe	poderate	moderate		moderate	As above with occasional flooding and seasonal high water tables.
Kispiox	юх	SqV&Z&	\$2Vero	moderate	\$¢Vc78	B ëvere	none to slight	Bouldery and stony, very steeply sloping topography, often unstable, variable permeability.
Kizauns	KS	poderate	moderate	none	\$8V¢re	SCYCLE	\$6¥278	Shallow depth to bedrock, stony surface, variable permeability.
Kitsguecla	KA	none		BORE	ποηα	none	none to slight	Subject to blowing if subsoil exposed. Well drained, no ponding. Variable depth to underlying compact material, flat topography generally.

Table 55. Limitations of Soils for Recreational Use

Table 55. (Cont'd)

.

-

-

÷.

•

oil_Name_	Map Unit Symbol	Intensive Camp and Picnic <u>Areas</u>	Building Sites In Recreational Areas	Paths and Trails	Intensive Play Areas	_Cottaging	Ecological Damage Hazard	Soil Festures Influencing Use
litwanga	ĸŢ	moderate	tone .	none to slight	severe	moderate	none	Stony bouldery surface, variable perme- ability, undulating topography.
ena	KN1.2.4	moderate	moderate	none to slight	SELALE	Bevere	bone	Subject to compaction, very slow permeability, sticky and slippery when a
	KNO	severe	severe	moderate	severe	5 CVCT E	hone	Depressional landscape position, seesons bigh water tables plus above.
apes	NS 1	none to slight	none	none	none to elight	none	none	Flat, rapid permeability, no ponding, subject to blowing if subsoil exposed.
orice	ж	moderate to slight	moderat e- slight	moderate= slight	severe	moderate to slight	moderate	Variable Copography, stony surface.
oricetown	NT .	none to slight	Done	DODE	none to slight	none	none	Flat, rapid permeability, no ponding, subject to blowing if subsoil exposed.
stlan	NA	moderata	moderate	moderate	severe	şevera	moderate	Shallow depth to bedrock, stony surface steeply sloping topography.
echako	И	moderate	none to slight	none	moderate	moderate	ποπ ε	Noderately slow permeability, sticky and slippery when wet, subject to compaction.
ona	ON	• Severs	moderate to severe	moderate	Beve re	savere	moderate	Shallow depth to bedrock, stony surface steeply sloping topography.
rmond _{fi}	CD	267610	severe to moderate	moderate	264616	Severa	Severs.	Shallow depth to bedrock, stony surface Variable permeability.
eta	PA1	none to slight	none	none	none to slight	none	moderate	Flat, subject to blow if subsoil expose rapid permeability.
Lnkut	PI	SEVERC	BEVETO	severe	SCVETC	severe	moderate	Very steep topography, unstable, bould and stony, rapid permeability.
airiedal	e PR2	moderate	moderate to severe	moderate	moderet e to severe	BEVETE	none	Noderate to slow permeability, flat, subject to compaction, sticky and slip; when wet.
ввеу	R	none to slight	лопе	попе	moderate	none	DORE	Some surface stoniness, rapid permeabi flat.
oering.	RG	moderate to slight	moderate- slight	none	SCVETC	moderate .	none	Long sinuous ridges, rapid permeabilit some surface stoniness.
aunders	SD1	moderate	moderate.	moderate	Bevere	moderate to severe	moderate	Steeply sloping, moderately slow perme ability, sticky and slippery when wet.
	SD2	moderate	moderate to 🌒	moderate	severe	BEVEre	moderate	Seepage plus above.
	SD3	BOVETE	severu	Bevere	\$ever e	T ¢A616	Sever's	High water tables for long periods, subject to ponding and seepage.
NOTY	5Y	none	notte	none	moderate	none	moderate	Some surface stoniness, repid permeability, flat.
base	\$\$1,2	BOVETE	moderate to severe	moderate	sovere	sovere	very severe	Shallow depth to bedrock, variable topography, variable permeability.
	\$\$3	severe ·	severe	SEVER6	BEVETÓ	BCVCI0	very severe	As above plus high water tables.
begunia.	581,3	RODE	none	NOTE	moderate	none	none	Some surface stoniness, rapid permeabl flat.
	SH2	moderate	moderate	none	\$evere	moderate	none	As above plus fluctuating water tables
idina	9A1,2	severa	severe	BEVETE	severe	severe	Bêvere	bouldery and stony surface, rapid permeability, surface movement of boul downslope, steeply sloping topography.
	\$A3	moderate to severe	5evere	moderate	BEVETC	Bevere	moderate to severe	bouldery and stony surface, imperface drainage (seepage position), variable topography, variable permeability.
keena	SN1,2,4	80ver4	şêverê	noñe	Bevere	sc vere	moderate.	High slump and slide hazard, very stic and slippery when ver, steeply sloping topography, slow permeability, subject compaction.
	SN3	\$evere	sever t	moderate	severe	severe	moderate	as above plus high water tables.
kins	SK	04¥674	ACVERE to DOCELECE	sévere to moderate	B êvere	Sévei8	moderate	Shallow depth to bedrock, slow permeability, stony surface, variable topography.
lug	SC1-3	pone	none	none	moderate	none	moderate to alight	Rapid permeability, gently sloping topography, minor surface stoniness.
	\$G4,5	moderate	moderate to severe	moderate	BEVETC	86792¢	moderate	Variable permeability, fluctuating wat table, subject to some ponding and flo ing, gently sloping topography.

1

-

·

Table 55. (Cont'd)

So <u>il Nam</u> e	Kap Unit Symbol	Incensive Camp and Picnic Areas	Building Sites In Recrestional Areas	Paths and Trails	Intensive Play Areas	Cottaging	Ecologicai Damage Hazard	<u>Soil features Influencian</u> Use
Gnodgrass	50	moderate to slight	moderate to slight	moderate- slight	severe	moderate to slight	moderate	Rapid permembility, rolling topography, some surface stoniness.
Stellsko	SL1	moderate	moderate	woderste	moderate	ievere	moderate	Some flooding hazard, seasonal bigh water table, variable permeabliky, hummocky micro topography, subject to compaction.
	SL2	Severe	264626	56V6T4	SEVETO	Severe	moderate	High water table for long periods, subject to ponding and flooding, slow permeability subject to compaction.
	SL3	moderate	slight to moderate	none	moderate	poderate	moderate	Subject to flooding, variable permeability, subject to minor compaction
uskva	sw	noné	nonc	none	SEVERE	none	none	Rapid permeability, rolling topography. some surface stoniness.
latin	TT1,2	BEVERE	86V#I4	moderate	3ever 8	\$ever 8	moderate	steeply sloping topography, subject to some slumping, slow permeability, subject to compaction.
	773	Bevera	BEVETË	moderate	вечеге	Bevere	moderate	as above with seasonal high water tables.
liltusha	TAI	moderate	moderat e	TROSETALE	moderate	BØA41 <i>5</i>	moderate	Some flooding harard, seasonal high water table, variable permeability, hummocky micro topography, subject to compaction.
	TA2	Severe	SEVEIS	Bëvelq	\$evere	\$6VETE	moderate	High water table for long periods, subjec to ponding and flooding, slow permeability subject to compaction.
•	TA3	moderate	BOTE	Bone	moderate	moderate	1018	Subject to flooding, variable permeability, subject to minor compaction
Vain	TW1-5	moderat a	zoderate	110 Re	moderate	severs.	none	rolling topography, slow permeability, subject to compaction.
	TV6	SEVET8	levera	moderate	Bevere	sevare	moderate	as above with semmonal high water tables.
Utsum	UN	moderate	moderate	none	pevers.	<u>Bever</u> e	moderate	Shallow depth to bedrock, stoeply alopin topography, strong surface, variable permeablifty.
Vanderhoof	v1,2	severe to moderate	moderate	moderate	sevara	₽6∧61¢	poderate	Subject to compaction, very slow permeability, very sticky and slippery when wat, flat.
	٤v	\$eV¢It	SEVER	moderate	severe	SEVERE	moderate	as above with seasonal high water tables.
Windfall	WL.	acvere	52¥670	moderate	86vere	sevara	none to slight	Bouldery and atony, very steeply sloping topography, often unstable, variable permeability.
Organics	o	Severe	B AVE T Q	SGVEIC	SEVER	severa	F&A62#	High water table throughout the year, orcanic soil.

ENGINEERING

There are some differences between the terminology of soil science and that of engineering - terms used in soil surveys are those of soil science. The interpretation of engineering properties of soils is based mainly on information gathered and observations made in the field during the course of the soil survey.

Table 57 titled "Inferred Engineering Characteristics of Soils", relates the Unified System of soil classification to the soil survey mapping units (Soil Map Symbol) and noted engineering characteristics. These are general guidelines and relative ratings and there is no intent that these in any way replace site specific engineering investigation. Analytical data will be forthcoming for selected soils and the table "Inferred Engineering Characteristics of Soils" is therefore tentative.

	IVISIONS I		HAP Symbo	TYPICAL NAMES		ERHEABILITY Racteristics	SHFAR STRENGTH (when Baturated)	COMPRESSIBILITY AND EXPANSION (when saturated)	ANU SLIDE HAZARD	COMPACTION CHARACTERISTICS	POTENTIAL FROST ACTION	PEDOLOGICAL DRAINAGE CLASS	WORKABILITY AS A CONSTRUCTION HATERIAL
arse ained ails		CN	AX Sh X	Well grad gravels o gravel-so mixtures, little ou fines	and	Pervious	Excellent	Almost none	Lou	Excelient, crawler type tractor, rubber-tired equip. steel wheeled roller		rapid	Excellent
	Gravel and Gravelly soils	GP	M SA SO SW AX SH R RG	Poorly gr gravels of gravel se mixtures or no fir	or and little	Very pervíous	Çood	Almost none	Low	Good to excellent cravler type tractor, rubber- tired equip., steel wheeled roller	none to very slight	sapid	Good
		CK	H SY SO SS: SV SA: RC SK CB CR KT SC H VL2 KX2	silt mixt	ind-	Semi- pervious to pervious	Cood	Very slight to slight	Low to moderate	Good to excellent rubber-tired equipment, shespifoot roller; close control of moisture	slight to medium	rapid to well	Good
		6C	KT S	T Clayey g S ³ gravel-s K ³ clay mix	and-	, Variable (most often sem1- pervious)	Good co Fair	slight	Low to Noderate	Excellent, : rubber-tired equip., sheepsfoot roller	slight to medium	well	Good
at Sa	end nd endy	514	PA K HT MS	A Well gra- sand or gravelly little of fines	sands,	Pervious ,	Excellent	Almost none	Low to Moderate	Excellent, crawler type tractor, rubber-tired equipment	none to very slight	rapió	Excellent
	oils	8P	PA K ht ks	A Poorly g sands or gravelly sands		Pervious	Good	Almost none	Moderate to Low	Good to excellent, crawler-type tractor, rubber- tired equip.	none to very sifght	rapid	Fair
		\$ X	SG U H D M N SO O SW U BN N SL TA	N ³ Band-Sili N ³ mixtures N ³	nds,	Semi- pervious	Good	Very slight to medium	Moderate	Good to excellent with close control of moisture, rubber tired equip, sheepsfoot roller	slight to bigh	Fapid to well	Fair

Table 57. Inferred Engineering Characteristics of Soils

Lable 57. (Contid)

R 1987 FERTIDAS R Marken IVISIONS	UNIFIA	s (IL Чар Synbol		HEABILITY ACTERISTICS	3124. L STHENG DA Lugon Enclosed	<pre>>> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	ಿ ಶ್ರೀಧಿನಿಕ ್ಷಣ್ ತೆಬ್ಬರ್ಗ ಗಳು ಸಿಸಿ	0089401105 19 619 1920 (19 19 0	POTENTIAL FROST AGCION	PEDOLOGICAL DRAINAGE GLASS	MORKADILITY AS R CONSTRUCTION METERIAS
	S C	CH CR KT SC H	Cleyey sands, sand-clay mixtures	Semi- pervious to impervious	Good ta Fair	Slight to medium	Modera2a.	Excellent, sheepsfoot roller, rubbet tired equip.	slight to high	well to mod erately well	Good
fine Silcs insincd and oils Clays	M1.	BN DI H KI SC OI TA SI SL N	3 silts and 3 very fine	Semi- pervious E0 impervious	Fair	Slight to medium	Noderate to high	Good to poor yubber-tized equip., sheepsfoor roller; close control of poisture	medium to very high	well fo imperfect	Fair
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	CL	CN BA D CA DD SD	Inorganic clays of low plasticity, gravelly clays, sandy clays, silty clays, lean clays	Impervious	Fair	Kedium	Koderate to bish	Fair to good sheepafoot rolled, robbet- timed equap.	medium to high	well to poor	Good to Eais
	0L	5L 0	Organic silts and organic silty clay of low to medium plasticity	Semi- pervious to impervious	Poor	Kedium to high	Koderste to bigh	Fair to your sheepsfoot roller	nedium to high	o imperfect to very poor	Fair
	CI	CN 7 BA T D P CA S DD B KN	W clays of R medfum D plasticity,	lmpetvious	Fair to Poor	Medium to high	Nigh to Noderata	Fair to poor sheepsfoot roller	neđita 20 high	veli to poor	Fair
	жң	S1.	Inorganic silts,micaceous or diotomaceous fine sandy or silty soils, elastit silts		Fair to Poor	High	High to Nodersta	Poor to very poor sheepsfoot roller	medium to high	weil to ponr	Pnor
	CR	V S Be Kn	<pre>% Inorganic clays of high plasticity, fat clays</pre>	Impervious	Poor	High	Very high	Fair to poor sheepsfoot roller	med <u>í</u> um	vell to poor	Poor
	OH	0 V PR	Organic clays of high plasticity, organic silts	Ітретчіоць	Poor	High	High	Poor to very poor, sheepsfoot roller	2.e¢îym	poor to very poor	Poor
Highly Drganic Solls	PT	0	Organic soils	variable (usually semi- impervious to impervious)		very high	-	Compaciion not praotical	slight	very poor	-

Stimates only - detailed cata analysis to follow.
 Generally high component of rock fragments - most often have overlay of materials of different composition - steep slope landscape position.
 shallow over bedrock (high component of coarse rock fragments) (characteristics not typical of group)

.

Table 58, titled "Engineering Use of Soils" relates use to the Unified System of soil classification and the soil survey map units.

Criteria used are as follows:

- Unified System soils classified according to particle size distribution, plasticity, liquid limit, and organic matter. Soils are grouped in 15 classes. Soils on the borderline or crossing two classes are designated by symbols for both classes.
- 2. <u>Hydrologic Soil Groups</u> general infiltration and water movement ability of the soil and bedrock materials. Group A - soils having high infiltration rates even when thoroughly wetted, consisting chiefly of deep, well to rapidly drained sands and/ or gravel. These soils have a high rate of water transmission and therefore a low runoff potential. Group B - soils having moderate infiltration rates when thoroughly

wetted, consisting chiefly of moderately deep to deep, moderately well to well drained soils with moderately fine to moderately coarse textures. Soils having a moderate rate of water transmission.

Group C - soils having slow infiltration rates when thoroughly wetted, consisting chiefly of, (1) soils with a layer that impedes the downward movement of water or, (2) soils with moderately fine to fine texture, slow infiltration rates, and slow rates of water transmission. Group D - soils having very slow infiltration rates when thoroughly wetted, consisting chiefly of (1) clay soils with high swelling potential, (2) soils with a high permanent water table, (3) soils with a clay pan or clay layer at or near the surface, and (4) shallow soils over nearly impervious materials. Very slow rates of water transmission and high runoff potential.

3. <u>Topsoil Suitability</u> - Suitability is affected mainly by ease of working and spreading the soil material, as for preparing a seedbed; natural fertility of the material, or the response of plants when fertilizer is applied; and absence of substances toxic to plants. Texture of the soil material and its content of stone fragments are characteristics that affect suitability, but also considered in the ratings is the damage that will result at the area from which topsoil is taken.

4. Suitability as source of sand and gravel - Soil factors to consider are:

- a) Depth to water table
- b) Presence of stones and boulders
- c) Presence and amount of finer particles
- d) Thickness of the deposits and depth to sand and gravel
- e) Grain sizes of sand and gravel
- f) Shape of sand and gravel particles

- 5. <u>Suitability as a source of fill material Soil factors to consider</u> are:
 - a) Shear strength
 - b) Compressibility
 - c) Workability
 - d) Shrink-swell potential
 - e) Compaction characteristics
 - f) Susceptibility to frost action
 - g) Stability
 - h) Erodiblity
 - i) Depth to water table
 - j) Moisture content
 - k) Presence of stones or boulders
- 6. Soil features affecting road location
 - a) Presence of organic material and thickness
 - b) Depth to bedrock and presence of stones and boulders
 - c) Depth to water table
 - d) Stability of slopes
 - e) Potential for frost heaving
 - f) Erodibility
 - g) Flooding hazard
 - h) Topography
 - i) Ease of hauling and excavation
 - j) Plasticity of the material
 - k) Presence of springs and seeps
- 7. Soil Factors affecting foundations for low buildings
 - a) Shear strength
 - b) Shrink-swell potential
 - c) Compressibility
 - d) Consolidation characteristics
 - e) Susceptibility to liquifaction and piping
 - f) Soil texture
 - g) Soil permeability
 - h) Depth to bedrock
 - i) Depth to water table
 - j) Susceptibility to sliding

8. Soil features that determine the limitations for septic tank filter fields

- a) Soil permeability
- b) Depth to water table
- c) Flooding hazards
- d) Steepness of slope
- e) Depth to bedrock or other impervious materials
- f) Crevassed bedrock that may lead polluted water to other places

- 9. Soil factors affecting use for sewage lagoons a) Permeability of materials

 - b) Depth to bedrock
 - c) Steepness of slope
 - d) Reservoir basin material
 - e) Embankment materials
 - f) Presence of coarse rock fragments

10. Soil factors affecting use for pipelines

- a) Corrosivity of the material (soil drainage, texture, chemical composition)
- b) Depth to bedrock
- c) Stability of material
- d) Susceptibility to frost heaving
- e) Depth to water table
- f) Presence of coarse rock fragments and boulders

Table 58. Engineering Use of Soils

SOIL Hap i			IC SUITAL	BILITY AS SOURCE	COF:	SOIL PEATURES	VILLETING		SOIL LINITATIONS PO	SEWACE	PIPELINES
	SYSTEM	SDIL GROUP	TOPSOIL	GRADILAR MATERIAL (sand&gravel)	FTLL MATERIAL	ROAD LOCATION	BUILDING FOUNDATIONS	EXCAVATIONS	FILTER FLELDS	LAGOONS (Co	arrosivity)
LX	GW-GP	×	Ροστ	Good .	Good	no restrictions	low compressibility	no restrictions	Slight-some contamination hasard by effluent.	Severa-high percolation, gtony	Slight
3e	СІ-СН	C-D	Poar	Not suitable	Peiz- Poor	Bearing strength and frost heaving problems	Beating strength and compressibility problems	no restrictions	Severe- relatively low permeability	Slight	Hoderate (some corrosio textura)
A1,2, 1,4	CL-CI	c	Poor	Not suitable	Pair	Bearing strength and frost heaving problems	Bearing strength and compressibility problems	no. restrictions	Moderate- severe: lov permeability	Slight	Moderate to slight (some corrosion- texture)
845,6	CL-CI	D .	Fair	Not suitable	Fair- Poor	Bearing strength and frost heaving problems and high to fluctuating water tables	Bearing strength and compressibility problems, high and fluctuating water tables	high and fluctuating water Cables	Severe-high and fluctuating water tables, low permeability	Severe-high and fluctuating water tables	High to Hoderate (corrosion- high water tables)
<u>14</u> 7	CL-CI	c	Good	Not suitable	Pair	Topography limitation. Bearing strength and frost heaving problems	Adverse topog. Bearing strength and compressibility should be investigated	No restrictions	Hoderate- severs adverse topog- and low permeability	Hoderate- adverse topography	Moderate to slight (some corrosion- texture)
M	Sn-hl	B-C	Fair	Not suitable	Good- Pair	Susceptible to frost heaving and trosion, topog. limitation, unstable	Adverss topog, Bearing strength and compressibility should be investigated	some slumping hezard	Slight	Moderate	Slight
CA1-5,	CL-CI	c	Poor	Not suitable	Peir	Topog. limitation Bearing strength and frost heaving problems	Adverse topog, Bearing strength and compressibility should be investigated	adverse Copog.	Moderate- severo adverse topog. and low permeability	Savers- Adverse Zogog.	Moderate to slight (some boulders- minor corrosion)
	CL-CI	D	Fmit	Not suitable	Fair- Poor	Topog. limitation Bearing strength and frost heaving problems and high water tables	Adverse topog. Bearing strength and compressibility should be investigated and high vater tables	high water tables	Severe-high water table and low permembility	Severe-bigh water table	High (corrosio high water tables)
	GN,GC, SC	C-3	Foor	Fair (gravel)	Good	no restrictions except variable depth to compact underlay	Variable compressibility	no restrictions	Hoderate- some seepage along compact underlay	Moderate- variable depth to compact underlay	Slight
N	CL-CI	C-D	Poor	Not suitable	Fair	Bearing strength and severe frost heaving problems	Bearing scrength and compressibility problems	Some topog. Limitations	Severe-low permeability, severe frost heaving	Hoderste- frost heaving	Moderate (corrosion and severe frost heaving)
	CH,GC, SC	С-В	Poor	Pair (gravel)	Good	no restrictions except variable depth to compact underlay	variable compressibility	no restrictions	Koderate-some seepage along compact underlay	Moderase- variable depth to compact underlay	Slight
DL.	5X1#	D	Poor	Not suitable	Poor	Shallow to bedrock and adverse topog.	Shallow to bedrock and adverse topog.	sballow to bedrock and adverse topog.	Severe to moderate- shallow to bedrock, adverse topog.	Severe-shallow depth to bedrock, stony, adverse	Moderate (shallow to bedrock)

Table 58. (Cont'd)

-

-

٣

٠

.

DIC		AVDROLOG	IC SUIT/	BILITY AS SOUR	E OF:	SOIL FEATURES A	FFECTING		SOIL LIMITATIO	NS FOR:	
	UNIFIED SYSTEM	SOIL GROUP	TOPSOIL	GRANULAR MATERIAL (sand&gravel)	FILL HATERIAL	ROAD LOCATION	BUILDING	EXCAVATIONS	FILTER FIELDS		operation a Construction a Correctivery
2	₩L*	D	Poor	Not suitable	Poo r	Shallow to bedrock and adverse topog.	Shallow to bedrock and adverse topog.	shallow to bedrock and adverse topog.	Severe to moderate- shallow to bedrock, adverse topog. some seepage	Severe-shallow depth to bedrock, stony, adverse topog.	Moderate (shailow to bedrock)
1-5,	CL-CI	c	Poor	Not suffable	Pair	Bearing strength and frost heaving problems	Bearing strength and compressibility problems	no restrictions	Severe- moderate- relatively low permeability	Slight	Noderare 20 slight (some corresione textura)
6	CL-CI	D	Fair	Not suitable	Fair- Poor	Bearing strength and frost heaving problems and high water tables	Bearing strength acd compressibility problems and high water tables	high water tables	Severe-high unter tables, low permesbility	Severc-high water tables	High to moderate (corrosion- bigh water cables)
н	sk*	D	Poor	Not suitable	Poor	Shallow to bedrock and adverse topog-	Shaliov to bedrock and adverse topog,	shallow to bedrock and adverse topog.	Severe to moderate- shallow to bedrock, adverse topog. some acepage	Severe- shallow depth to bedrock, stony, adverse topog.	Slight- Moderate (shallow to bedrock)
9	CL-CI	C	Good .	Not suitable	Fair	Topography limitation. Bearing strength and frost heaving problems	Adverse topog. Bearing strength and compressibility should be investigated	no restrictions	 Hoderste- severe adverse topog. and low permeability 	Noderate- adverse topog.	Nodergte to slight (some corrosion- texture)
1, 2, ,5	CH.CC. SH.SC. HL.HH	≜- D	Fair- Poor	Fair	Good	Highly Variable soils, some frost heaving	Variable compressibility and bearing strength	no restrictions	Slight to severe (highly variable)	Slight to severe (highly variable)	Slight to high variable soils, cave-ins some corrosion
13	СС,6М, \$С,ЮL, ЖН	C-D	Fair- Poor	Fair	Cood	High and fluctuating water tables	High and fluctuating water tables	high water tables	Severa-high Water Lables	Severs-high water tables	High-corrosion high and fluctuating water tables
T	Q 1- 60	▲- B	Poor	Poor	Fair	Topog. limitation. Closely assoc. with bedrock. Boulders common	Adverse topog highly variable bearing strength and compressibility	adverse topog. Boulders	Severe-adverse topog, slope seepage	Severa-adverse topog.= beepage	Slight- Hoderate (large boulder on steep slopes)
s	nl*	D	Pour	Not suiteble	Poor	Shallow to bedrock and adverse topog.	Shallow to bedrock and adverse topog.	ehellow to bedrock and adverse topog.	Severe to moderate- shellow to bedrock, adverse topog. some seepage	Severe-shallow depth to bedrock, stony, adverse topog.	(shallow to bedrock)
*	SW-SP	В	Fair	Good(sand)	Good- Fair	Difficult to compact	Low compressibility of surface material	Bo Testrictions	Noderate-some seepsge on Compact underlay	Hoderate to severe-high percolation to compact underlay	Slight (ditch cave=ir hazard)
T	GM,GC, SC	C-3	Poor	Pair (gravel)	Good	no restrictions except variable depth to compact underlay	Variable compressibility	no restrictions	Moderate- some seepage slong compact underlay	Noderate- variable depth to compact underlay	Slight
N	C1-CH	D	Poo r	Not suitable	Fair- Poor	Slippery when wet, bearing strength and frost heaving problems	Bearing strength, compressibility and erosion problems	no restrictions	Severe-low permeability	611ght	Moderate (corrosion- texture)

Table 58. (Cont'd)

	UNIFIED L SYSTEM	SOIL CROUP	TOPSOIL	CRANULAR MATERIAL (sand6gravel)	FILL KATERIAL		BUILDING FOUNDATIONS	EXCAVATIONS	LOID LIP TALLO SIPTIC TARC TILTER FIELDS	STATION LAGOONG (Zistul (S. Constantiation &
HS	SW-SP							······			Corrosivity)
	54-57	•	Fair	Good (sand)	Good- Fair	Difficult to compact	Low Compressibility	Some slumping of excepation sidewall	Siight	Severe-high percolation	Slight- Roderace (ditch cave- in hazard)
L	CH-SX	8-A	Poor	Good-Fair (ség)	Good	No restrictions except topog. occessionally	Low Compressibility	no restrictions	Slight-some scepage in steeper topog.	Severe-high percolation, adverse Copog.	Slight
T	SW-\$P	*	Fair	Good (sand over gravel)	Good- Fair	Difficult to compact	Low compressibility	Some siumping of excavation sidewall	Slight	Severe-high parcolation	Slight- moderate (ditch cave-in hagerd)
LA.	SH*	D	Poor	Not suítable	Poor	Shailow to bedrock and adverse topog.	Shallow to bedrock and adverse topog.	shallow to bedrock and adverse topog.	Severe to moderat*- shallow to bedrock, adverse copog. some seepage	Severe-Shallow depth to bedrock, scony, adverse sopog.	nderate (similow to bedrock)
	\$н~н⊥	C	Fair	Ροστ	G004	Minor- fluctuating water tobles	Baaring strength should be investigated	no restrictions	Moderate-some permeability limitations	Slight	Slight- Moderate (come fitch cave-in and corrosion hazgrd)
N	SH*	D	Poor ,	Not suitable	Paat	Shallow to bedrock and edverse topog.	Shallow to bedrock and adverse topog.	shallow to bedrock and adverse topog,	Severe to moderate- shallow to bedrock, adverse topog. some seepage	Severe-shallow depth to bedreck,stony, adverse copog.	(shallow to
D	ML+	D	Poor	Nor suitable	Þoor •	Shallow to hedrock and adverse topog.	Shallow to bedrock and adverse topog.	shallow to bedrock and adverse topog.	Severe to moderate- shallow to bedrock, adverse topog. soms seapage	Severe-shallow depth to bedrock, stony, adverse topog.	Naderate (shallow to bedrock)
A .	5H-8P	٨	Fair	Good (sand over gravel)	Good- Fair	Difficult to compact	Low compressibility	Some alumping of excavation sidewall	Slight	Severe-bigh percolation	Slight- moderate (ditch cgve-in hazard)
ΥT	CC	B	Poor	Poor	Fair- Good	Tapog. limitation. Assoc. with bedrock	Adverse topog highly variable bearing strength and compressibility	Adverse topog. boulders	Severe-adverse topog. slope seepage	Severs- gdverse Lopog- meepage	Slight- moderate (large boulders on steep slopes assoc, with bedrock)
PR.	C1	D	Fair- Cood	Not suitable	Poor	Slippery when wat, frost heaving, unstable, bearing strength problems	Bearing strength problems, high risk of frost heaving	no restrictions	Severe-lo⊍ permeabilîty	Slight	Noderate (corrosion- texture)
R	GM-GP	*	Poor	Cood	Good	no restrictions	low compressibility	no restrictions	Slight-some contamination hasard by effluent	Severs-high parcolation, stony	Slight
RG	6 8- 64	٨	Peer	Good (gravel)	Gaod	no restrictions except topog.	low compressibility	no restrictions	Moderate- adverse topog.	Severe-bigh percolation	Slight
D	ML-CL, CI	C	Poor	Not suffeble	Peir	Topog. limitation Bearing strength and Frost heaving problems	Bearing strength should be investigated, adverse topog.	no restrictions	Noderata- severe adverse topog. and low parmeability	Severe- adverae copog.	Moderate (corroslon- texture)
Y	CH.	*	Poor	Good (gravel)	Good	No restrictions	low compressibility	no restrictions	Slight	Severe-high percolation	Slight
S 1	сн#- GC#	D	P007	Not suitable	Poor	shallow to bedrock	Shellow to bed+ rock, adverse topog.	shallow to bedrock	Severe- shailow to bedrock, adverse topog.	Severe- shallow to bedrock, adverge topog.	5light- moderate (shallow to Dedrock)
H	CW-CP	*	Poor	Good	Good	no restrictions	low compressibility	Ro restrictions	Slight-some contamination hezard by effluent	Severe-high percolation, stony	Slight
A	CP	•	Poor	Poor	Poor- Faiz	Large boulders and rock fragments un- stable topog. limitations	low compressibility Large boulders and rock fragments unstable	large boulders and zock fragments unstable	Moderste- severe adverse topog. seepage boulders unstable	Severa-high percolation, adverse topog.	Slight+ moderate (large boulders unstable slopes)
N	CH	D	Poor	Not suitable	Poor	Adverse topog. elide bazard, bearing strength, seepage and frost heaving problems	Adverse topog. Blide hazard, bearing strength, seepage and frost heaving ptoblems	deverse Copog. Slide hagard	Severe- adverse topog. low permembility	Severe- adverse topog. seepage,slide hasard	Moderate to ,high (corrector and slide hasan

Table 58. (Cont'd)

SOIL	ห เพาะรายอ	SOIL	IC SUITAB	CRANULAR	FILL	SOIL FEATURES AF	BUILDING		SEPTH' LONK		· · · · · · · · · · · · · · · · · · ·
	SYSTEM		TOPSOIL	MATERIAL (sand&gravel)	NATERIAL		FOUNDATIONS	JECAVATIONS	FILTER FIFIDS		Carriestvity)
sk.	6H*- 6C*	D	Poor	Not suitable	Poor •	shallow to bedrock	Shailow to bed- rock, adverse topog.	shallow to bedrock	Severc- shallow to bedrock, adverse topog.	Severe- shallow to bedrock, adverse topog.	Slight- moderate (shallow ta bedrack)
SG1-4	CH,GC, SH,SC, ML,MH	K-D	Fair- Poor	Fair	Good	Righly variable soils, some frost beaving	Variable compressibility and bearing strength	no restrictions	Slight to severe (highly variable)	Slight to severe (highly variablo)	Slight to his variable soil cave-ins, som corresion
SC 3	сс, SH, SC, ML, NH	C-D	Pair- Poor	Fair	Cood	Righ and fluctuating water tables	High and fluctuating water tables	high water tables	Severe-high water tablos	Severs-high water tobles	High-corrosio high and fluctuating water tables
SO	GP-GH	*	Good- Fair	Good (gravel)	Good	no restrictions except topog.	low compressibility	no restrictions	Moderate~ adverse topog.	Severe-high percolation	Slight
6L1 , 3	HL-HH	3	Fair	Poor	Fair- Good	some flooding hazard,frost heaving	variable bearing strength and compressibility	no restrictions	Moderate-some flooding, variable permeability	Moderate-some flooding, variable percolation	Slight= moderate (som ditch cave=in hazard)
SL2	0દ+મા	D-C	Fair	Poor	Feir- Good	High water tables,flooding	high water tables and variable bearing strength and compressibility	bigh waser tables	Severe-high water tables, flooding	Severe-bigh Water Lables	High (corrosion-hi vater tables)
50	GH-5H	A-B	Poor	Good-Fair (s&g)	Good	no restrictions except topog. occassionally	low compressibility	no restrictions	Slight-some seepage in steeper topog.	Severe-high percolation, adverse topog.	\$light
r r	CI	C	Poor	Poor	Pair	Topog. limitation, bearing strength and frost heaving problems	Bearing strength and compressibility should be investigated, sdverse topog.	adverse topog.	Severe-adverse topog, low permeability	Severe∘mdverse topog, seepage	
TA1,3	ML-MH	8-4	Fair	Poor-Fair (sand)	Pair- Good	Some flooding hazard, frost heaving, fluctuating water tables	Some flooding hazard,frost heaving, fluctuating water tables and variable bearing strength and compressibility	no restrictions	Moderate-some flooding, variable permeability	Hoderate-some flooding, variable percolation	Slight- moderate (sou ditch cave-in hazard)
TA2	ol-nh	D-C	Feir	P007	Fair	High water tables, flooding	High water tables, variable bearing strength and compressibility	high veter tables	Severe-high water tables, flooding	Severe-high water tables, flooding	High (corros) high water tables)
W1-5	CI	C-D	Poor	Poor	Fair	Slippery when wet, bearing strength and frost heaving problems	Bearing strength and compressibility should be investigated	no restrictions	Severe-low permeability	Slight	Moderate (corrosion- texture)
₩6	C1	D	Pair	Poor	Pair- Poor	Slippery when wet, bearing strength and frost heaving problems and high water tables	Bearing strength and compressibility should be investigated and high water tables	high veter tables	Severe-low permeability and high water tables	Sevare-high weter tables	High to moderate (corrosion - high water tables)
N	\$ 8 *	D	P007	Not suitable	Poor	Shallow to bedrock and adverse topog.	Shallow to bedrock and adverse topog.	shallow to bedrock and adverse topog.	Severe to moderate- shallow to bedrock, adverse topog. some seepage	Severe-shallow depth to bedrock, stony,adverse topog.	Moderate (shallow to bedrock)
	CH .	D	Poor	Not suitable	Poor	Slippery when wet, frost heaving,unstable, bearing strength problems		nc restrictions	Severe-low permeability	\$light	Moderate (corrosion- texture)
-	CH-CC	A-B	Poor	Poor	Fair	Topog. limitation. Closely assoc. with bedrock, boulders moving downslope common	Adverse topog. highly variable bearing scrength and compressibility, large boulders	advérse topog. large boulders	Severs-adverse Lopog. slope Seepage	Severs- adverse topog., seepage	Slight to moderate- (large boulds moving down slope common)
	т	ם	Pair	Not suitable	Not suitable	Very high water tables organic material should be removed	Low bearing strength and high compressibility	high water tables	Severe-vary bigh water tables	high water tables	High-high and fluctuating water tables

* Shallow to bedrock - high content of rock fragments (materials variable - not typical of group)

•

÷

FORESTRY

Introduction

The report area covers a large part of Pulp Harvesting Area 4 which includes the Smithers, Morice, Burns Lake, Babine and Ootsa P.S.Y.U's. as well as portions of the Skeena P.S.Y.U. and T.F.L. 1.

At lower elevations in the Interior Forest Section lodgepole pine, white spruce and trembling aspen are the dominant tree species. With an increase in elevation white spruce and alpine fir predominate. Westward, tree species change as the coast-interior forest transition is encountered. At Smithers and northward in the lee side of the coastal mountains and in the Skeena river valley, western hemlock and western red cedar are found in pure stands or mixed with the white spruce and lodgepole pine. White spruce and alpine fir are located at the higher elevations. Coastal-like forests of western hemlock and amabilis fir are located on the western side of the area in the Zymoetz valley.

Information on a number of forest management considerations is presented in Table 59. "Forestry Interpretations" and the following explanations apply to that table.

Potential Capability (Capability Classes)

The potential capability of each soil to grow wood fibre was determined by the location and measurement of forest productivity plots. The methodology of locating and measuring forest productivity plots, and assessing the capability of the soils is outlined by <u>Kowall, 1971</u>. The seven capability classes are based on a productivity range as follows:

Class 7 has a mean annual increment range of 0-10 cubic feet per acre per year, Class 6, 11-30; Class 5, 31-50; Class 4, 51-70; Class 3, 71-90; Class 2, 91-110; and Class 1, 111-131 cubic feet per acre per year. Class 1 is assumed to have no limitations to tree growth and therefore has no subclass designation. The subclasses used to indicate limitations to tree growth for Classes 2 to 7 are: A - high evapotranspiration due to southerly and westerly exposure, C - combination of climatic factors at high elevations, D - physical restriction to rooting by dense or unsolidated layers, other than bedrock, H - cold temperatures - soil and air, M - soil moisture deficiency, R restriction to rooting by bedrock, S - a combination of soil factors which collectively lower the capability class, and W - soil moisture excess.

The percent slope was broken into three categories; less than 30%, less than 60%, and greater than 30%.

Windthrow Hazard

Windthrow hazard ratings are based on such characteristics as texture, soil depth, slope and water table that control the development of tree roots and thus affect wind firmness. Rooting characteristics of the different tree species are not taken into account. Three ratings are given:

- Low Factors indicate windthrow is not likely. The effective rooting depth is generally greater than 36 inches.
- <u>Moderate</u> Factors indicate some susceptibility to windthrow, but major problems are not likely. The effective rooting depth is generally between 18 and 36 inches.
- <u>High</u> Factors indicate that windthrow hazard is high. The effective rooting depth is generally less than 18 inches.

Plant Competition

This item refers to the rate of invasion by unwanted trees, shrubs, and vines following harvesting. The ratings are based on soil characteristics and performance and three are presented:

- Low Indicates that plant competition does not prevent adequate establishment of a desirable stand of trees.
- <u>Moderate</u> Indicates that plant competition delays the establishment and slows the growth of seedlings but does not prevent the development of a desirable stand of trees.
- <u>High</u> Indicates that plant competition prevents adequate establishment of a desirable stand of trees without site preparation.

Limits of Regeneration

The major limits to regeneration are indicated as follows:

- (a) frost heaving usually on finer textured soils.
- (b) coarse textured limits fertility.
- (c) droughty mostly associated with very coarse textured soils.
- (d) soil moisture limitations mostly associated with moderately coarse to coarse textured soils.
- (e) excess soil moisture
- (f) high elevations climatic cold soil and air temperatures, short growing season.
- (g) low elevations climatic high evapotranspiration especially on south and west exposures.
- (h) surface slides unstability of soil surface (mass movement).
- (i) shallow soils shallow rooting medium usually less than 20 inches.
- (j) rocky rocks effectively reduce the soil rooting medium.

Recommended Tree Species To Plant

This column lists the tree species that the soil, climate, and topographic factors indicate would be best suited for planting. They include alpine fir - alF, black cottonwood - bCo, lodgepole pine - 1P, trembling aspen - tA, western hemlock - wH and white spruce - wS.

Natural Regeneration

These are the indigenous species that are likely to regenerate naturally. In addition to the species to plant they include western red cedar - wC, and amabilis fir - aF.

Susceptibility to Soil and Other Resource Damage by Timber Harvest Operation

This interpretation indicates the susceptibility of soils and other resources to incur damage during timber harvest. This includes timber removal, spur roads, slash burning, landing and other activities related to timber harvest operations. Damage is caused to soils by creating soil disturbance which may destroy soil structure, cause compaction and increase erosion. This may affect other resources through loss of timber production, lower water quality and yield, and loss of fisheries. Factors involved in making these ratings are soil texture, percentage of coarse fragments, slope and drainage.

- Low This rating indicates that soils and other resources are likely to incur minor damage.
- <u>Moderate</u> This rating indicates that soils and other resources are likely to incur moderate damage.

<u>High</u> - This rating indicates that soils and other resources are likely to incur major damage.

Type of Damage Expected During and Subsequent to Timber Harvest Operations

This column indicates the type of soil or other resource damage expected as follows:

- (a) loss of soil structure
- (b) increased compaction
- (c) soil damage from skidding
- (d) loss of soil organic matter
- (e) loss of soil resource from skidding and erosion
- (f) road waste damage to resources
- (g) road construction damage
- (h) increased erosion
- (i) increased mass movement potential
- (j) increased slide hazard
- (k) stream sedimentation
- (1) stream siltation

Recommended Slash Disposal Method

This interpretation indicates the slash disposal method that is most adapted to conserving and protecting the soil and water values of each soil. When two methods are listed, the first method is the more preferable. Factors considered in these recommendations include soil properties, elevation, aspect, slope, litter thickness, drainage, and the ability of the site to revegetate. It must be remembered that slash burning can reduce soil fertility by volatilizing many of the nutrients and rendering others vulnerable to leaching, destroy duff and litter and expose the soil to erosion and the effects of non-wetability. Recommendations are as follows:

<u>No Treatment</u> - the slash is left on the ground with no burning. <u>Broadcast Burn</u> - standard methods of broadcast burning. <u>Machine Pile</u> - the slash is piled with cats or tractors and then burned. <u>Clean Logging</u> - culls and tops are pulled or swung to landing, piled and burned.

Consideration for Management Practices

This column provides some consideration for management practices which best protect the soil and water resource. These considerations, which are directed toward the highest level of multiple use management, provide additional information that may apply to a particular mapping unit.

- (a) do not log excessive potential damage to soil resource, leave as protection forest.
- (b) do not log low capability, leave as protection forest
- (c) winter log
- (d) skid across slope to minimize erosion
- (e) alpine no commercial trees
- (f) no special consideration

Table 59. Forestry Interpretations

SOIL ASSOCIATION	CAPABILITY CLASSES	PERCENT SLOPE	WIND- THROW HAZARD	PLANT COMPETI -TION	RECENER -ATION POTENTIAL	LIMITS TO RECEMERATION	τ0 1	NATURAL REGENER- ATION	SOIL DAMAGE BY HARVESTINC	TYPE OF DAMAGE	SLASH DISPOSAL	CONSIDERATION FOR MANAGEMENT PRACTICES
Alix	5H 4N	<30	L	Ļ	L	coarse textured- limits fertility, droughty	1₽	19	L	loss of organic matter, mixing of surface	no treatment	no special consideration
Babine	3D	< 30	ĸ	H	ĸ	frost beaving	vS,1P	⊎S,1P, bCo	ĸ	damage to soils from loss of structure, com- paction increase erosion and and stream silt- ation	broadcast burn d	winter log, skid traits across the slope
Barrett	4H D 3S	<30	X	L	ĸ	nome frost heaving	19,45	, 19,05, tA	L	some loss of soil structure and compaction stream sedimentation	broadcast burn	no special consideration
Berman	4M	< 30	н	R	×	frost heaving	12 ,v S	1P,tA	R	loss of soil structure, increased com- paction, erosion and stream siltation	clean logging	winter log
Causqua	4M D 3S 2S	30 ح	н	M -K	ß	R/A	¥\$,1₽	uS,1P	K	road waste damage to resources, soil damage from skidding, stream sedimentation, increased slide hazard	clean logging	skid across slope .
obb	3H 4H	<30	L	L	м	soil moisture limitations	IP.WS	1P	L	N/A	no trestment	no special consideration
Fronin	7C B	∡30	N/A	N/A .	N/A	high elevation -climatic	H/A	N/A	N/A	N/A	N/A	alpine-no commercial trees
Grystal	4H	< 30	L	Ľ	н	soil moisture limitations	1 P,W S	19	L	N/A	no treatment	ho special consideration
ahl	48 N	<60	H	L		shellow soils, rocky, soil moisture limitations	lP	19	ĸ	loss of soil resource from skidding and erosion	no treatment	do not barvest or winte log
)acker	4M R SR M	~60	Ή	L		shallow soils, rocky, soil moisture limitations	19	1₽	39	loss of soil resource from skidding and erosion	no treatment	do not harvest or winter log
GSETTET 5	35 25	<30	н	ы-н	H- M	soil moisture limitations some frost heaving	1P, w\$	1P, vS	L	stream sedimentstion	brosdcast burn	no special consideration
Tagon	4M R 5R · K	<60	н	L		shallow soils, rocky, soil moisture limitations	1P, v S	1P, vS #1F	R	loss of soil resource from skidding and arosion	no treatment	do not harvest or winte: log
riftwood	5M D	∠30	H	L		soil moisture limitations, some frost heaving	1P	tA,1P	¥	some loss of soil structure and compaction	broadcast burn	no special consideration
agvillget	L 3M	≤ 30	L	H-N	ж	H/A	w\$,wH	vS,1P, vH,aF	L	N/A	broadcast burn	no special consideration
ispicz	3K 4H 2S	>30	ĸ	К		soil moisture limitations, surface slides	vs,lP, vH	wS,1P, alF,wil, wC	N	road wasts demage to resources, increased mass movement potential	claan logging	skid across slope

v

÷

SOIL ASSOCIATION	CAPABILITY CLASSES	PERCENT	WIND- THROW HAZARD	PLANT COMPETI -TION	RECENER -ATION POTENTIAL	LIMITS TO RECENTRATION	PECIES I TO RI PLANT /	GENER- D	SOIL ANAGE BY ARVESTING	TYPE OF DAHAGE	SLASH DISPOSAL	CONSIDERATION FOR MANAGEMENT PRACTICES
Kitsguecle	3M	4 30	L	L	×	soil moisture limitations		1P, vS, tA	L	increased erosion, loss of soil organic matter	no Creatment	no special consideration
Kitsuns	4H R SR H	£60	н-н	L	L-H	shailow soils, rocky, soil moisture limitations	1P,95	19,55	н-ы	loss of soil resource from skidding and erosion	no treatment	do not harvest or winter log
Kitvanga	3K 26	∠ 30	н	н	H	soil moisture limitations	wS,1P	vS,1P, vH,vC	L	N/A	clean logging	no special consideration
Κυυη	25 35	430	н	H	H	some frost heaving	US,1P, UH	wS,1P, wil,aF, wC	ĸ	some loss of soil structure and increased compaction and erosion, stream sedimentation	broadcast burn	no special consideration
Нарев	411	∠30	L	L	H	soil moisture limitations, coarse textured -limits fertility		ìP,⊎S, tA	L	loss of soil organic matter, mixing of surface	no treatment	no special consideration .
Morice	4M 5M	∠30	L	1-H	L-H	Coarse textured -limits fercilicy, droughty to soi moisture limitations		lP,vS, alf	l	loss of soil organic matter, mixing of surface	no trestment	no special consideration
Haricetown	48	∠30	2	L	н	soil moisture limitations, coarse textured -limits fertility		1P, v S	L	loss of soil organic matter, mixing of surface	no trestment	no special consideration
Natlan	4ม R 5R ม	∠60	H .	L	L	shallow soils rocky, soil moisture limitation	19,e11	' 1P,a1F, wS	H	loss of soil resource from skidding and erosion	no treatment	do not hervest or wind log
Nechako	3म 4स	∠30	L	ĸ	R-H	N/A	bCo,vS	bCo.wS, 1P	L	stream sedimentation	cieen log	no special consideration
Cons	4н 8 58 В	∠60	H-H	L	L-N	shallow soils, racky, soil maisture limitatione	19,811	17,218, 25	H-H	loss of soil resource from skidding and erosion	no trestment	do not hervest or wint log
Ormond	5R H 4H R	<i>4</i> 60	ĸ	L	l	shallow soils, rocky, soil moisture limitations	1P	1P,vS	H	loss of soil resource from skidding and erosion	no trestment	do not hervest of wint log
Pet.	424	630	L	L	ж	soil moisture limitations, coarse textured -limits fertility	1P,w8	19,63, 68,60	ĩ	loss of soil organic matter, mixing of surface	no Erestinent	no special consideration
Finkut	411	30 (H	L	ĸ	soil moisture limitations, surface slidep	18	1P, tA	н	road waste damage to resources, increased mass movement potential	clean log	skid mcross slope
Preiriedale	5D H 4x D	, ∠ ₃₀	н	Ľ	L-N	frost beaving	1P, tA	1P,tA	11	loss of soil structure, increased com- paction and stream slitution	clean log	winter log

L

¥

Table 59. (Cont'd)

SOIL ASSOCIATION	CAPABILITY CLASSES	PERCENT SLOPE	WIND- THROW HAZARD	PLANT COMPETI -TION	RECENER -ATION POTENTIAL	LIMITS TO	TO RI	EGENER-	SOIL DAHACE BY HARVESTINC	TYPE OF DAMAGE	SLASH DISPOSAL	CONSIDERATION FOR MANAGEMENT PRACTICES
lamsey	4M	∠30	L	L	н	coarse textured -limits fertility, droughty	1P,¥S	1P,•S	L	loss of organic matter, mixing of surface	no treatment	no special consideration
loaring	58	460	L-H	L	L	coarse textured -limits fertility, droughty	1P,vS	1 P, ¥S	L-M	losa of organic matter, mixing of surface road construction and skidding damage	NO Eréstment	límit skid roads no special considerstion
Sgunders	5H 4H	> 30	ĸ	L	L	high elevations -climatic frost heaving	a17,43	41F,₩S	ĸ	road waste damage to resources, increased mass movement potential		
Sevory	54 64	430	L	L	L	high elevations -climatic, soil moisture limitations	alf,wS	alF,⊎S	1.	A/A	clean log	do not log
Shass	7C R	460	8/4	N/A	N/A	high elevations climatic, shallow soils, rocky	N/A	N/A	N/A	H/A	N/A	elpine-no commercial tress
Shegunia	зн 25	430	L-H	H	H	soil moisture limitations	w3,wH, 1P	₩H,₩3, 1P,₩C	L	some loss of soil organic matter	no treatment to broad- cast burn	no special consideration
idins	7C P	30 (N/A	N/A	N/A	high elevations -climatic, rock		N/A	N/A	N/A	N/A	alpine-no commercial trees
5keens	25 35 1	>30	Ж	ж-н	Н	N/A	wS,1P, wH	vH,⊌C, ⊎S,1P	ĸ	road Waste damage to recourses, soil damage from skidding, increased slide hazard, stream sedimentation	clean log	skið across slope
Skins	5K R 4R M	∠60	К- Н	L	L-M	high clevations -ciimatic shallow soils, rocky	41F, wS	alF,-S	H-M	loss of soil resource from skidding and erosion	no treatment	đo not lag
Slug	4N JH 23	∠30	L	H-L	н	coarse textured ~limits fertility,soil moisture limitations	ਪਤ,1₽, ਅਸ	US,1P UH,UC a1P	L	loss of soil organic matter	NG Ereatment	no special consideration
Snodgrass	5M 6A M	∠30 •	L	Ľ	L	droughty, low elevations- climatic, coarse textured -limits' fertility	1P	1P,tA	L	N/A	no trestment	do mor log
Stellako	25 3н 1	∠ 30	L	H	н	N/A	bCo,wS	60, vS VII, vC	, L	stream sedimentation	clean log	no special consideration
Suskva	3н 25	4 30	L	м,	н	sofl moisture limitations	w5,1P, 왜	vH,vC, vS,1P	L	R/A	brosdcast burn	no special consideration
Tatio	38 4H 25	30	H	¥-L	н-м	frost heaving, high elevations -climatic		el7,v 5 1P	, м-н	road waste dsmage to resources, road construction damage, soil damage from skidding, in- creased wass movement potential, stream silt- ation	ciean log	skid across slope winter log

-

-

r

۰.

SOLL	CAPABILITY CLASSES	PERCENT SLOPE	WIND- Throw HAZARD	PLANT COMPETI -TION	RECENER -ATION POTENTIAL	LIMITS TO	PECIES N TO RE PLANT A	GENER-	SOT L DAMAGE BY HARVESTING	TYPE OF DAMAGE	SLASH DISPOSAL	CONSIDERATION FOR MANAGEMENT PRACTICES
Tiltusha	3H 25	4 30	L	К	H	N/A	bCo,n wH	wS,bCa,⊧ wH,≪		stream sedimentation	clean log	no special consideration
Twain	35 44 25	∠30	н	н	н-м	frost heaving high elevation -climatic		P wS,11 alf	? Ж	loss of soil structure, in- creased com- paction, in- creased erosion, stream siltation		winter log
Vtsun	4н: R 5r н	46 0	н-н	L	L-H	shallow soil: rocky, soil moisture limitations	∎, vS,' vHi	1P, vS,v vC,		loss of soil resource from skidding and erosion	no trestment	do not harvest or winter log
Vanderhoof	4D N	· ∠30	· н	L	• н	frost heeve	IP,	US 17,1 tA	r5, H	loss of soil structure, in- creased com- paction, in- creased erosion stream siltation		vinter log
Windfall	3ਮ 4ਮ	>30	N	L	м	soll moisture limitations, surface slide	,	1P wS,1 alf	IP M	road waste dama to resources, increased mass movement potential	ge clean log	skid across slope
Organic	75	430	H	L	L	excess soil moistures	ЪS	bS,v	ля L	N/A	no trescotat	do not log
Bedrock	7R	46 0	N/A	K/4	N/A	high elevatio -climatic, rocky	ons N/A	N/A	N/A	N/A	N/A	alpine-no commerc trees

÷

.-

FISH AND WILDLIFE

The following section indicates some of the more important soilclimate-vegetation interrelationships which effect fish and wildlife in the area:

Fisheries

Table 60. Sedimentation Yield Potential

This interpretation indicates the potential for water sedimentation and pollution from silt and clay particles carried in suspension following timber harvest, road construction, or other activities. Factors considered in making ratings are soil texture and structure, drainage patterns, landform and climate.

- Low Sedimentation levels of silt and clay particles are not expected to be significant following management activities. Soils are generally moderately coarse-textured.
 * AX, CB, CR, H, KA, DL, DR, DN, MS, M, MT, ON, PA, R, RG, SY, SH, SA, SK, SG, SO, SW, UN, O.
- <u>Moderate</u> Sedimentation levels of silt and clay particles may be significantly increased following management activities with moderate loss of water quality and damage to fisheries. Soils are generally medium textured. BA, CA, DD, H, KX, KS, KT, NA, OD, PT, SD, SS, SG, ***SL, TA, ***WL.
- <u>High</u> Sedimentation levels of silt and clay particles are expected to be high following management activities. Streams become turbid and there is considerable loss of water quality and damage to fisheries. Soils are generally fine to moderately fine textured. BE, BN, CN, D, H, KN, N, PR, **SN, TT, TW, V.

UNGULATES

Table 61, titled "Ungulate Use" indicates the common indicator vegetation, its succession status and the chances of useful seral stages occurring (good, medium and poor) for the ungulate species indicated. Indicator vegetation is the most common vegetation combination occurring at the successional stage indicated.

Remarks indicate some of the more important physical characteristics of the various map units related to ungulate habitat.

Soil map symbol
Very high
Lateral streambank erosion can be a problem

Table 61. Ungulate (Moose, Deer, Caribou, Goat) Use

.

-

4

				CHANCES OF USEFUL		
SOIL	HAP SYMBOL	INDICATOR VEGETATION (TENTATIVE ONLY)	SUCCESSION STAGES	SERAL VECETATION OCCURRING	UNCULATE SPECIES	REMARKS
	AX	lodgepole pins-squashberry- pink peavine	early seral, light fire discurbance	poor	moose, deer	shallow snow depths, valley terraces with low moisturs holding capacities.
	BE	spruce-squashberry-sarsaparilla -pink wintergreen	advanced fire seral with climax species	medium	moose, deer	variable soil moisture status.
	BA1-4	lodgepole pine-squashberry- pink peavinc	early secal, light fire disturbance	medium	moose, deer	variable soil moisture status.
	BA5-6	apruce-squashberry-sarsaparilla- pink wintergreen	advanced fire seral with climax species	medium to good	00058	moist sites.
	BA7	trembling aspen-rose-pinegrass	early seral, heavily disturbed	good	moose, deer	significant component of high capability winter range, steep exposed slopes common.
	BN*	spruce-squashberry-sarsaparilla- showy aster	medium serai, heavily disturbed	good	woose, deer	shallow snow depths, abundance of food plants and cover.
	CA1-4	spruce-squashberry-blueberry- feathermoss	seral, some climax species	good to medium	moose, deer	high probability of browse species over long periods of time.
	CA6*	spruce-squashborry-sarsaparilla- pink wintergreen	edvanced fire seral with climax species	good	poose, dett	high probability of browse species over long periods of time, (moist sites conducive to long term browse species production).
	CA7*	trembling aspen-rose-pinegrass	ently socal, heavily disturbed	goud	moose, deer	high probability of browse species over Jong periods of time, (moist sites conducive to long term browse species production).
	CB+	lodgepole pine-squashberry- pink peavine	early scral,light fire disturbance	poor to medium	moose, deer	wide variety of vegetation at various successional stages could be expected, snow depth limiting.
•	CN*	elpine fescue-lichen	climax	good	caríbou, goat	high elevation alpine, some wind swept slopes, snow depths limiting.
	CR	lodgepole pine-squashberry- pink peavine	early seral, light fire disturbance	poor .	moose, deer	as for GB with shallower snow depths and more land use competition,
	DL	bluegrass-æspen	early scral, heavily disturbed	good	moose, deer	exposed slopes and sharp forest-open- land vegetation transitions, associated rock outcrops.
	LR*	iodgepole pine-squashberry- pink peavine	early seral, light fire disturbance	poor	noose, deer	small units, part of escape terrain.
	D1-4	spruce∘arnica=queen's cup= feathermoss	climax	good	moose, deer	efter fire or logging a wide range of food plants and cover, but trend towers closed stands and reduced shrub and understory cover.
	D5	alpine fir-blueberry-dwarf rubus-feathermoss	climax	medium to poor	moose, daer	trend toward closed stands more rapid
	D6*	spruce-squashberry-oakfern- cow parsnip	climax	good	DOOSE, deer	moist sites longer term shrub cover
	D7#	trembling aspen-rose-pinegrass	carly seral	good to medium	moose, deer	moist sites longer term shrub cover
	אאס*	alpine fir-blueberry-false hellebore-liverwort	climax	ροοτ	moose, caribou	deep snow, part of escape terrain, associated rock outcrops
	DD*	trembling aspen-rose-pinegrass-	early scral heavily disturbed	good	moose, deer	high capability winter range-abundant shrub cover, shallow snow depths.
	H1,2	hemlock-blueberry-bunchberry- layered moss, birch, aralia- squashberry-3 flowered bedstraw	climax early seral	good	moase, deer	vide range of browse species due to drainage variability.
	H3,4.5	hemlock-devils club-lady fern -birch-aralia-squashberry-3 flowered bedstraw	climax early serel	good	woose, deer	long term probability of browse specie due to soil variability.
	α	hemlock-blueberry-bunchberry- layered moss	clinex	poor	moose, goat, deer	generally unsuitable except as escape terrain.
	X3*	bfuegrass-aspen	seral	good	moose, deer	email units, but suitable habitat.
	ка	spruce-squashberry-sarsaparilla- showy aster birch-aralia-squashberry-3 flowered bedstraw	medium seral, intensive disturbance, some climax species, seral))) good)	woose, deer	small area of excellent wintering habitat (abundant browse, shallow snow depths).
	ĸŦ	hemlock-blueberry-bunchberry- lgyered moss	climax	medium to poor	moose, deer	useful habitat for short periods after fire or logging.
	KN	hemlock-blueberry-bunchberry- layered moss	climax	poor to mediu	a moose, deer	vegetation successional stages suitable for most wildlife habitats likely show -lived.

Table 61. (Cont'd)

L HAP SYMBOL	INDICATOR VEGETATION		CHANCES OF USEFUL SEBAL VEGETATION		
	(TENTATIVE ONLY)	SUCCESSION STAGES	OCCURRING	UNCULATE SPECIES	REMARKS
KS*	lodgepole pine-squashberry-pink peavine	early seral, light fire disturbance	pour	moose, deer	droughty, shallow snow depths.
ж	spruce_arnice_queen's cup-	climax (higher elevation))			droughty; little browse.
	feathermoss lodgepole pine-squashberry-pink peavine) seral (fire disturbance)))	poor	woose, deer	
ит	spruce-squashberry-sersaparilla-	medium seral some climax)			mail area of suitable habitats during
	showy aster birch-aralis-squashberry-3 flowered bedstraw	species >> seral >>	medium	moose, deer	vegetation successional stage immediately following fire.
KA.	hemlock-blueberry-bunchberry- layered moss	c] imax	D 00 L	noose, gost, caribou	associated rock outcrops, escape terrain, limited summer range-
N#	trembling aspen-rose-pinegrass	seral	medium	moose, deer	no significant screage,
ON	alpine fir-blueberry-false hellebore-liverwort	clímax	poor	moose, goat, caribou	associated rock outcrops, escape terrain, limited summer range.
¢D≉	trembling aspen-tose-pinegrass	seral (fire disturbance)	good	moose, deer	high capability winter range, exposed slopes, associated rock outcrops common.
PR+	trembling sspen-rose-pinegrass	seral (fire disturbance)	good	moose, deer	almost all cultivated-small accesse.
PT*	trembling aspen-rose-pinegrass	seral (fire disturbance)	good	moose, deer	exposed steep slopes, excellent habitat common.
PA *	lodgepole pine-squashberry-pink peavine	early seral (light fire disturbance	poor	moose, deer	shallow snow depths, valley terraces with low moisture holding capacities.
R	lodgepole pine-common moss	seral	pooz	moose, deer	movement corridors glong streams.
RC*	lodgepole pine-squashberry-pink peaving	early seral	poor	moose, deer	generally unsuitable.
SD1*	alpine fir-blueberry-dwarf rubus- feather moss	climax	medium to poor	moose, caribou, deer	high elevation next to alpine, snow depth limitations.
SD2,#3	krummholz-false heliabore-valerian	climax	good to medium	moose, caribou, deer	excellent habitat for summer range (brouse very abundant).
sy*	krummholz-false hellebore-valerian	climax	good to medium	moose, caribou	suitable as part of summer range, high elevation.
58	alpine fescue-lichen	climax	good to medium	caribou, goat, mocse	windswept alpine ridges and slopes, rock outcrop associated.
58	hemlock-blueberry-bunchberry-	climax)			
	layered moss birch-aralia-squashberry-3 flowered bedstraw	climax) seral)	poor	moose, deer	generally unsuitable, regeneration to conifers rapid.
\$A	unavailable	unavailable	medium	gost	high elevation talus slopes associated with rock outcrop.
SN .	hemlock-blueberry-oakfern- layered moss	climax	poor	moose, deer	useful successional stage very shore.
5K	krummholz-false hellebore-valerian alpine fir-blueberry-false hellebore-liverwort	climax))	medium	moose, caribou	escape cover as part of alpine habitat
SG1-3	lodgepole pine-common moss	seral (fire disturbance)	poor to medium	moose, deer	wide range of habitat type.
SG4,5	spruce-squashberry-oakfern- cow parsnip	climax	poor	moose, deer	browse species abundant over longer period of time.
\$0*	bluegrass-aspen	seral	medium	moose, deer	early spring greening on exposed slope
SL1,3*	trembling aspen-rose-pinegrass	seral	good	moose, deer	very high capability winter range, shallow snow depths.
\$ 1. 2	unavailable	unavailable	good	moose, deer	moist sites, shallow snow depths.
54	hemlock-blueberry-oakfern-layered moss	climax	poor	moose, deer	unsuitable, regeneration to conifers rapid.
	alpine fir-blueberry-dwarf rubus-	climax	boor	moose, deer	generally unsuitable, except for short periods after logging or fire.
11 1,2	feathermoss				-
TT1,2 TT3	reathernoss alpina fir-blueberry-Ecam flower- feathernoss	climax	med (um	11.003C	excellent summer habitst
	alpine fir-blueberry-foam flower-	climax seral	meditum good	woose woose, deer	excellent summer habitst shrub cover sbundant, high capability although tendency to regenerate to conifers.

Table 61. (Cont'd)

	ANIMAL HABITAT TYPES (VEGETATION-SOIL-CLIMATE)		-	
SOIL MAP SYMBOL	INDICATOR VEGETATION (TENTATIVE_ONLY)	SUCCESSION STAGES	CHANCES OF USEFUL SERAL VECETATION OCCURRING	UNCULATE	RENARKS
TW1-5	alpine fir-blueberry-dwarf rubus- feathermoss	c] imax	poor .	noose, deer	habitat usually short lived, rapid regeneration to conifers.
Tw6	spruce-arnica-queen's cup- feathermoss	climax	poor	moose, deer	useful browse on these moist sites.
אט	lodgepole pine-common moss	setal (infrequent fire disturbance)	poor	moose, goat	associated rock outcrops, escape terrain, limited summer range.
¥1,2	lodgepole pine•squashberry-pink peavine	early seral	medium	moose, deer	variable soil moisture status.
¥3	spruce-squashberry-sersaparilla- pink wintergreen	advanced fire seral	medium	moose, deer	long term browse on these moist sites.
WL1,2,4	spruce-arníca-queen's cup- featharmoss	climax	medium to poor	moose, deer	short term usefulness after fire.
VI.3	lodgepole pine-squashberry-pink peavine	early seral	poor	gost, moose	very steep slopes.
01,2	black spruce-horsetail-sphagnum moss	climax	variable	2005e	important component of moose habitat (variable abundance of browse species).

1

* No data svailable, extrapolated from closest association.

3

·•••

REFERENCES

- (1) Armstrong, J. E., 1944. Preliminary Map Hazelton B. C., Paper 44-24. Geological Survey of Canada, Ottawa.
- (2) Bartelli, L. J., Klingebiel, A. A., Baird, J. V. and M. R. Heddleson, 1966. Soil Surveys and Land Use Planning. Soil Society of America and American Society of Agronomy. Madison, Wisconsin.
- (3) Canada Department of Agriculture, 1970. The System of Soil Classification of Canada. Information Canada, Ottawa.
- (4) Canada Department of Agriculture, 1972. Glossary of Terms in Soil Science, Information Canada, Ottawa.
- (5) Canada Department of Agriculture, 1954. Soil Survey of Quesnel, Nechako, Francois Lake and Bulkley-Terrace Areas, L. Farstad and D. G. Laird.
- (6) Kowall, R. C., 1971. Methodology Land Capability for Forestry in B. C., Canada Land Inventory, Soils Division, B. C. Department of Agriculture, Kelowna, British Columbia.
- (7) Lang, A. H., 1939. Preliminary Map 671A Houston B. C., Geological Survey of Canada, Ottawa.
- (8) McMynn, R. G., 1970. "Green Belts" or Leave Strips to Protect Fish! Why? Commercial Fisheries Branch, Department of Recreation and Conservation, Victoria, British Columbia.
- (9) Mills, G. F. and R. E. Smith, 1971. Soils of the Grahamdale Area. Soils Report No. 16. Manitoba Soil Survey, Winnipeg.
- (10) Snyder, R. V. and J. M. Wade, 1970. Mt. Baker National Forest Soil Resource Inventory, U. S. F. S., Portland, Oregon.
- (11) United States Department of Agriculture, Soil Conservation Service, 1971. Guide for Interpreting Engineering Uses of Soils.

APPENDIX I

Descriptions and Analyses of Soil Profiles

Analytical Methods

pH measurements were made on 1:1 soil:water suspensions for mineral soils, and 1:5 soil:water suspensions for organic soils (5). pH was also determined using a 1:5 soil : M/100 CaCl₂ solution (4) modified by shaking one half hour instead of 5 days. An 1L 245 pH meter and a combination electrode was used for all pH measurements. Soil organic matter was determined by the wet combustion method as described by Grewelling and Peach (5).

Total nitrogen was determined using the method described by Bremner (3). Laverty's method (8) modified by John (6) was used to determine acid soluble and available phosphorus. Color development was made following John's (7) procedure.

Exchange capacity was determined using the method described by Peach (12). The ammonium acetate extract was analysed for exchangeable cations using a Techtron AA4 atomic absorption spectrophotometer. Oxalate Extractable Iron and Aluminum were determined using the method of McKeague and Day (10) and Pyrophosphate iron and aluminum were determined following procedures described by McKeague (11) and Bascomb (2).

Sulphur analyses were made following the procedure of Bardsley and Lancaster (1). Manganese values were obtained by analysing the extract from 1:5 soil. Calcium chloride suspensions used for pH determination.

The perchloric-nitric acid digestion for copper and zine were made following the procedure of Lundbland (12) and analyses were made using a Techtron AA4 atomic absorption spectrophotometer.

(1) SULPHUR

Bardsley, C. E., and J. D. Lancaster. Determination of reserve sulphur and soluble sulphates in soils. Soil Science Society of America Proceedings. Vol. 24, No. 4, 1960.

(2) PYROPHOSPHATE IRON AND ALUMINUM

Bascomb, C. L. Distribution of pyrophosphate extractable iron and organic carbon in soils of various groups. J. Soil Science. Vol. 19, No. 2, pp 251-268. 1958.

(3) NITROGEN

Bremner, J. M. Determination of nitrogen in the soil by the Kjeldahl method. Journal of Agricultural Science. Vol. 55, No. 1, 1960.

(4) pH 1:5 CALCIUM CHLORIDE

Clark, J. S., The extraction of exchangeable cations from soils. Canadian Journal of Soil Science. Vol. 45, No. 3, pp 322, 1965. Modified by shaking for one half hour.

(5) pH 1:1 ORGANIC MATTER

Grewelling, Thomas and Micheal Peach. Chemical soil tests. Cornell Experiment Station Bulletin 960. New York State College of Agriculture, Ithaca, New York.

(6) PHOSPHORUS

John, M. K. Soil Analysis procedure in use in Kelowna for determination of available phosphorus. British Columbia Department of Agriculture, Kelowna, B. C. 1963.

- (7) John, M. K. Colorimetric determination of phosphorus in soil and plant material with ascorbic acid. Soil Science. Vol. 109, No. 4, pp 214-220. 1970.
- (8) Laverty, J. C. The Illinois method (Bray No. 1) for determing available phosphorus in soils. University of Illinois, College of Agriculture, Department of Agronomy, Urbana, Illinois. 1961.
- (9) COPPER AND ZINC

Lundblad, K. O. Savenberg, and P. Ekman. Availability and fixation of copper in Swedish Soils. Plant and Soil. Vol. 1, No. 4, April, 1949.

(10) OXALATE IRON AND ALUMINUM

McKeague, J. A., and J. H. Day. Dithionite and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Canadian Journal of Soil Science. Vol. 46, No. 1, pp 13-22. 1966.

(11) PYROPHOSPHATE FE AND AL

McKeague, J. A. An evaluation of 0.1 M pyrophosphate and pyrophosphatedithionite in comparison with oxalate as extractants of the accumulation products in Podzols and some other soils. Canadian Journal of Soil Science. Vol. 47, No. 1. pp 95-99. Modified by analysing the extracts using a Techtron AA4 atomic absorption spectrophotometer.

(12) CATION EXCHANGE CAPACITY AND EXCHANGEABLE CATIONS

Peach, M., L. T. Alexander, L. A. Dean, and J. F. Reed. Methods of soil analysis for soil fertility investigation. U. S. D. A. Circular No. 757. Washington, D. C. 1957. Total phosphorus was analyzed using the digestion procedure of Lundblad (9) and the color development procedure described by John (7).

MANGANESE

The centrifugate from the 1:5 soil calcium chloride solution used for pH measurement was analyzed for manganese using the Techtron AA4 Atomic Absorption Spectrophotometer.

LOCATION: 1240 081W/540 081

SOIL NAME: Alix

s 4

PARENT MATERIAL: Gravelly glaciofluvial deposits

ELEVATION: 2650 feet

CLASSIFICATION: Orthic Dystric Brunisol

DRAINAGE: Rapidly drained

SLOPE & ASPECT: Level

	CLASS	SIFICATION: Or	thic Dystric Brunisol		DRAINAGE: Rapidly of	arneo	SLOPE & AS	PECT: Level
HORIZON	DEPTH	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
LH	1-0		1			Abundant		Raw to decomposed forest litter
Bm	0-7	10YR5/4 D 7.5YR4/4 M	Sandy lozm	Weak fine to medium subangular blocky	Very friable	Abundant		
ЭC	7-11	10YR6/3 D 4/4 M	Gravelly sandy loam	Weak fine subangular blocky	Very friable	Abundant		
II Cl	11-20	Variegated	Sandy fine gravel	Single-grained	Loose	Common		
11 C2	20+	Variegated	Sandy fine gravel	Single-grained	Loose	Occasional		
	•	1	: !					
			:					
	:							
		:	-					1
	1							
	1							191
	i							t

Laboratory Analyses

¢

				1		PI	н і		۰.		I	EXCH	ANGEA	PLE DA	SES M.F.	, 10 0 G.			LATE	PYRC	PHOS	1				PPM					1	9	ERCEN	/T
LAD. NO.	HORI	ŻŌN	DEPTH	MOIST	н Н	1:1 1 ₂ 0	0.01M CaCl2	ом	N	C/N	Ca	Mg	Na	K	SUM	CEC	Sat. %	Fe	", AI] Fe	Ĩ AI	- P1	P2	1 5	l Cu	l Zn	{ В	! Iv	An i		SAN	5 511.1	CLA	AL FINE
67/258	L-H		1-0	11:11	4.	.7	4.1	99.0	1.52	37.69	21.22	6.44	9.07	3.00	30.73	75.42	36.7	ţ -	-			60.0	136.	1										1
269	Впа		0-7	2:46	55.	.9	4.9	1.8	0.10	10.6	1.49	0.20	0.01	0.14	1.84	9,02	19.9	0.71	0.66			115.3	276.	6 3.8	13.5	79.4	•				ĺ			
270	BC		7-11	1:42	26.	.2	5.0	-	-	-	1.93	C.20	0.01	0.15	2.29	5.95	38.0	0.5	0.40			145.6	227.	0 1.7	20.0	79.9								1
271	11 (C1	11-20	1:31	16.	.0	5.1	-	-	-	2.94	0.51	0.01	0.14	3,60	5.66	62.8	0.30	0.19			19.8	50.	7 1.5	22.5	42.8		1		1				
272	11 (C2	20+	1:1	16.	.0	5.1	-	-	-	3.03	0.71	0.01	0.17	3.92	5.90	65.7				ĺ	8.6	24.	8 1.5	23.8	42.7	'			İ				
					i	İ									1																			
						ĺ																												
	1				Ì												,												ĺ					
									ŀ						}	1																		
	•		•		•					1			ļ										1				l	ļ			ŀ	1	1	

ε ετ .

Profile Description:

LOCATION: 1240 01 W/530 49'N

PARENT MATERIAL: Gravelly glaciofluvial deposits

DRAINAGE: Rapidly drained

· · · · ·

Profile Description:

SOIL NAME ALLA

ε) I

ELEVATION: 3300 feet

.

SLOPE & ASPECT: Level

CERSSIFICATION: Digraded Dyseric Didition	CLASSIFICATION:	Degraded	Dystric	Brunisol
---	-----------------	----------	---------	----------

. .

HORIZON	DEPTH	COLOR DRY D MCIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
LH	2-0					Abundant		Raw to decomposed forest litter
Ae	0-3	10YR7/1 D 6/1 M	Gravelly loamy sand	Single-grained	Soft	Abundant		
Ben	- <u>3</u> -6	10YR5/4 D 7.5YR4/4 M	Gravelly loamy sand	Weak fine subangular blocky	Soft	Abundant		
СВ	6-11	2.5Y5/4 D 2.5Y4/4 и	Gravelly sand	Single-grained	Loose	Common		
с	11-19	10YR5/2 D 4/2 X	Gravelly sand	Single-grained	Loose	Occasional		
II C	19+	Variegated	Stony sandy gravel	Single-grained	Very weakly cemented	Occasional		t
								, C F

Laboratory Analyses

<u></u>		<u>.</u>	1		PH		74		1	EXC	ANGEA	OLE DA	SES M.E	. 100G		OXA	LATE	' PYRO	PHOS	1				PPM						PER	CENT
LAS, NO.	HORIZO	N DEPTH	MOIST	::1 Н ₂ О	1 0.01 M CoCiz	мо	N	C/N	Ca	Mg	Na	[X	∫ sum	CEC	SET.	Fo	7, [Al	Fe	Å AI	PI	P2	5	Cu	Zn	1 5) <i>Ni</i> n	1	1	SAND	5167	OTAL F.
66/301	L-H	1-0	16.69	4.6	4.1	104.83	1.17	35.5	8.75	2.17	0,12	1.33	12.37	105.19	11.65	-	-			-											
302	Ae	0-12	-	-	-	-	-	-	-	-	-	-	-	-	-	-											-			Ì	1
303	Bra	5-6	2.72	5.7	4.9	2.30	0.05	31.5	1.03	0.30	0.04	0.10	1.47	10.3	714.18	0.77	1.06			160.21		5.2									
304	СВ	6-11	1.21	6.0	4.9	1.84	0.02	28.4	1.19	0.38	0.04	0.10	1.71	6.4	126.39	1.26	0.52			157.9		3.0									
305	. c	11-19	0.96	6.1	5.0			ļ	1.19	0.40	0.04	0.10	1.73	5.5	031.45	0.56	0.43			63.8		3.3									
305	11 C	19+	0.81	6.1	5.0				1.19	0.55	0.05	0.15	2.74	6.2	44.19					33.3		3.0									
		: •									İ	Į				ļ															
	:				ł											1															
	-				ĺ																										
																				ļ											

LOCATION: 125º 391/54º291

PARENT MATERIAL: Lacustrine clay overlying till

Profile Description:

SOIL NAME: Babine

2

1.

4,

4

ELEVATION: 2500 feet

	CLAS	SIFICATION: Or	thic Gray Wooded		DRAINAGE: Well to mode	erately well drained	SLOPE & AS	PECT: NE 4%
HORIZON	DEPTH	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
LH	2-0					Abundant		
Ae	0-2	10YR6/2 D 4/3 M	Clay loam	Moderate medium platy	Hard	Abundant		
AB .	2-5	10YR7/2 D 4/3 M	Silty clay to silty clay loam	Moderate coarse platy to moderate medium angular blocky	Very hard	Abundant		
Bt 1	5-14	10YR6/2 D 4/2 M	Clay-heavy clay	Strong coarse prismatic	Very firm	Coπυπο n	Few fine faint	Many clay skins;coatings along cracks
Bt2	14-23	10YR6/2 D 4/2 M	Clay-heavy clay	Strong coarse prismatic	Very firm	Occasional	Few fine faint	Many clay skins;coatings along cracks
С	23-27	10YR6/3 D 4/3 м	Silt loam (silty clay loam)	Stratified	Friable	Occasional		
110	27+	10YR5/3 D 4/3 M	Clay loam till	Pseudoplaty	Extremely firm	Occasional		1
		!						163
			- -					1

Laboratory Analyses

.

ĸ

1	veraente nor-		π	-					· · · · · · · · · · · · · · · · · · ·														hidadi terataran					 ant is any provinciant last			
LAD.	,	1		۲ 	'} 		·	1		EXC	ANGEA	DLE 84	SES M.	E. 100G.		OXA	LATE	PYROPH	ноѕ					PPM					PE	RCENT	
NO.	HORIZO		MOIST	1:1 H ₂ O	0.01M CaCl2	. ОМ	И	C.'N	Ca	Mg	Na	к	SOM	CEC	Sat. %	Fe	% Al	Fo i	AI	P1	PZ	5	i Cu	[Zn	B	Mn]	1	5AND	I si∟t	CLAY	CLAY
353A	! LH	2-0	12.87		5.18	94.83	0.950	57.91												108.8	186.2	71.1									
в	Λe	0-2	1.73	6.2	5.74	3.37	0.107	18.27	8.80	2.43	0.04	1.98	12.25	18.74	65.37					233.9	317.4	3.31				12.0		1.50	49.74	48.76	6.10
с	. AB	2-5	1.52	5.7	5.08	2.68	0.087	17.82	6.90	2.74	0.04	0.81	10.49	15.59	67.29		•			40.61	81.22	2.28				9.39		0.54	46.49	52.97	8.75
D	Btl	5-14	2.25	5.8	5.14	1.29	0.075	10.00	12.07	4.67	2.17	0.32	19.23	19.12	100					2.05	5.12	2.30				2.81		1.77	38.23	60.00	20.35
E	Bt2	14-23	2.35	5.6	4.82	1.29	0.073	10.25	13.00	6.08	0.23	0.24	19.55	22.46	87.04					2.05	19.25	10.24				1.54		0.43	43.99	55.58	17.85
F	С	23-27	1.63	5.7	4.99				8.13	3.90	0.24	0.13	12.40	13.27	93.44					2.54	142.2	17.79				1.02		38.30	33.63	28.07	14.54
C	IIC	27+	1.94	5.4	6.02				10.50	5.55	0.32	0.18	16.55	16.06	100					2.04	91.7	7.39				1.53					

ĸ

i *e* 1

LOCATION: 125º 44 W/54º 17'N

SOIL NAME: Barrett

.

.

PARENT MATERIAL: Basal till

ę

DRAINAGE: Moderately well drained

r

1. *1*.

Profile Description:

ELEVATION: 3100 feet

1

SLOPE & ASPECT: S 18%

CLASSIFICATION: Orthic Gray Wooded

.

.

HORIZON	DEPTH	COLOR DRY D MDIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
L-H	1-0		· ·	1				
Ael	0-5	10YR7/2 D 45/2 M	Gravelly loam	Moderate coarse platy in upper part and fine subangular blocky in lower part	Friable	Abundant		
Ae2	5-10	10YR7/2 D 45/3 M	: Gravelly loam :	Moderate fine to medium subangular blocky	Friable	Abundant		
ABgj	10-13		Gravelly loam to gravelly clay loam	Moderste fine to medium subangular blocky	Firm	Abundant	Few fine faint	
Brgjl	13-16	10YR6/3 D 3.5/3 M	Gravelly clay loam	Moderate fine to medium subangular blocky	Firm	Соттоъ	Few fine distinct mottles	
Btgj2	16-20	10YR5/3 D 3.5/4 M	Gravelly clay loam	Moderate medium angular blocky	Firm	Occasional	Few fine faint	Commanon clay skins
BC1	20-27	10YR5.5/3 D 3.5/4 M	Gravelly clay loam	Moderate modium angular blocky	Firm	Occasional		Some clay skins and/or coatings $\overset{\sim}{\overset{\leftarrow}{\leftarrow}}$
BC2	27-34	10YR5/3 D 3.5/3 M	.Gravelly clay loom	Moderate, medium subangular blocky to pseudoplaty	Flim	Occasional		Some clay skins and/or coatings
CI .	34-42		Gravelly loam to gravelly clay loam	Pseudoplaty	Very firm	Occasional		Organic coating along cracks
C2	421		Gravelly loam to gravelly clay loam till	Pseudoplaty	Very firm	None		Organic coating along cracks

Laboratory Analyses

11 - L1					<u></u> >н	1				EXCH	ANGEA	DLE 84	SES M.E	. 1006	•	οχα	LATE	PYRO	PHOS	1.0701 <u>000000</u> 00			<u></u>	РРМ					PEF	CENT	1997 - 19
LAB. NO.	HORIZO	N DEPTH	MOIST	1:1 H2O	0.01M CaCl2	ОМ	N	C, N	Ca	Mg	Na	ĸ	SUM.	cic	Sat.	Fo	⁷ і ді	F0	5 	P1	P2	<u>s</u>	Cu	† Zn	в	Ma	1	SAND	si∟⊤ (CLAY	PINE
69/579	L-II	1-0	11.11	4.3	3.93	112.54	1.222	53.42	24.94	5.39	0.17	2.22	32.72	116.01	28.20					57,8	74,4	63.33	8.06	72.22							
580	Ael	0-5	1.01	6.0	5.16	1.06	0.043	14.19	3.79	1.29	0.08	0.18	5.34	9,23	57.85					24.3	67.4	4.55	10.35	69.94				46,42	40.22	13.35	7.66
581	Ae2	5-10	1.32	5.9	5,10	0.81	0.033	14.24	4.71	1.73	0.08	0.16	6.68	10.44	4 63.98					18.2	118.0	3.55	11.91	51.42						l	
582	ABg j	10-13	2.56	6.0	5.00	0.63	0.035	10.57	9.49	3.65	0.11	0.29	13.54	18.12	2 74.72					13.5	130.2	4.35	11.54	56.41						:	
583	Btgjl	13-16	3.63	6.0	4.99	0.78	0.036	12.50	12.69	5.37	0.17	0.39	18.62	25.50	6 72.85					10.4	111.4	6.48	28.24	63.47				27.42	39.39 : 	53.19	11.70
584	Btgj2	16-20	3.73	6.2	5.17	0.78	0.033	13.54	16.08	6.67	0.22	0.43	23.40	28.8	81.05									65.61				27.63	i		
585	BC1	20-27	3.63	6.7	5.80	0.57	0.024	13.75	16.32	6.66	0.22	0.35	23.55	27.5	3 85.39								ļ	69.43				29.36		1	
586	BC2	27-34	3.41	7.4	6.19							1										1		67.22				31.75	:		
587	C1	34-42	3.09	7.5	6.38		1			}												}	1	5 70.87				· · · ·]	39.20	j	
588	C2	42+	1.21	7.8	6.70															3.2	278.3	3.04	30.8	71.89				31.69	39.96	28.33	12.20

LOCATION: 1250 45 W/540 17 IN

\$

.

SOIL NAME: Barrett

PARENT MATERIAL: Basal till ELEVATION: 2950 feet CLASSIFICATION: Rego Humic Gleysol DRAINAGE: Poorly drained SLOPE & ASPECT: In depression COLOR DEPTH HORIZON DRY D TEXTURE IN - CM. STRUCTURE CONSISTENCE MOIST M ROOTS MOTTLES ----OTHER Οœ 14-6 Abundant Oh 6-0 Abundant Ah 0-5 10YR2/1 H Loan Massive Sticky Contraon ACg1 5-9 2.5Y/4.5 N Gravelly loam to gravelly Massive Plastic clay loam Occasional Common medium Thin Ah inter-layers distinct 7.5YR4/4 M ACg2 9-15 2.5Y5/2 M Gravelly loam to gravelly Massive Plastic clay loam None Many medium Thin Ah inter-layers distinct 10YR4/4 M Cg1 15-21 2.5Y5/2 M Gravelly loam Massive Slightly plastic None Many fine faint Cg2 21-23 2.5Y5/2 H Gravelly loam to gravelly 7.5YR5/6 N Massive Slightly plastic sandy loam None Common fine faint 10YR5/4 M Cg3 23-30 2.5%5/2 M Gravelly loam Massive Slightly plastic None Common fine faint Cg 4 30+ 2.5Y5/2 M Gravelly loam to gravelly Massive 10YR5/4 M clay loam Slightly plastic None Common fine faint 1 10YR5/5 M 65

LAB.	NODIZ	1		РН	<u></u>	7			EXCH	IANGEA	OLE B.	ASES M.E	E. 100G														-		Labo	atory	Analyses
NO.	HURIZ	ON DEPTH		0.01M CaCi2		N	C/N		Mg			SUM				LATE	PYROPHO %	<u></u>	•				99	M						PERC	ENT
69/224		14-6								2 271001 - "141	-				Fo		Fold	AI PI	1	P2	5	Cu	Z	• 1	8	Min I	1	SAN	io I s	і⊾т [.] Т(DTAL FINE
**/224	00	14-0	17.65 6.0	15.49	79.88	1.408	32.91	77.65	20.00	0.64	0.49	98.78	34.2	5¦73.58				9.65	119	9.77	32.94	26.	7 61	83	1	1	1		1		
225	Oh	ა - 0	16.55 6.1	5.63	57.74	1.279	26.19	84.85	18.65	0.54	0.45	104.49	139.03	75.16				12.70				1		i.							
226	Ah		13.12 6.3															32.13		1		1				1	ĺ				
227	ACg1		4.17 7.0			1					1	1	1					39.58				ł	1			i					
228	ac _g 2	9-15	3.20 7.1			•							3					8.67				1	-	12							
229	Cgl	15-21	2.35 7.2	4					1			19.12		1				1	1				i								
230	Cg3	23-30	2.56 7.2	6.66									10.57	100				4.50	1					1							
231	Cg4	30+	3.74 7.3	6.57														2.36	i	ļ				i					Ì		
			1								1							2.80	B34	•04	2.59	29.3	1 75.	73					-		ļ
;							İ																								}
		: 1	!	. 1		Í								1			ļ													[

.

4

Profile Description:

LOCATION: 123 9 59 W/54 9 06 1N

PARENT MATERIAL: Basal till

1 1

Profile Description:

ELEVATION: 2650 feet

SOIL NAME: Barrett

· · · · ·

DRAINAGE: Imperfectly drained

.

SLOPE & ASPECT: In depression

.

CLASSIFICATION:	Gleyed Gray Nooded
	,

HORIZON	DEPTH	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
L-H	1.5-0			1		Abundant		
Aegj	Q-8	2.5¥6/2 D 2.5¥5/2 M	Loam	Weak fine to moderate modium sub- angular blocky	Friable	Abundant	Common distinct 10YR5/6	Scattered gravel
ABg j	8-16	2.542/2 D 2.544.5/2 M	Gravelly loam to gravelly silt loam	Moderate medium subangular blocky and angular blocky	Firm	Common	Common distinct 10YR4/4	
Btgjl	16-25	10YR4/2 M	Gravelly clay loam	Moderate medium to coarse angular blocky	Firm	Occasional	Common distinct 10YR4/4	
Btgj2	25-32	10YR4/2 M	Gravelly loam to gravelly clay loam	Noderate medium to coarse angular blocky	Firm	Occasional	Few distinct 10YR4/4	
BC	32-38	2.5¥4/2 H	Gravelly loam	Moderate medium to coarse angular and subangular blocky	Fion			
с	.38≁	245¥4/2 M	Gravelly loam till	Massive grading to pseudoplaty with depth	F1xm			1
	1							5
			1 1					3
		1						
	•	:			1	•		

Labora	alory	Analyses
100 C 100 C		

•		-	I		354	N 1	1	EXC)	IANGEA		15E5 M.S.	3005.	i	ALATE PYA	ophes	1.5.1	<u></u>	PENCENT
LAR. NO.	HORIZON	ОЕРТН	иоіят	1:1 Н _е о	РН 0.01M СъС12	אינס א	Ca	69	Na	ĸ	sum	CEC		7. Al 55		pi pz S Cu Zn B ! En	1	SAND SILT ICLAY CLAS
					5.10			5,72	0.18	1,08	25.86	5.03 46	.28			78.38108.13 14.87		
2	Aegj	0-8	1.01	5.8	4.84 0.45	0.040 6.55	2.91	1.30	0.08	0.23	4.52	l 6-61-68	138			24.65 80.87 1.26		42.30 44.73 12.97 1.4
3	ABg j	8-16	2.46	6.2	5.24 C.46	0.038 8.03	5.01	3.52	0.11	0.26	9.91	1.83 83	.77			7.89251.03 3.07		30.03 47,57 22.35 6.0
4	BLgjl	15-25	3.52	6.9	5.90	0.034 6.79	10.97	6.81	0.24	0.30	18.22	7.99 10	0			2,69215.02 1.29		41,92 29,13 28,05 19,0
5	Stgj2	25-32	3.09	7.3	6.32 0.40	0.031 7.45	11.22	6.70	0.27	n_25	18.44	15.97 10	0			2.05231.95 2.58		39.81 32.25 27.44 16.5
6	вС	52-38	2.56	7.6	6.63		9.62	5.26	0.25	0.19	15.32	3.85 10	0			2.46235.89 2.56		
7	c	38+	2.35	7.9	7.01		7.68	3,89	0,19	0.20	11.96 1	1.20 10	0			3.07271.23 3.58		49.5% 28.94 21.52 12.7
													ALLEY NO.					

LOCATION:	124°	30'W/54°	07'N
-----------	------	----------	------

PARENT MATERIAL: Lacustrine silts

Profile Description:

SOIL NAME: Berman

•

د .

د د

ELEVATION: 2250 feet

4.5/3 M 10yr7/2.5 d 5/3 M	TEXTURE Silt to silt loam Silt to silt loam	C.RUCTURE Noderate to strong medium platy	CONSISTENCE Slightly hard	R 0 0 T 5	NOTILES	OTHER Leaves, twigs and some well de-
4.5/3 M 10yr7/2.5 d 5/3 M		Moderate to strong medium platy	Slightly hard			
4.5/3 M 10yr7/2.5 d 5/3 M		Noderate to strong medium platy	Slightly hard		1	
5/ 3 M	Silt to silt loam			Abundant		composed organic material
10V07/2 5 m		Mcderate medium platy	Slightly hard to hard	Abundana		
5/3 M	Silt loam	Moderate fine to medium angular to subangular blocky	Slightly hard	Common		Common clay skins
10YR7/3 D 5/3 M	Silt loam	Moderate fine to medium angular to subangular blocky	Slightly hard	Common		Common clay skins
10YR7/2.5 D 5/3 H		Weak fine subangular to angular blocky	Slightly hard	Common		Some clay skins
10YR7/2 D 5.5/3 M	Stit loan	Weak fine subangular blocky	Slightly hard	Control		
10YR7/2 D 5.5/3 M	Silt loan	Varved silts	Slightly hord	Occasional		
10YR7/2 р 5.5/3 н	Silt loam to silty clay Cloam	Varved silts	Slightly hard	Occasional		
1	5.5/3 M OYR7/2 D 5.5/3 M OYR7/2 D	5.3/3 M OYR7/2 D Silt loan 5.5/3 M OYR7/2 D Silt loam to silty clay	5.5/3 M OYR7/2 D Silt Joan OYR7/2 D Silt Joan to silty clay Varved silts	5.3/3 M Near The sociality force Silphily hard .0YR7/2 D Silt loan 5.5/3 M Varved silts .0YR7/2 D Silt loan to silty clay .0YR7/2 D Silt loan to silty clay	5.3/3 M Near The solargerar brocky Slightly hard Common .0YR7/2 D Silt loam Varved silts Slightly hard Occasional .0YR7/2 D Silt loam to silty clay Varved silts Slightly hard Occasional	5.3/3 M Near The solaright blocky Slightly hard Common .0YR7/2 D Silt loan Varved silts Slightly hard Occasional .0YR7/2 D Silt loan to silty clay Varved silts Slightly hard Occasional

									<u></u>						·							100				boratory A	
LAB.				PH I		• .	1		. Ехсн	ANGEA	86 3.18	SES MUE	. 100G. j	. 1	OXALA		PYROPHOS	1			<u> </u>	PPM				PERCE	
			MOIST 1.1 H ₂ O	∴ CaCl _Z i			C/N	Ca	Mg	Na	к		cac 1			<u>x: </u>	89 AL	191	P2	5	l Cu	j Zo : 19	l ann i	l	SAND	SILT CL	AU PINE AY EL N
67/341	L-E	¹ / ₂ =0	12.87:6.2	5.3	82.6	1.63 2	9,6	65.i5	10.38 ¹	0.07	2.93							46	214		16.1	194.7					
342	ve j	0-3	2.56 6.3	5.1	2.1	0.03 1	6.0	4.31	1.54	0.05	0.93	6.83	14,51	12.1		i :		197	610	1.5	12.1	142.6					
343	Ae2	3-7	1.94 5.5	5.2	0.3	0.04	7.4	3.67	1.27	0.04	0.45	5.44	11 25	48.3		1	ł	58	100	1.0	10.2	70.8		ļ	6.83	80178:12	.39 2.23
344	3¢ I	7-14	2.67 6.4	5.4			9,2	9.55	2.46	0.09	0.25	12.38	:5.30	60.9				1 1?	200	0.8	25.9	60.8			1.16	78.07 20	.77 6.5.5
345	Bt?	14-19	2.33 6.5	5.6		1		12.14	3.09	0.13	0.23	15.59	15.S¢	00		:		4	391	1.5	26.7	39.2		Í	0.71	81.93 17	.36 6.00
346	30	19-24	2.35 6.8	5.8	1			12.31	3.08	0.17	0.22	15.76	17.02 4	\$2.7		ł	1	2	500	1.5	30.3	62.8		1		1	
347	СB	24-29	2.35 7.3	5.9				10.64	2.86	0.15	0.22	13.87	15.84	37.4				2	600	1.5	27.1	58.9					
349	CL	29-36	1.94 7.6	6.3				10.19	3.3	0,21	0.21	13,77		8.2				2	700	1-1	32.5	70.8			0.13	84 .3 3 15.	54 6.00
349	C2	361-	2.14 8.1	6.9				12.77	2.86	0.21	0.20	16.64	10	0.0	ļ			2	700	1.5	29.3	70.Q					
							'	.,					+	•	,			•		i				1	п		

t t s

LOCATION: 1240 17 W/540 26 N

PARENT MATERIAL: Lacustrine silts

Profile Description: ELEVATION: 2250 feet

SLOPE & ASPECT: Level

SOIL NAME: Berman

CLASSIFICATION: Orthic Humic Gleysol

DRAINAGE: Poorly drained

HORIZON	DEPTH	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
L-F	4-3				•	Abundant		Leaves, twigs, some partly de- composed
н	3-0			and the second second second second second second second second second second second second second second second		Abundant		Decomposed plant remains
Ahe	0-5	10YR3/1 M	Silty loam	Weak medium subangular blocky	Sticky	Abundant	and the second	
ABg	5-9	5¥4.5/1 M	Silty loam	Weak to moderate medium platy	Sticky	Common	Many fine distinct	
Bgtj	9-15	5Y5/2 M	Silty loam	Weak to moderate subangular blocky	Sticky	Occasional to common	5YR4/3 M Common fine faint 5YR4/3 M	
Ckg1	15-22	5¥2/2 M	Silty loam	Weak fine to medium subangular blocky	Sticky	Occasional	Few fine faint 5YR4/4 M	Slight efferv.
Ckg2	22-28	5¥5/3 M	Silty clay loam	Massive	Firm	Occasional		Slight efferv.
Ck33	28-33	2.5Y5/2 H	Silt loam	Massive with stratifications	Firm	Occasional		Slight efferv.
Ckg4	33-40	2.5Y5/2 M	Silt loam	Massive with stratifications	Firm	Occasional	and the second second	Strong efferv.
Ckg5	40+	2.514.5/2 M	Silt loam	Massive with stratifications	Firm	None		Strong efferv.

Laboratory Analyses

	-	1	The second second	РН	1	7	1			ANGEA	BLE BA	SES M.E	. 100G.		OXA	LATE	PYRO	PHOS	1				PPM	all all all all all all all all all all				1		RCENT	
LAB. NO.	HORIZO	N DEPTH	MOIST 1:1 - H20	0.01M CaCl2	OM	N	C/N	Ca	Mg	Na	к	SUM	CEC	Sat. %	Fe	Î AI I	Fe	Ϊ ΑΙ	P1	P2	5	l Cu	Zn	8	Mn	1	1	SAND	SILT	CLAY	CLAY
69/295	L-F	4-3	11.86 7.0	6.49	74.87	1.326	32.75	74.72	17.00	0.41	1.90	94.03	90.90	100					43.07	177.86	31.0	22.09	192.9	6			100				
296	Н	3-0	17.37 7.1	6.67	92.80	1.777	30.29	117.37	24.98	0.55	12.58	155.48	135.90	100		-			36.15	279.34	46.0	23.47	255.28	8							
297	Ahe	0-5	2.88 7.7	6.97	5.53	0.244	13.16	26.75	7.30	0.14	0.48	34.67	28.05	100		200			5.56	55.84	8.0	32.15	75.87								18
298	ABg	5-9	1.42 8.1	7.27	0.64	0.046	8.07	11.36	4.67	0.11	0.29	16.43	10.82	100			5		0.81	91.28	5.75	17,24	64.91					9.11	75.25	15.64	6,77
299	8gtj	9-15	2.04 8.0	7.36	0.64	0.038	9.82	7.35	9.39	0.17	0.22	17.13	14.16	100		1		26	1.12	277.55	2.5	49.74	72.70			1.0	and set of	1.28	75.13	23.59	11.813
300	Ckg1	15-22	2.56 8.3	7.56			2.55				12		196	1.5	-			1.05	0.92	31.28	56.75	56.4	94.87		1	1.3	1				
301	Ckg2	22-28	1.83 8.5	7.70			1	1				19	1		1.1	199			0.81	3.56	72.5	34.88	8 78.92	1			1	0.00	65.31	34.69	12.18
302	Ckg3	28-33	1.52 8.5	7.62	1	1.0	100			12		1000	4	0	10.7			1.5%	1.02	5.07	54.0	36.29	78.68			1	1 3				
303	Ckg4	33-40	1.32 8.5	7.67			100			18.					10	13.25			1.01	8.51	52.5	33.94	75.99					100	1		
304	Ckg5	40+	1.42 8.5	7.67			172			1.			200			1			0.71	7.10	54.0	34.48	80.12			1		0.00	79.31	20.69	7.62

LOCATIC	N	1
---------	---	---

.

.

•

Profile Description:

SOIL NAME: Causqua

PARENT MATERIAL: Steepland till (shallow colluvium over till)

ELEVATION:

	CLAS	SIFICATION: Bru	unisolic Cray Wooded		DRAINAGE: Well draine	ed	SLOPE & AS	SPECT:
HORIZON	DEPTH	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
L-H	2-0							
Bm	0-10	5YR6/4 D 4/4 M	sl	l m sbk	mfr	ra	níl	fingerings of Bm into Ae
Ae	10-15	10YR6/4 D 5/4 M	sl	l tn pl	mf r	rc	nil	
AB	15-19	10YR5/3 D 4/3 M	1s		mfr	rc	nil	
Bt	19-27	10YR5/3 D 4/2 M	sicl	2 m sbk	mvfi	roc	nil	
С	27+		scl	М	. mvfi	roc	nil	
	1					-		
	1							

Laboratory Analyses

....

0

			1	1.	Pi	4		7,	1	-	EXCH			ASES M.E					PYROPHOS				PPM						ERCENT
NO.	HORIZO	N DIPTH	MOIS	т 1 Н	20	0.01M CaCl2	0M	N	C/N	Ca	Mg	Na	K	SUM	CEC	Sat. %	Fe	1 AI	Fe AI	P1	PZ	s C	u i Zn	1 8	Mn	1	5.4	ND SIL	T CLAY
2/70	L-H	2-0	13.3	8 6.	.6	6.0	73.92	1.76	24.5	6.8	17.00	.23	3.45	27.48	111.10	24.73				46.83	143.99				14.0				
3/70	Bm	0-10	2.3	5 5	.7	4,98	1.98	.106	10.9	6.14	1.32	.049	.650	8.60	14.4	159.68	1.29	0.49		5.94	9,72				24.1				
4/70	Ae	10-15	1.4	2 5	.8	5.31	.75	.039	11.2	5.83	.786	.046	.181	6.34	9.60	071.25				1.83	15.31				19.8				
5/70	AB	15-19	2.4	5 6	.1	5.80	.85	.031	15.9	6.66	1.05	,056	.174	7.94	9.9	979.48				1.23	20.80				17.9				
5/70	Bt	19-27	1.9	4 7	.1	6,52			-	10.19	2.59	,053	.158	12.99	14.0	192.72				0.61	42.81				4.6				
7/70	С	27+	1.7	3 7	.2	6.50				9.16	2.31	.076	.153	11.70	11.9	597.91	0.96	0.58		1.22	57.48				6.1			-	
																				-									
																1.													
											-			-															
								-					1																

i.

.

.

LOCATION: 1230 481W/530 451N

PARENT MATERIAL: Ablation till

Profile Description:

ELEVATION: 3300 feet

SOIL NAME: Cobb

	CLASS	SIFICATION: BI	sequa Humo-Ferric Podzol		DRAINAGE: Well drain	ed	SLOPE & AS	PECT: \$ 15%	
HORIZÓN	DЕРТН IN - СМ.	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER	
L-F	2-0					Abundant		Raw to partially decomposed litter	
Ae	0-1	10YR7/2 D 6/2 M	Sandy loam	Single-grained	Loose	Abundant			
Bf 1	1-6	10YR5/6 D 7.SYR4/4 M	Sandy loam	Weak fine subangular blocky	Very friable	Abundant			
Bf 2	6-12	10YR5/6 D 4/4 M	Sandy loam	Weak fine to medium subangular blocky	Very friable	Abundant			
AB	12-20	10YR6/25 D 5/2 н	Sandy loam	Weak medium subangular blocky	Very friable	Common			
CI	20-31	10YR6/2 D 5.5/2 M	Gravelly sand	Single-grained	Loose	Occasional			
ва	31-42	10YR6/2 D 4.5/2 M	Sandy loam	Moderate medium to coarse sub- angular blocky	Friable to firm	Occasional		Few clay films	
Bt	42-50	10YR6/3 D 4/2 M	Sandy loam or loam	Moderate coarse blocky	Firm	Occasional		Common clay films 70)
C2	50-60	10YR5.5/2 D 4/2 M	Sandy loam or loam	Massive	Firm			1	
110	60+	10YR5.5/2 D 4/2 M	Sandy loam or loam till	 Massive grading to pseudoplaty with depth	Firm	ł		ł	

1

																													La	boratory	Analyses
			N		PH	. <u></u> ,	 ,		r	EXC	ANGEA	BLE BA	SES M.E	, 100G.			LATE	PYRO	PHOS	1				PPM	-]		CENT
LAB. NO.	HORIZO	DN DEPTH	MOIST	1:1	0.01M CaCl2	ОМ	N	C/N	Ca	Mg	Na	1 K	SUM	CEC	Sat. %	Fe	Î AI	Fe	Ä Ai	P1	P2	S	Cu	Zn	8	Min	1	1	SAND	si⊾t [CLAY CLAY
66/282	L-H	2-0	11.73	4.8	4.3	83.72	0.09	43.8	9,50	2.88	0.09	1.05	13.52	106.3	12.72	1				68.0											
283	Ae	0-1																									1				
284	Bf 1	1-6	2.09	6.0	5.1	1.60	0.05	20.7	1.43	0.48	0.05	0.19	2.15	8.1	26.32	0.97	0.80			136.0		4.6			ł				1		
285	Bf 2	6-12	1.52	6.2	5.3	0.73	0.03	15.4	1.37	0.48	0.06	0.14	2.05	6.09	33.36	0.81	0.56			72.8	[7.1			1						
286	AB	12-20	0.76	6.3	5.4				2.86	0.81	0.06	0.13	3.86	5.29	72.97					10.1		2.0									
287	Cl	20-31	0.86	6.5	5.8				3.46	1.38	0.06	0.12	5.02	5.65	88.85	1				4.7		3.3									l
288	BA	21-42	1.01	6.5	5.9				4.75	3.45	0.12	0.15	8.47	8.03	100.					1.9		4.3									
289	Bt	42-50	1.52	6.5	6.0				6.51	3.76	0.14	0.26	10.67	11.72	91.04				1	1.4		4.3									1
290	C 2	51-60	2.04	6.7	6.1				7.12	4.06	0.14	0.26	11.60	11.68	99.32	0.29	0.07			2.1		2.0									
291	110	60+	1.42	6.6	6.1				5.78	3.48	0.13	0.23	9.62	10.65	90.33					2.0		3.3									

LOCATION:

SOIL NAME: Cronin

PARENT MATERIAL: Glacial till

Profile Description:

ELEVATION:

.

SLOPE & ASPECT:

CLASSIFICATION: Alpine Dystric Brunisol

£

¢

ç

HORIZON	DEPTH INCM.	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
Ah	0-3	7.5YR3/2	gsl	2 f gr	mvfr	га	nil	Variable depth 1-6"
Ahe	3-6	7.5YR3/3	gsl	2 f gr	mvfr	ra		
Ae(Aeh)	6-7	7.5YR4/3	gsl	lfgr	mvfr	ra		Variable in thickness
Bml	7-11	7.5YR4/4	gsl	l f sbk	mfr	ra		
Bm2	11-17	7.5YR4/3-4	gsl	l f sbk	mfr	rc		
Cl	17-25	7.5YR4/3	gsl	М	mf i.	rc		
C2	25-31	7.5YR4/3	gsl	м	mfi	roc		
C3	31+	7.5YR4/3	gsl	м	mfi	ro		1
								171
								1
	:					2		
							ļ	

•

"

.

4

DRAINAGE: Well

LOCATION: 126" 36 W/54" 01 N

Profile Description:

SOIL NAME: Crystal

~

PARENT MATERIAL: Ablation till

ELEVATION: 2550 feet

.

	CLASS	IFICATION: Deg	raded Dystric Brunisol		DRAINAGE: Well to rap:	idly drained	SLOPE & AS	PECT: 5 5%
HORIZÓN	DEPTH	COLÓR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
L-F	1-0		1					Needles and leaves partly de- composed
Aej	0-3		Sandy loam	Moderate fine granular	Soft	Abundant		composed
Buel	¥-5	10YR5.5/3 D 3.5/3 M	Sandy Loam	Moderate fine granular	Soft	Abundant		
Dm2	5-9	10YR5/3 D 3.5/3 M	Sandy loana	Moderate fine granular	Soft	Abundant		
C1	9-14	10YR6/2 D 4/2 M	Sand	Single-grained	Loose	Сотноп		
C2	14-20	10YR6/2 D 4/2 M	Gravelly loamy sand	Weak fine subangular blocky	Soft	Сошиоп		
C3	20-29	10YR6/2.5 D 4/2 M	Gravelly sendy loam to gravelly loamy send	Moderate fine subangular blocky	Soft	Соннюп		
C4	2 9+	10YR6/2.5 D 4.5/3 M	Gravelly loamy sand	Single-grained	Soit	Occasional		. 17:
]	, ;	4]				N .
		:						•
	1	1	1				1]

Laboratory Analyses

			<u> </u>		PH		7.		t	EXCH	ANGEA	BLE BA	SES M.E	. 100G.		i ox	ALATI	z •	PY ROI	PHOS	T				РРМ		<u> </u>					RCENT	
LAB. NO.	HORI	ZON DEPTH	MOIST	1:1 H ₂ O	O.OIM	OM) N		Ca	Mg	Na	K	SUM	CEC	Sat. %	Fa	î A	1	F• 1	а АІ	P1	P2	5	Cu	Zn	0	1 14	n)		SAND	SILT	CLAY C	LAY
69/248	L-F	2-0	10.38	4.6	4.14	96.88	1.286	43.70	22.08	4.53	0,24	2.98	29.83	39.46	75.60			1			54.09	75.06	5.0	7.45	65.68	3							
249	Bal	1 3-5	1.32	5.6	5.17	0.98	0.033	17.27	1.52	0.20	0.05	0.16	1.93	6.08	31.74						159.07	279.64	2.03	10.13	63.33	4	1			ĺ.			
2 50	Bm2	5-9	1.01	6.0	5.34	0.36	0.021	10.05	1.52	0.30	0.07	0.13	2.02	4.63	43.62	ł					116.16	40.40		10.61	55.50	5							
251	C1	9-14	0.50	6.1	5.65		0.023		2.41	0.36	0.09	0.14	3.00	4.04	74.26		ļ				10.15	26.83	0.75	9.55	43.9	7							
2 5 2	C2	14-20	0.60	6.3	5.84																6.64	36.52		10.81	43.20	5		1		ļ			
253	C3	20-29	0.81	6.7	6.10		{				ł		1	1	{						4.74	90.73	2.52	13.61	1 52.13	7	}						
254	C4	29+	0.50	6.7	6.26									}		ļ]	2.91	86.43		14.07	52.0	L							
	1													}						1		ł		1							[
		1	1	ļ		1			l					{							{			Ì							}		
	ļ			 								1	1				ļ]	}	ļ		1				ł	ļ		ł		

r

.

1

LOCATION: 125° 40 W/54° 15 N

SOIL NAME: Dahl

e

Ť.

t i

PARENT MATERIAL: Shallow colluvium or till overlying acidic bedrock

Profile Description:

ELEVATION: 3500 feet

	CLASS	SIFICATION: Ort	nic Dystric Brunisol		DRAINAGE: Rapidly to v	veli drained	SLOPE & ASI	РЕСТ: S 44%
HORIZON	DEPTH IN - CM.	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
L-H	1-0					Abundant		Forest litter
Bm 1	0-4	10YR5/3 D 7.5YR4.5/4 M	Sandy loam to loam	Moderate fine to medium granular	Very friable	Abundant		Scattered angular gravel
Bm 2	4-7	10YR5/3 D 7.5YR4.5/4 н	Sandy loam to loam	Moderate fine to medium granular	Very friable	Abundant		Scattered angular gravel
СВ	7-13	10YR5.5/3 D 4/3 M	Sandy loam to loam	Moderate fine to medium subangular blocky	Very friable	Abundant		Scattered angular gravel
1101	13-19	10YR6/3 D 4.5/3 M	Stony loam to stony sandy loam	Moderate fine to medium subangular blocky	Friable	Common		Angular stones and gravel
11C2	19-24	10YR6/3 D 4.5/3 M	Stony loam to stony sandy loam	Moderate fine to medium subangular blocky	Friable	Common	1	
R	24+							
								173
								ن ۱
	!			I I		·		1

Laboratory Analyses

.

1

LAB.	,	1	1		РН	1	·,			EXC	ANGE	9LE 8/	SES M.E	. 100G.			LATE	PYRC	PHOS	1				PPM					<u> </u>	PER	CENT	
NO.	HORIZ	ON DEPTH	MOIST	1:1	0.01M CaCl2	OM		C/N	Ca		Na	K	SUM	CEC	Sat.	Fe	% I AI	l Fe	ĨAI	P1	P2	1 S	Cu	l Zn	8	i Mn	1	1	SAND	SILT	CLAY C	
68/497	L-H	1-0	13.38	6.8	6.80	101.0	82.643	22.18	79.37	9.78	0.07	3.83	93.05	105.4	88.27					25.40	130.39	57.82	16.44	164.40								
498	Bml	0-4	1.42	5.5	5.15	2.88	0.093	17.96	6.09	0.89	0.04	0.37	7.39	12.36	59.79	0.47	0.30			1.83	4.06	5.07	12.93	65.92								
499	Bm2	4-7	1.11	5.5	5.01	1.93	0.067	16.72	4.43	0.76	0.03	0.25	5.47	10.81	50.60	0.48	0.33			1.52	4.85	5.31	14.91	69.51								
500	СВ	7-13	1.11	5.7	5.37	1.26	0.051	14.31	4.68	0.82	0.04	0.18	5.72	9.33	61.31					1.21	5.76	3.54	36.40	89.74								
501	1101	13-19	1.11	5.9	5.71	1.20	0.048	14.58	5.56	0.76	0.05	0.11	6.48	9.43	68.72	0.38	0.29			1.52	8.09	4.30	18.20	71.28								
502	11C2	19-24	1.52	5.9	5.79				9.27	1.27	0.07	0.14	10.75	13.41	80.16					1.12	17.06	2.79	24.36	65.99								
503	R	24+			1	NOT SAN	PLED													1												
	,																															
	1]]					ļ												
	1	l																														

k

t , 1

	501L	NAME: Decker		PAREN	r MATERIAL: Colluvium over be	edrock		ELEVATION:
	CLAS	SIFICATION: D	egraded Dystric Brunisol		DRAINAGE: Well drained	1	SLOPE & AS	PECT:
HÓRIZOI	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
H	1-0]	
\ej	0-5							
Bat	\$-7\$	10YR5/3 D 5YR3/4 M	gsl	l na sòk	mfr	rc		Scattered bleaching along root channels
;	7월-19월	10YR6/2 D 5/3 M	gsl	l na sòk	mfr	rc.		
R	195+	shattered bedrock						
		1						

. . **I**

ı

.

				_																										_	
LAB.	!	1	1	1	PH	1	*	1		EXC	ANGEA	OLE 8A	SES M.E	. 100G.		0XA	LATE	PYRO	PHOS	1				PPM							CENT
NO.	HORIZO	1 DEPTH	MOIST	H _Z D	0.01M CaCi2	OM	N 1	C/N	Ca	Mg	Na	1 ×	SUM	CEC	Set.	Fe	N AI	Fe	х I АI	P1	Pž	8	C.	Zn	8) Mn	1	1	SAND	яст ()	CTAL FI
1/70	L-H	1-0	8.45		1	64.64	1.22	30.7	51.19	6.81	.11	2.17	60.28	88.28	68.28	1				39.15	55.31								1		
2/70	Bma	3-75	1.52	5.7	5.04	2.10	.085	14.3	4.26	0.51	0.05	0.50	5.32	11.77	45.20	0.84	0.81			4.37	9.64		ĺ			9.75					
3/70	Cl	71-191	1.11	5.5	5.15	.81			3.94	0.77	0.05	0.17	4.93	9.45	52.17	0.56	0.40			3.84	12.23					42.5					
4/70	R	195+			ŀ																										
				İ																											
				1																											
	4																														
				•																							1				
	1	:																		·											
		:	11		I	1	I	I)	I	1	1	ł	I	I	l I	I	I	i			i	I	I	I	1	t N	,	1	I

Laboratory Analyses

Profile Description:

.

LOCATION:

~

.

٠

.

1

ς.

LOCATION: 126º 25 W/53º 55 N

SOIL NAME: Deserters

5 f

.¢. :

1

PARENT MATERIAL: Basal till

Profile Description: ELEVATION: 3400 feet

CLASSIFICATION: Gleyed Brunisolic Gray Wooded

DRAINAGE: Imperfectly drained

SLOPE & ASPECT: NH 24%

HORIZON	!	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
L-H ▲e	2-0 0-1	10YR7/2 D	Sandy loam			Abundant		Forest litter in different stages of decomposition
		6/2 M	Sandy Ioam	Single-grained	Loose	Abundant		
Ben 1	1-6	10YR6/3 D 4/4 M	Sandy loam to loam	Moderate fine to medium granular	Very friable	Abundant		
Bmg j	6-12	10YR6/3 D 4/3 M	Sandy loam to loam	Weak to moderate fine granular	Very friable	Abundant	Few fine faint 10YR4/4 M	
Aegj	12-19	10YR7/2 D 4.5/3 M	Gravelly loam	Weak fine subangular blocky	Very friable	Common	Common fine distinct 7.5YR5/6 M	
ABg	19-24	10YR7/2 D 5/3 M	Gravelly loam	Weak to moderate medium subangular blocky	Friable	Occasional		
Btgjl	24-29	10YR6/2 D 4/3 M	Gravelly loam	Moderate fine to medium subangular and angular blocky	Firm	None	Common fine distinct 7.5YR4.5/4M	Common clay skins
Btgj2	29-35	10YR7/3 D 4/3 M	Gravelly loam	Moderate fine to medium subangular and angular blocky	Very firm	None	Few fine distinct 7.5YR4.5/4 M	Common clay skins
BCgj	35-43	10YR7/2 D 4/3 M	Gravelly loam	Moderate medium subangular blocky to pseudoplaty	Very firm	None	Few fine faint 7.5YR5/4 M	Some clay skins
c	43+	10YR7/2 D 4.5/3 M	Gravelly loam till	Pseudoplaty	Very firm	None	I	1

Laboratory Analyses

.

a.

l

LAB.	••••••••••••••••••••••••••••••••••••••	·	T		РН		7,	 !	_	EXCH	ANGEA	BLE BA	SES M.E	. 1006	•	OXA	LATE	PYR	OPHOS	T				PPM					1	PE	RCENT	
NO.	HORIZO	N DEPTH	MOIST	1:1	CaCI2	OM) N	C/N	Ca	Mg	Na	K	SUM	CEC	Sat. X	Fe	й А I	F.	Î AI	P1	P2	1 s	l Cu	Zn	1 8	Min	1	1	SAND	SILT	CLAY	LI FINE
69/184	ี่ เ-ห	2-0	10.13	4.6	4.35	9.79	1.269	36.47	26.87	3.74	0.22	1.38	32.21	72.80	44.24					36.45	50.66	1.70	8.26	63.32								
185	Ae	0-1	1.11	4.6	4.02	2.82	0.085	19.25	1.72	0.45	0.09	0.24	2.50	11.05	22.62		ļ			54.60	83.92	2.53	7.08	36.65	}							
186	Banl	1-6	1.73	5.1	4.46	2.14	0.089	13.92	2.03	0.64	0.09	0.24	3.00	12.26	24.47			ĺ		46.80	75.28	4.83	11.44	60.53			Ì					
187	Bingj	6-12	1.21	5.2	4.57	0.84	0.029	16.70	2.43	0.74	0.10	0.19	3.46	8.91	38.83					15.08	52.12	2.53	11.89	53.14								
188	Aegj	12-19	1.42	5.4	4.71	0.28	0.021	7.71	4.97	1.71	0.20	0.18	7.06	10.52	67.11					4.56	58.32	3.55	17.75	58.32	[43.27	37.83	18.90	4.42
189	ABg	19-24	1.62	5.5	4.75	0.28	0.018	9.00	6.20	1.96	0.13	0.16	8.45	10.75	78.60					4.67	78.26	3.56	16.77	54.11								
190	Btgjl	24-29	2.04	5.8	5.28	1		i									1			5.20	124.4	3.57	20.41	59.95								
191	Btgj2	29-35	z.04	5.9	5.37								ļ				ļ			3.47	129.5	2.55	22.45	64.54	l				42.03	34.17	23.80	10.68
192	BCgj	35-43	1.73	6.5	5.95															2.03	180.0	\$ 2.54	23.40	71.97								
193	C	43+	1.94	6.6	6.00		1	1					1							1.43	214.0	2.55	24.21	73.14	ļ		1		41.76	35.54	22.70	11.24

).

ĸ

۰.

£

LOCATION: 1240 37 W/540 02 N

PARENT MATERIAL: Basal till

,

Profile Description:

SOIL NAME: Deserters

< (

÷

DRAINAGE:	Well	drained	
-----------	------	---------	--

۰ ×

ELEVATION: 3300 feet SLOPE & ASPECT: SE 7%

CLASSIFICATION:	Brunisolic	Gray Wooded	

.

*

	DEPTH	COLOR	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
HORIZON	IN - CM.	DRY D MOIST M	TEXIORE		CONSTSTENCE		MOTILES	
L-H	1-0						1	
Ael	0-1	10YR6/2 D 5/2 M	Sandy loam	Moderate fine granular	Very friable	Abundant		
ßml	<u>३</u> -7	10YR4.5/3 D 3/3 M	Sandy loam to loam	Strong fine to medium subangular blocky	Very friable	Abundant		
Bm2	7-14	10YR5.5/3 D 4/3 M	Gravelly sendy loam to loam	Strong fine to medium granular	Very friable	Abundant		
Ae2	14-19	10YR6/2 D 4.5/2 M	Loam to gravelly loam	Moderate fine subangular blocky	Friable	Common		
Ae3	19-23	10YR6/2 D 4.5/2 M	Loam to gravelly loam	Moderate fine subangular blocky	Friable	Common		
AB	23-28	10YR7/2.5 D 4/2.5 M	Loam to gravelly loam	Moderate fine angular to sub- angular blocky	Friable	Occasional		
Bt	28-36	10YR6/3 D 4/2 M	Loam to gravelly loam	Moderate to strong medium angular blocky	Firm	Occasional		Common clay films
вС	36-46	10YR7/3 D 4/3.5 M	Loam to gravelly loam	Weak to moderate fine angular blocky	Friable .	Occasional .	1	
с	46+	10YR7/2.5 D 4/2.5 M	Loam to gravelly loam till	Pseudoplaty	Friable	None	1	1

Laboratory Analyses

			1	F			7.	1		EXCH	ANGEA	BLE BA	SES M.E	. 100G	•		LATE	PYRC	PHOS		-			PPM						PE	RCENT
LAB. NO.	HORIZO	N DEPTH	MOIST	1:1	PH 0.01M CaCl2	I OM	N	C/N	Ca	Mg) Na	K	i sum		6	Fa	% I AI	Fe	Î AI	P1	P2	5	(Cu	Zn	8	Min	1	1	SAND	SILT	CLAY CLA
69/214	L-H	3-0	8.93	3.8	3.96	76.66	1.020	43.60	11.98	3.33	0.14	2.18	17.63	63.59	27.72	1	1			168.8	260.3	4 12.5	8.44	80.61						ļ	
215	Bml	1-7	2.56	5.7	5.16	2.72	0.071	22.20	4.10	0.69	0.05	0.58	5.42	13.83	39.19	0.82	0.98			230.7	6 74.0	9 3.33	13.08	90.25							
216	Bm2	7-14	2.46	6.0	5.46	1.72	0.053	18.83	4.82	0.87	0.06				50.25					194.6	362.7	2.56	15.88	80.69							
217	Ae2	14-19	1.11	6.3	5.86	0.41	0.025	9.60	4.85	1.41	0.08	0.27	6.61	7.77	85.07	0.35	0.36			9.91	78.87	1.01	16.94	35.89							
218	Ae3	19-23	1.32	6.4	5.96	0.36	0.021	10,10	6.08	2.06	0.09	0.24	8.47	9.32	2 90.88						158.0	e 1.27	23.56	38.50						ł	
219	AB	23-28	1.32	6.5	6.00	0.28	0.020	8.25	6.59	2.53	0.15	0.27	9.54	10.54	90.51					3.55	209.7	3 1.27	24.57	38.00						1	
220	Bt	28-36	1.73	6.5	5.90		Ì		8.34	3.28	0.16	0.30	12.08	13.19	91.58					6.92	189.2	2 2.29	30.26	40.18				ļ			
221	BC 1	36-41	1.94	7.0	6.40															1.63	223.2	\$ 2.29	47.40	42.56							
222	BC2	41-46	1.73	7.0	6.52															1.63	266.5	4 3.56	34.59	42.47							
223	C	46+	1.62	7.0	6.28															1.63	283.5	2 1.02	31.50	42.43						ľ.	

LOCATION:	124 ⁰	50 'W,	/\$4°	00 ° N	
-----------	------------------	--------	-------	--------	--

SOIL NAME: Dragon

1

Ć

(

PARENT MATERIAL: Shallow colluvium and till overlying acidic bedrock

Profile Description:

	SOIL	NAME: Dragon		PARENT MATE	RIAL: Shallow colluvium	and till overlying	acidic bedrock	ELEVATION: 3700 feet
	CLAS	SIFICATION: Or	thic Humo-Ferric Podzol		DRAINAGE:Rapidly to v	ell drained	SLOPE & A	SPECT: SE 20%
HORIZON	DEPTH	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
L-H	2-0					Abundant		Well preserved to decomposed plant
Ae	0-2	10YR7/1 D 5.5/2 M	Sandy loam	Weak fine subangular blocky	Loose	Abundant		remains
Bf 1	2-33	10YR5/4 D 4/3 M	Sandy loam	Moderate fine to medium subangular blocky	Very friable	Abundant		
Bf2	3½-8	10YR5/5 D 7.5YR4/4 M	Sandy loam to loam	Moderate fine to medium subangular blocky	Very friable	Abundant		Scattered gravel
BC 1	8-13	10YR6.5/3 D 5/3 M	Gravelly sandy loam	Moderate fine to medium subangular blocky	Very friable	Common	i.	
BC2	13-18	10YR6.5/3 D 6/3 M	Gravelly sandy loam	Moderate fine to medium subangular blocky	Very friable	Common		
c	18-22	10YR6/2 D 5/2 M	Gravelly sandy loam	Medium subangular blocky to pseudoplaty	Friable	Occasional		
R	22+		Bedrock					1
								17
	Ì	:						7
	i	i	i i				1	1

Laboratory Analyses

•

٠

LAB.	1	1			PH	1	7.	1		EXCH	ANGEA	BLE BA	SES M.	E. 100G.			LATE	PYRO	PHOS					PPM				_	_		RCENT	
NO.	HORIZO	N DEPTH	MOIST	1:1	0.01M CaCl2	ОМ	N	C/N	Ca	Mg	Na	K	s∪m	CEC	Sat. %	Fe	7. Al	Fe	7. Î Al	P1	P2	5	Cu	Zn	8	1 14	in	1	SAND	SILT	CLAY	CLA
67/406	L-H	2-0	8.45	4.7	3.9	102.2	1.21	31.1	22.45	2.93	0.04	z.00	27.42	106.98	25.6					42	54		9.5	42.0								
407	Ae	0-2	2.14	4.8	3.7	3.0	1.14	27.5	2.45	0.26	0.01	0.22	2.94	12.35	23.8					7	14	7.7	3.10	19.2								
408	Bfl	2-35	2.99	5.5		3.5			1.39	0.15	0.01	0.18	1.73	14.08	12.3	0.95	0.58	Į		51	99	9.0	8.2	47.6								
409	Bf2	31-8	3.53	6.0		2.9	0.07	23.3												44	93	9.1	13.2	51.8								
410	BC1	8-13	1.63	6.0	Ì				0.81	0.15	0.01	0.11	1.08	9.35	11.6	0.50	0.61			66	112	6.4	15.2	28.7								
411	BC2	13-18	1.21	6.0					0.71	0.10	0.03	0.11	0.93	5.87	15.8	0.55	0.38			27	62	5.1	17.7	24.0		1						
412	С	18-22	1.01	6.1													0.28			28	62		16.7	25.3								
	•			:																												
	ļ																l								l							
				ļ																				1								1

1

a

.

LOCATION: 1250 51 W/540 21 N

SOIL NAME: Driftwood

. 1

PARENT MATERIAL: Basal till

/

Profile Description:

ELEVATION: 2450 feet

CLASSIFICATION: Dark Gray Wooded

· ·

DRAINAGE: Well	to moderately	well drained

.

,

SLOPE & ASPECT: Level

۰.

	CLAS	SIFICATION: Da	rk Gray Wooded		DIAMOSE: 4611 20 1100				
HORIZON	DEPTH	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER	
Apl	0-4	10YR3.5/2 D 2/1.5 M	Loam	Strong fine granular	Soft	Abundant	1 .		
Ap2	4-6	10YR4/2 D 3/2 M	Loam	Strong fine to medium granular	Soft	Abundant			
Ae	6-10	10YR6.5/2 D 5.5/3 M	Gravelly loam	Moderate to strong fine sub- angular blocky	Slightly hard	Common			
AB	10-15	10YR6.2/2.5D 5/3 M	Gravelly clay loam	Moderate to strong medium sub- angular and angular blocky	Slightly hard	Common		Some clay skins	
Btl	15-19	10YR6/2 D 4/3 M	Clay loam to gravelly clay loam	Moderate to strong medium angular blocky	Hard	Common		Common clay skins	
Bt2	19-26	10YR5/3 D 3.5/3 M	Clay	Strong medium to coarse angular blocky	Very hard to extremely hard	Occasional		Many clay skins	
Bt3	26-31	10YR6/3 D 3.5/3 M	Gravelly clay loam	Moderate medium angular blocky	Very hard to extremely hard	Occasional		Common clay skins	ا اسر
СВ	31-35	10YR5.5/3 D 4/3 M	Gravelly clay loam	Pseudoplaty to moderate medium subangular blocky	Very hard	Occasional		Some clay skins	78 -
C1	35-42	10YR5/2.5 D 2.5/3 M	Gravelly clay loam	Pseudoplaty	Very hard	Occasional			•
C2	42+	10YR5/2.5 D 2.5/3 M	Gravelly clay loam	Pseudoplaty	Very hard	None			

		1	T	1	9	'н -		*.	1		EXCH	ANGEA	BLE BA	SES M.E	. 100G		OXA	LATE	PYRC	PHOS	1				PPM					li		RCENT	
NO.	HORIZO	N DEPTH	MOI	ST		0.01M CaCiz	ОМ	I N	C/N	Ca	Mg	Na	ι κ	SUM	CEC	Sat.	Fe	7. Al	Fe	а і аі	Pi	P2	5	l Cu	Zn	8	Min	1	1	SAND	SILT	CLAY	CLA
8/569	Apl	0-4	3.95		6.0	5.49	16.50	þ.668	14.33	22.74	3.84	0.09	0.40	27.07	39.43	68.65					8.8	23.9	1.56	22.87	197.25								
570	Ap2	4-6	2.67	'	6.1	5.61	8.79	D.342	14.91	14.12	2.63	0.11	0.26	17.12	25.54	67.03					10.8	28.7	4.62	14.89	178.65		Ì	{					
571	Ae	6-10	1.	1	6.3	5.59	1.11	p.053	12,308	4.64	1.85	0.23	0.09	6.81	10.15	67.09		·			1.8	20.2	3.80	14.93	55.67				ł	33.44	48.00	18.56	5 2.3
572	AB	10-15	i 1.!	i2	6.0	5.20	0.81	0.052	9.04	5.85	2.94	0.21	0.10	9.10	13.3	68.37	:				2.0	25.9	3.05	23.86	62.18		5			22.19	48.87	27.96	5.5.
573	Btl	15-19	2.0	94	5.7	4.48	0.93	p.048	11.25	6.89	4.85	0.44	0.16	12.34	19.64	62.82					2.6	24.4	5.61	34.18	73.47				}	21.63	41.70	36.67	1 14
574	Bt2	19-26	3.0	9	5.5	4.21	0.94	p.055	10.00	9.02	7.28	0.68	0.22	17.20	26.79	64.20					4.1	27.8	6.44	55.67	77.32		ļ		}	20.54	34.32	45.14	+ 20
575	Bt3	26-31	2.	99	5.6	4.43	ł														3.6	27.5	6.44	47.89	72.09								
576	СВ	31-35	5 2.4	6	5.9	4.95							1							1	2.6	87.1	7.68	46.88	76.80			{		25.97	42.27	31.76	5 18
577	C1	, 35-42	2 1.9	94	7.3	6.44							ł								1.0	178.5	10.19		85.88					25.55	37.91	36.54	+ 15
578	C2	42+	1.	52	7.9	6.93											ł				1.1	228.4	7.87	36.04	81.22			1			1	}	

Laboratory Analyses

SOIL	NAME: На	gwilget		PARENT MATERIAL: Alluvial	fan			ELEVATION:
CLA	SSIFICATIO	N: Orthic R	egosol	D	RAINAGE: Well		SLOPE & ASPECT	
HORIZON	DEPTH INCM.	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
L-H	3-0							Mainly cottonwood willow, and hazelnut leaves
C1	0-9	10YR5/3 M	fsl	lm sbk	mfr	ra		and hazernal reaves
11C	9-14	10YR4/2 M	ls	0-Sg	ml	rc		
IIIC	14-25	10YR4/2 M	sil	2 m sbk	mfi	rc		
IVC	25+	variegated	5	0-Sg	ml	roc	fzf	sand relatively fine
1								۰ ا سر
İ								179 .
								I
					-			
	•				1			

•

•

4

LOCATION:

Profile Description:

.

.

.

_

)

.

e.

£

LOCAT	TION:			- water at the second second second second second second second second second second second second second second			ELEVATION:
			PAREN			SLOPE & AS	
DEPTH	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
6-4 4-0 0-2 2-9 9-16 16-32 32-44+	SYR5/3 D SYR6/4 D 4/4 M 10YR6/3 D 5/4 M 10YR4/2 D 4/2 M	grit. sil grit. sil Sl (stony) gls gls (stony)	O 1 m sbk O to Sg O to Sg	mfr mfr m1 mvfr	ra Fa Fa Foc Foc		gravitational movement has disrupted Ae depth of Bf highly variable occasional fragments of till, fragmental pieces of shale
	SOIL 1 CLASS DEPTH IN - CM. 6-4 4-0 0-2 2-9 9-16 16-32	CLASSIFICATION: OH COLOR COLOR ORY D MOIST M 6-4 4-0 0-2 5YR5/3 D 2-9 5YR6/4 D 4/4 M 9-16 10YR6/3 D 5/4 M 16-32 10YR4/2 D 4/2 M	SOIL NAME: Kispiox CLASSIFICATION: OHFP DEPTH COLOR DRY D MOIST M T E X T U R E 6-4	PARENT SOIL NAME: Kispiox PARENT CLASSIFICATION: OHFP DEPTH ORY D ORY D MOIST M T E X T U R E STR U C T U R E 6-4 Color ORY D MOIST M T E X T U R E STR U C T U R E 6-4 Grad d< th=""> Grad Grad<</thgrad<>	DARENT MATERIAL: Steepland colluvi CLASSIFICATION: OHFP DEPTH ORY D ORY D MOIST M TEXTURE STRUCTURE CONSISTENCE 6-4 CONSIST M TEXTURE STRUCTURE CONSISTENCE 6-4	PARENT MATERIAL: Steepland colluvium CLASSIFICATION: OHFP DEPTH IN - CM. COLOR ORY ONST M TEXTURE STRUCTURE CONSISTENCE ROOTS 6-4 MINAGE: Well drained 6-4 TEXTURE STRUCTURE CONSISTENCE ROOTS 6-4 SYR5/3 D grit. sil 0 mfr ra 6-2 SYR5/3 D grit. sil 0 mfr ra 2-9 SYR6/4 D grit. sil 1 m abk mfr ra 9-16 IOYR6/3 D S1 (stony) 0 to Sg ml roc 16-32 IOYR4/2 D gls 0 to Sg mvfr ra	PARENT MATERIAL: Steepland colluvium SOIL NAME: Kispiox SLOPE & AS CALASSIFICATION: OHFF SLOPE & AS DEPTH IN - CM. COLOR DRY D MOISTM STRUCTURE CONSISTENCE ROOTS MOTTLES 6-44

e e c c c c c c

, ė

Laboratory Analyses

									r				SES M.E	1000		074	LATE	PYRO	PHOS	r				PPM					l		RCENT	
LAB.	HORIZO	N DEPTH	MOIST	1:1 H ₂ O	PH 0.01M CaCl2	ОМ	<u>,</u> N	C/N	Ca	Mg	Na	K	SUM	CEC	Sat. %	F.	% Al	Fe	7. Ai	P1	P2	5	Cu	Zn	8	Min	1	1	SAND	SILT	CLAY	CLAY
42/70 43/70	L F-H		8.93 10.13	4.8		1			26.14		1	1		1	1	1				49.02 44.05												
43/70 44 A /70 44/70	1	0-2 2-9	1.83				NOT 5.	AMPLED					9.91			1.12	0.39	1.10	0.38	26.58						6.1 13.2						
45/70		9-16	1.42	6.0	5.41	1.15			5.58	2.52	.046	.40	Ì	11.56		0.76	0.20	0.11	0.06	2.23						17.3						
46/70 47/70	C1 C2	16-32 32-44		i	6.09 6.17	i			7.32	4,14	.071	.105	11.0	,12.05	72.4					2.04	97.76					8.7						

Profile Description:

.

LOCATION:

SOIL NAME: Kitsguecla

PARENT MATERIAL: Sandy glaciofluvial deposits over glacial till

Profile Description:

ELEVATION:

CLA	SSIFICATIO	N: Degraded	Dystric Brunisol	DRA	LINAGE: Well		SLOPE & ASPECT	:
HORIZON	DEPTH INCM.	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
L-H	2-0							· · · · · · · · · · · · · · · · · · ·
Aej	0-32	10YR6/2 M	fsl	0	ml	ra		
Bm	₹-12	5YR4/4 M	sl	lm sbk	mvfr	ra		
~C1	12-18	5YR4/2 M	ls	Sg	ml	rc		
C2	18-41	variegated	8	Sg	ml	roc		
IIC	41+	10YR4/3 M	sicl	м	mvfi	ro	C 2 d	very compact till
1		!	1			1	ł	

LOCATION

Profile Descriptio

	ATION:							Profile Description:
	NAME: Kit		ombric Brunisol	PARENT MATERIAL: Coll	uvium over basic bedrock	L .		ELEVATION: I
	551FICATIO		moric Brunisol		DRAINAGE: Well		SLOPE & ASPECT	; <u>ب</u>
HORIZON	DEPTH INCM.	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
L-H	3-0							
Ah	0-7	5YR3/2 D 2/1 M	1	2 f gr	mvfr	ra		
Bm	7-18	5YR4/4 M	fsl	l m sbk	mfr	roc		
с	18-29	10YR4/2 M	fsl	1 m sbk	mfr	rc		bedrock fragments common
R	29+			bedrock				bedrock has variable fracturing
i								
	,	t i	ч <i>с</i>	,	ι	•		• •

	LOCA	TION:						Profile Description:
	SOIL	NAME: Kitwang	æ	PAREN	MATERIAL: Ablation till			ELEVATION:
	CLASS	IFICATION: B	infp	<u></u>	DRAINAGE: Moderately	well drained	SLOPE & ASPEC	T:
HORIZÓN	DEPTN IN - CM.	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
L-H	13-0							
Ae	0-15	10YR7/1 D 6/1 M						
B£	13-75	5YR5/6 M	fal	1 m sbk	mfr	rc		
BC	71-121	10YR5/6 M	g 5 1	1 m sbk	mfr	rc		
Ae	125-235	10YR4/2 M	gəl	1 m sbk	mfr	roc		
Bt	233-305	10YR4/2 M	sil	2 m sbk	mvfi	FOC		· · · · · · · · · · · · · · · · · · ·
C1	30 \ 5+	10YR4/2 M	81	M	mefi		flf	
								•
		f 1 1						182
								1 I
		:	ļ	1		ļ		

, , , t e

Laboratory Analyses

		, ,	T		PH	· · · · · ·	7.	1	Γ	EXCH	ANGEA	BLE BA	SES M.E	. 100G		OXA	LATE	PYRO	PHOS					PPM							CENT	
LAB. NO.	HORIZO	ON DEPTH	MOIST	1:1 H2O	0.01M	ОМ	N	C/N	Ca	Mg	Na	Į K	SUM	CEC	Sat.	Fe		Fe	A1	P1	P2	5	Cu	Zn	10	Mn	1	1	SAND	รเเรา	OTAL F	LAY
48/70	L-H	13-0	8.70	4.1	3.59	73.70	1		9.57	2.89	.17	4.24	16.87	80.25	21.02											360.0						
49/70	Ae	0-15				NO	t sami	PLED																8								
50/70	Bf	13-75	2.67	5.5	4.58	2.27	.073	18.0	.51	.25	.059	.16	.979	14.07	6.96	1.89	1.11	0.30	0.45	37.37	65.71					19.0	D	1				
51/70	BC	712-1212	1.83	5.8	4.89	1.69			1.22	.32	. 122	.188	1.85	9.06	20.42				-	44.30	72,30]			23.4	•					
52 A/7 0	Ae	125-235	1.21	5.8	5.42	.84			3.74	0.96	0.05	0.12	4.87	8.02	60.72					3.04	27.63					34.	4					
52/70	Bt	233-303	1.32	6.0	5.70	.75	.034	12.8	6.74	1.42	.085	.088	8.33	9.19	90.64	[(3.04	71.94					16.	2				Í	
53/70	Cl	30 1/	1.94	6.3	5.92				10.81	2.22	.087	.066	13.18	11.75	100	0.77	0.43		5	3.87	61.64				1	8.	2					
	1									1																						
	•					ł				{	ĺ												1	ł								
	1			1			1				ĺ			ļ		1	ļ		ĺ	Į						1	1					

LOCATION.

z (* 1

1

,

Drobile De

LO	CAI	LION	1:
----	-----	------	----

ELEVATION:

SOIL NAME: Kwun

PARENT MATERIAL: Glacial till

DRAINAGE: Noderstely well drained

		SIFICATION: B	HFP		DRAINAGE: Moderately	well drained	SLOPE & AS	PECT:
HORIZON		COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
L	6-4							
F-H	4-0							
Ae	0-1	10YR6/1 D		l m sbk	mvfr	ra		1ntermittent
Bf	1-8	10YR5/4 D 4/4 M	fsl	l m sbk	m£r	ra		
вС	8-15	10YR4/3 M	s 1	1 m sbk	mfr	ra		
Ae	15-27	Matrix 10YR4/3 M 5/3 M	sl	t vtmpl	mfr	ra	f2f	
Btgj	27-35	10YR4/2 M	sicl	2 m sbk	mvfi	roc	c2d	
Cgj	35+	10YR4/2 M mottles 10YR4/1	sicl		mvfi	roc	c2ð	
								•

Laboratory Analyses

.

*

LAB.		1	1	1	PH	. ·	\$	1	[EXC	ANGEA	BLE BA	SES M.E	. 100G.		1 0XA	LATE	' PYR	OPHOS	T			فتكر محد در	PPI	4					PE	RCENT	
NO.	HORIZO	N DEPTH	MOIST	1:1-1	0.01M CaCl2	OM	N	C/N	Ca	Mg	Na	1 K	SUM	CEC	Sat. %	Fe	Ä I AI	Fe	Î AI	P1	P2	1 5	Cu	Zn	1 8		Mn 1	1	SAND	SILT	CLAY	CLAY
15/70	L	6-4		1.5	4.4								1			1				90.0	99.0											
16/70	F-H	4-0	12.6	1 1.5	5.1	97.64	1.36	4.16	54.05	6.88	0.29	2.09	63.31	112.16	56.45					·												
- 17/70		-			NOT	SAMPLE	D									1.23	0.31			12.35	24.29	2.2	7									}
18/70	Bf	1-8	1.21	6.0	5.30	2.03	.0896	13.1	6.43	2.45	0.08	0.19	9.15	14.12	64.8					6.56	18.27	2.02				1	13.1					
19/70	BC	8-15	0.91	6.3	5.51	1.44			4.24	2.22	0.10	0.18	6.75	10.88	62.04					2.01	48.74	1.26				1	13.6					
20A/70	Ae	15-27	0.50	6.3	5.63				4.02	2.93	.055	.156	6.62	9.47	69.90					3.83	71.65	2.52		ł			8.6					
20/70	Bcgj	27-35	0.91	6.4	5.81				9.33	4.74	.089	.110	14.37	3.81	100	0.65	0.31			2.84	102.84	2.03					9.6					
21/70	Cgj	35+	1.32	6.5	6.10																											
	i					۱ ۲ ۰۰۰														ł				ł		1						1

5

"

e 4

ć

٩

PARENT MATERIAL: Sandy valley trains and deltas ELEVATION: 2250 feet SOIL NAME: Mapes SLOPE & ASPECT: NE 9% DRAINAGE: Rapidly drained CLASSIFICATION: Orthic Regosol COLOR HORIZON CONSISTENCE ROOTS MOTTLES OTHER TEXTURE STRUCTURE DRY D IN - CH. MOIST M _____ forest litter 3-0 L 0.2 10VD/ 5/2 D Sand Stopleversined

	.h	0-2	10YR4.5/2 D 3/3 M	Sand	Single-grained	Loose	Abundant			
	ſĊ	2-4	10YR5.5/2 D 4/3 M	Sand	Single-grained	Loose	Abundant			
c	-1	4-10	Variegated	Sand	Single-grained	Loose	Common			
c	:2	10-19	Variegated	Sand	Single-grained	Loose	Common			
C	:3	19-28	Variegated	Sand	Single-grained	Loose	Occasional		Few Fe stains	
C	;4	28+	Variegated	Sand	Single-grained	Loose	None			
										1
		1				ł				184
			1							1
			i	1		1	I	1	1	

aboratory	A	
acoratory	Allai	yses

			1				2	1	<u> </u>	EKC	HANGE	ABLE 8/	SES M.E	, 100G	•	1 0XA	LATE	PYR	OPHOS	1			-	PPM					1		RCENT	
NO.	HORIZO	DEPTH	MOIST		0.01M	OM	N	C/N	Св	Mg	Na	K	SUM	,	F	Fe	7. Al	F.	Î AI	P1	P2	5	Cu	Zn	B	Min	<u> </u>	1	SAND	SILT	CLAY	. FINE
67/3 01	L-H	<u>1</u> -0	10.18	4.9	4.5	72.2	1.25	33.5	18.84	7.71	0.18	2.38	29.11	88.81	32.8	1				55	63		9.10	84.0								
302	Ah	0-2	1.94	6.0	5.0	2.8	0.11	14.4	3.77	0,46	0.09	0.41	4.73	10.37	45.6				ĺ	158	240	2.5	12.2	101.9								1
303	AC	2-4	1.42	6.1	5.1	0.7	0.03	12.5	2.33	0.46	0.09	0.15	3.03	6.42	47.2		ł		ŗ	85	122	2.5	9.6	65.9			ļ				t t	
304	Cl	4-10	1.21	6.1	5.2				2.94	0.56	0.08	0.13	3.71	5.59	66.4		ĺ			22	37		9.6	50.6								
305	C2	10-19	1.32	6.3	5.9			1	3.75	1.01	0.09	0.13	4.98	6.41	77.7					8	34	2.5	10.6	43.1								
306	C 3	19-28	1.32	6.6	5.7				3.90	1.01	0.09	0.15	5.15	6.32	81.5				1	6	65	0.5	10.9	49.4					-			
307	C4	28+	1.21	6.7	5.8				3.54	1.01	0.11	0.17	4.83	5.92	81.6			Ì		5	63	1.3	13.2	50.6								
			-																Ì													
		1																														
				į									ł						1				1		1	ł	[ł		1	ł	i

LOCATION: 1240 34 W/540 03 'N

Profile Description:

FIVINE Description

LOCATION:	126° 55'W/54° 12'N
SOIL NAME:	Morice

F

ţ

ι .

PARENT MATERIAL: Kame terraces

Profile Description: ELEVATION: 2700 feet

4

.

.

SLOPE & ASPECT: NE 22% DRAINAGE: Rapidly drained CLASSIFICATION: Degraded Dystric Brunisol -----COLOR DRY D ROOTS HORIZON DEPTH CONSISTENCE MOTTLES OTHER STRUCTURE TEXTURE IN - CM. MOIST M ----and the second strength of the second strengt Forest litter Abundant 1-0 LF Abundant Lcose Weak fine granular 10YR6/2 D Gravelly sand 0-12 Aej 5/1 M Abundant Loose Weak fine granular ¥-5 10YR5/3 D Gravelly sand Bm 3.5/3 M Common Loose Single-grained Gravelly sand BC 5-9 Variegated Common Loose Single-grained C1 9-17 Variegated Gravelly sand Soft Occasional Single-grained 17-27 Gravelly sand Ç2 Variegated Soft Occasional Gravelly sand Single-grained 27-35 Variegated ¢3 Thin silty band (1/2-1") Soft None Single-grained C4 36+ Variegated Gravelly sand I. 185 Т

Laboratory Analyses

		. <u></u>	R .		РН		7.		ſ	EXC	ANGEA	BLE BA	SES M.E	, 100G		0X/	LATE	' PYF	ROPHOS						PPM					<u> </u>		RCENT
LAB. NO.	HORIZO	N DEPTH	MOIST	1:1 H ₂ O	0.01M CaCi2	OM	I N	C/N	Ca		Na	1 ×			%at. %	F.	7. Al	۶ ه ا	Î AI	PI	P2	s	1	Cu I	2n 1	B	Min	1	 	SAND	SILT	CLAY CLA
69/256	LF	1-0	8.46	5.8	5.51	33.98	0.74	6 26.42	36.23	4.62	0.33	2.28	43.46	58.90	73.97					73.7	5107.9	2 23.	86 1	4.372	84.71							
157	+		1.42	1	1		1	6 23.28	1					ł	18.86					183.	7405.0	58 2.	28	8.11	68,61							
258	BC	5-9	0.81	5.7	5.34	0.64	0.02	3 16.00	0.71	0.15	0.04	0.10	1.00	3.02	33.11					66.0	3135.0	09 1.	01 1	0.33	56.20							
259	cı	9-17	0.70	5.9	5.84				0.70	0.14	0.03	0.10	0.97	2.09	46.41						3 38.											
260	Ç2	17-27	0.50	6.0	5.58				0.80	0.14	0.04	0.11	1.09	2.20	49.55						7 31.											
261	C3	27-36	0.30	5.9	5.69				Ì							ļ					5 33.											
																				4.0	13 22.	38 5.	80 2	4.95	52.93							
		•		ĺ						ĺ		1																				
	í		li 🛛		ļ	1				1	1		1	I	I	1	1	1	I	1	I	i	1	I			1	1	ſ			

1 K.

¢ 1

		TION: NAME: Morice Sification: MRI		PARENT	MATERIAL: Sandy valley tra DRAINAGE: Rapid	in outwash	SLOPE & AS	ELEVATION:
HORIZON	DEPTH	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	C Ô N SI ST E N C E	ROOTS	MOTTLES	OTHER
L F-H Bf # Bf 2 Cl	4-3 3-0 0-5 5-11 11+	5YR6/4 D 4/4 M 10YR5/6 M 10YR4/2 M	fsl lfs med. s	l mabk Sg	mf r mf r ml	ra ra roc		some indication of As sand for another 28"
								1 7 0 0 1

Laboratory	Analyses
	maiy 200

.

Profile Description:

			<u>,</u>							<u> </u>	EXC	HANGEA	DLE BA	SES M.E	. 100G		OXA	LATE	' PYRG	PHOS	I T				PPM							PERC	
LAD. NQ.	HORIZON	I OEPTH	MOIS	-	1:1 H2Q	0.01M CaCl2	OM	N	C/N	Са	Mg	Na	K	SUM	CEC	£	Fe	i Al	Fe	λ Ι ΑΙ	P1	P2	5	l Cu	Zn	18	11	Ma I	1	SAI	<u>ној</u>		TAL FINE
70/70	L	4-3	7.53		5.5		88.17	1		3.66	7.05	.228	4.73	15.67	72.62	35.35		[[Ì		55.92	2				l					
71/70	,	3-0	11.5	3	5.3	4.76	86.04	1.57	31.4	50.55	6.57	.178	3.12	60.42	111.5	254.18		}			66.8	108.01	24.50	k	ł		ho	7.0		ł	ł		
72/70		0-5	1.6		5.A	5.32	1.70	.116	8.5	3.46	0.51	0.051	.269	4.29	11.0	839.72	1.40	0.76	0.26	0.22	115.3	5 309.9 7	3.18	4	1		8	1.3					
	i	1			5.U 6 1	5 50	1 14	065	10.2	4 75	0 41	0.061	0.155	5.38	8.54	63.00	1.54	0.74	0.15	0.14	190.40	253.54					14	4.6					
73/70	'Bf 2	5-11				1	1	.005	10.2		25	0.001	170	5 93	7.33	80.90	1.06	0.71	0.08	0.09	20.5	3 76.34	4.43	3			1	2.1		8			1
74/70	CL	11+	1.1	1	6.6	6.01				1.30		.045											}										Ì
	Ι.	i.				ļ															ļ		{										1
		1		Ì							1	{			1				1		ł												
	ļ	•				1		1		1	ļ	}			ļ		}			ł]	ļ	}			}							j
				Ì								1					1								1								
	ł							ļ	1	1		}		1	1	1	1	1	1	}	1	I	1	I	i	I	i		1 1	n	I	1	•

LOCATION:

SOIL NAME: Natlan

*

¢ ,

Profile Description:

.

ELEVATION:

CLASSIFICATION: Mini Humo-Ferric Podzol

PARENT MATERIAL: Colluvium over bedrock

DRAINAGE: Well SLOPE & A

SLOPE & ASPECT:

.

•

HORIZON	DEPTH INCM.	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
L	5-3							moss and needles
F-H	3-0					га		decomposed moss and needle
Ae	0-3	10YR7/2 M				ГА		
Bf	¥-11	5YR4/6 M	1	l m sbk	mfr	rc		
С	11-16	10YR4/3 M	1	l m sbk	mfr	roc		rock fragments common
R								C material in fractures fe some depth
								E G7
								-3
		-						
								l

LOCATION: 1230 59 W/540 02 N

SOIL NAME: Nechako

.

,

.

CLASSIFICATION: Orthic Gray Wooded

PARENT MATERIAL: Fluvial deposits

Profile Description:

ELEVATION: 2200 feet

ŧ

•

DRAINAGE: Moderately well drained

F

. .

SLOPE & ASPECT: Level

			chie Gray wooded		DRAMAGE: Moderacery	werr orained		PECI: Level ,	
HORIZON	. IN - CM.	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER	
L-K	1-0	1				Abundant			
Ael	0-3	10YR7/2 D 7.5YR4/2 M	Silt loam	Weak fine platy	Soft	Abundant			
Ae2	3-7	10YR7/2 D 4/2 M	Silt loam	Weak fine platy	Soft	Abundant			
Btl	7-17	10YR6/4 D 4/3 M	Silt loam	Moderate fine to medium subangular blocky	Slightly hard	Common		Three silty clay loam bands & to & inch thick	
Bt2	17-22	10YR7/3 D 4/2 M	Silt loam	Moderate medium subangular blocky	Slightly hard	Common			
BC	22-26	10YR7/3 D 4/3 M	Silt loam	Moderate fine subangular blocky	Slightly hard	Common			
IICgj	26-31	10YR6/3 D 5/2 M	Very fine sandy loam	Weak fine subangular blocky	Soft to slightly hard	Occasional	Common distinct 10YR5/6 M		ł
1110 ₈ j	31+	Variegated	Sand	Single-grained	Loose	Occasional	Common distinct 10YR5/6 M		188
									1
		i					1		

Laboratory	Analyses

.

÷ · · · · · · · ·		*****	π						1								· · · ·				T								•••••				
LAB.	•	1	11	1	PH	.				EXC	HANGE	ABLE B					ALATE	' P'	ROPH	105					PPM					.		RCENT	
NO.	HORIZ	ON DEPTH	MO15T	H2C	0.01) CaCl	2 OM	N	C/N	Ca	Mg	Na	K	SUM	CEC	%	F.		1 1	• Î	Ai	P1	P2	S	Cu	l Zn	8	1	An I	1	SAND	SIL T	CLAY	CLAY
66/331	L-H	1-0	13.61	5.8	5.7	74.8	8 1.4	2 30.5	32.45	5.56	0.06	2.48	40.55	96.44	42.0	5					70.9					Î							
332	Ael	0-3	6.21	5.7	5.0	1.7	2 0.0	7 13.5	3.40	0.90	0.04	0.56	4.90	11.5	42.5						161.2		5.3				l			18.7	74.5	6.8	2.3
333	Ae2	3-2	1.27	6.0	5.2	0.3	6 0.0	4 5.8	4.25	1.42	0.06	0.32	6.05	8.81	68.6	,					23.1		5.1										
334	Btl	• 7-17	2.46	5.8	5.4	0.5	6 0.0	4 9.1	7.68	3.51	0.09	0.50	11.78	16.39	71.8	/					32.4		7.9							12.9	67.9	19.2	10.8
335	Bt2	17-22	2.25	6.1	5.6	0.5	5 0.0	3 11.0	8.08	4.14	0.16	0.33	12.71	16.67	76.24	•														1.8	80.5	17.7	6.5
336	BC	22-26	2,56	6,2	5.6				9.13	4.95	0.26	0.30	14.64	18.97	77.1	/					17.7		5.4										
337	11C g j	26-31	1.73	6.4	5.8				6,18	3.15	0.23	0.17	5.78	12.72	76.4						10.4		2,8							31.7	56.9	11.4	5.4
338	llicg	j 31+	0.81	6.5	5.9			1	3.18	2.07	0.08	0.12	9.73	6.55	83.2						7.4		2.5										
		1																															
	!			!	1	1		I	1		1					l			ł	1					1				1		1	1	

LOCATION:	1250	261W/54	0 201N
-----------	------	---------	--------

SOIL NAME: Nechako

€ (

t i

PARENT MATERIAL: Fluvial deposits

Profile Description:

ELEVATION: 2850 feet

٩.

	CLAS	SIFICATION: G1	eyed gray wooded		DRAINAGE: Imperfectly	drained	SLOPE & ASP	ECT: Level	
HORIZON	DEPTH	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER	
L	2-1]						Needles and living moss	
F	1-0	•				Abundant		Partly decomposed forest litter	
Ae	0-4	10YR6/3 D 4.5/3 M	Silt loam	Moderate fine platy	Very friable	Abundant			
Aegj	4-9	10YR5/3 D 4/3 H	Silt loam	Strong fine to medium platy	Very friable	Common	Few, fine faint 5Y4/4 M		
ABgj	9-14	10YR5/2.5 D 4/2 M	Silt loam	Moderate fine pseudoplaty or subangular blocky	Very friable	Common	Common fine faint 5YR3/2 M		
Btg	14-23	2,5Y4/2 M	Silt loam	Moderate fine subangular blocky	Friable	Occasional	Common fine distinct 7.5Y4/4 M		
Cg	23-32	2.5¥4/2 M	Silt loam	Pseudoplaty	Very friable		Common fine distinct 7.5Y4/4 M	e e e e e e e e e e e e e e e e e e e	
11Cg	32+	5YR3/4 M	Gravelly sand	Single-grained	Loose		7.514/4 n	Fe - stains	
	1								
	1								I.
									189
	1	ļ	1	1					ĩ

Laboratory Analyses

•

د

LAB.			T	 	РН		7.				ANGEA	BLE 8/	SES M.	E, 100G	•	0x/	LATE	PYRO	PHOS					PPN						P	RCENT
NO.	HORIZO	DN DEPTH	MOIST		0.01 N CaCiz	OM) N	C/N	Ca	Mg	Na) K	SUM	CEC	Sat. %	Fe	7 Al	Fe	7. Al	P1	PZ	5	l Cu	Zn	8	11	Vin 1		SAND	5167	CLAY CLA
69/240	: • L	2-1	8.93	4.9		74.8	61.004	43.25													124.1	8 23.9	6								
241	F	1-0	11.86	4.4	3.97	89.2	21.230	42.07	26.85	4.85	0.46	3.13	35.29	80.09	44.06					104.59	407.3	9 22.7	1 5.	03 27.4	•1						
242	Ae	0-4	2.15	6.1	5.5	0.85	0.059	8.34	10.73	2.70	0.12	0.11	13.66	15.89	85.97					10.1	93.9	8 2.3	0 16.	34 60.0	21				50.62	38.29	11.09
243	Aegj	4-9	1.94	6.3	5.68	0.70	0.032	12.75	9.48	2.61	0.10	0.08	12.27	13.06	93.95					6.4	2152.9	1 2.8	0 14.	53 58.	52						
244	ABgj	9-14	2.35	6.4	5.70	0.85	0.051	9.67	10.54	2.77	0.12	0.09	13.52	15.05	89.83					3.1	112.5	9 2.6	1 17.	14 58.	35						
245	Btg	14-23	2.25	6.6	5.77	,	0.049		10.74	2.66	0.13	0.09	13.62	14.82	91.90		ļ			5.3	sh 50.3	1 1.0	2 20.	19 62.	53			ļ	34.16	48.49	17.35
246	Cg	23-32	1.94	6.7	5.87				8.66	2.61	0.12	0.09	11.48	12.39	92.66					5.8	132.0	1	19.	62 51.	73				9.11	75.24	15.65
247	IICg	32+	1.83	6.8	6.12	2		1	6.36	2.24	0.09	D.09	8.78	10.51	83.54					3.20	5 39.2	0 5.60	10.	95 48.	38						
	1	ļ		:															1				ļ								
	1		1	ĺ		1								1							1		1	1			1	•	l	l	

1 · · · · ·

		TION: NAME: Oona		PARENT	MATERIAL: Colluvium over b	edrock		Profile Description ELEVATION:
		SIFICATION: OH	IPP		DRAINAGE: Well drain		SLOPE & AS	
IORIZÓN	IN - CM.	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
-H	13-0							1
e	0-1	10YR6/2 D	s1	l msbk	mfr	IC		
sf	1-10	10YR4/4	s1	l msbk	mfr	roc		
:1	10-25	10YR5/2	stony sl		ovfr	roc		fragmental pieces of till include
	25+		- 60me	shattering in bedrock -				
								Laboratory Analys

Laboratory	

· · · ·			T	ļł	PH	 	~	1	T	EXC	ANGEA	OLE SA	SES M.I	E. 100G	•	1_0x	ALATE	' PY	ROPI	HOS					PPN	l .					I		RCENT	
LAB. NO.	HORIZO	IN DEPTH	MOIST	1:1 H ₂ O	0.01M CBCI2	OM	N	C/N	Ca	Mg	Na	K .	SUM	CEC	Sat. X	F.	7. Al	F	• ⁷	AI	P1	P2	9	Cu	(Zn	8		Ma	1		SAND	SILT	CLAY	CLAY
90/70	L-H	11-0	10.6	4.6		100.60	6 1.27	21.9	20.57	2.96	. 100	1.66	25.29	68.94	36.68			1			60.29	71.90							ļ					
91A/70	٨e	0-1		ĺ			N	ot sam	LED				ļ																					
91/70	Bf	1-0	2.56	5.6	4.75	3.08	.081	22.0	0.51	0.21	0.07	0.59	1.38	12.27	11.25	1.21	1 1.0	7 0.	21 0	.43	37.64	68.20					j	66.7	'					
92/70	ัตเ	10-25	1.73	5.6		1.63			1.32	• 52	,062	.176	2.08	8,55	24.33			0.	14 0	.179	55.95	71.21												
93/70	R	25+				1	N	ot sam	LED									1																
													ļ]				ĺ															•
	:																													Ì				1
																1																		
	:	!			l						[[1	[1	I	1	•				1	l	1	I		1	I	()	i	{	1

	SOIL	NAME: Oona		PARENT MATE	ERIAL: Shallow colluviu	m overlying basic be	drock	ELEVATION: 3500 feet	
	CLAS	SIFICATION: MI	ni Humo-Ferric Podzol		DRAINAGE: Rapidly dra	ined	SLOPE & ASI	PECT: NE 42%	-
HORIZON	DEPTH	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER	_
L-H	2-0							Raw and decomposed forest litter	
Bhf	0-3	10YR3.5/3 D 7.5YR3/2 M	Gravelly sandy loam to loam	Moderate fine to medium granular	Soft	Abundant		angular fine gravel	
Bf1	3-6	10YR4/3 D 7.5YR4/4 M	Gravelly sandy loam to loam	Moderate fine to medium granular	Soft	Abundant		-	
Bf2	6-10	10YR5/4 D 7.5YR4.5/4 M	Gravelly sandy loam to loam	Moderate fine to medium granular	Soft	Abundant			
Bra	10-15	10YR5/3.5 D 7.5YR5/4 M	Gravelly sandy loam to loam	Moderate fine to medium granular	Soft	Abundant			
BC	15-24	10YR5.5/3 D 4/3 M	Gravelly loam	Moderate fine subangular blocky	Soft	Abundant			
с	24-32	10YR6.5/3 D 5/3 M	Gravelly loam	Moderate fine subangular blocky	Soft	Common			
11C	32-38	10YR5.5/4 D 7.5YR4.5/4 M	Gravelly loam till	Pseudoplaty	Very hard	Occasional			י ⊢
R	38+	•							TAT
	1	I							1

Laboratory Analyses

£ 4

			1		0.4	*******	<u> </u>	~	1	EVCL	ANGE	BLE BA	SES M.P	1000			LATE	DVD	OPHOS	1	<u> </u>			PPM						PE	RCENT	
LAB. NÖ.	HORIZO	ON DEPTH	MOIST	1:1 H ₂ O	0.01M CaCl2		N	C/N	Ca	Mg	Na	K			5at.	F•		Fe	Î Al	P1	P2	5	Cu	Zn	8	Ma	1	1	SAND	SILT	CLAY C	
68/504	L-H	1-0	10.62	4.5	4.17	110.9	1.233	52.21	18.81	4.42	0.07	2.21	25.51	102.4	124.91	ł				41.59	64.16	13.27	4.98	71.90						i		
505	Bhf	0-3	5.82	6.1	5.76	11.2	40.223	29.24	25.13	2.44	0.04	1.06	28.67	41.95	68.93	0.91	0.93			339.68	400	5.29	11.64	121.16								
506	Bf 1	3-6	4.17	5.7	5.17	4.89	0.125	22.72	11.59	2.34	0.04	0.60	14.57	28.14	51.78	0.78	0.85			279.18	400	4.43	16.15	95.58								
507	Bf 2	6-10	3.31	5.5	4.61	4.76	0.098	28.16	6.59	1.55	0.03	0.71	8.88	22,98	38.64	0.73	0.77			13.4	30.0		19.37	86.52								
508	Bra	10-15	2.89	5.4	4.43	2.64	0.074	20.68	5.92	1.35	0.04	0.66	7.97	21.74	36.66	0.67	0.65			92.6	180.0		19.81	83.86								
509	BC	15-24	2.15	5.5	4.54	1.69	0.049	20.00	7.41	1.34	0.07	0.41	9.23	15.98	57.76	0.41	0.28			29.9	138.9		19.15	72.27								
510	С	24-32	3.09	5.4	4.32	2.05	0.071	16.76	4.64	0.71	0.07	0.25	5.67	18,53	30.60	0.40	0.56			74.7	126.2	0.77	21.91	64.69								
511	110	32-38	3.41	5.5	4.52											0.40	1.10			36.2	83.8	0.52	26.11	73.16								
				1															1											:		
	: :	;		1				1					1]	1]]]									

• • • • •

LOCATION: 1250 34 W/540 27 1N

.

•

۰ i

Profile Description:

LOCATION: 1240 381W/540 081N

PARENT MATERIAL: Shallow colluvium and till overlying basic rock ELEVATION: 2900 feet

.

SOIL NAME: Ormond

.

.

SLOPE & ASPECT: NE 147

Profile Description:

CLASSIFICATION:	Lithic Urth	ic Dystric Brunisol

	CLAS	SIFICATION: L	ithic Orthic Dystric Brunisol		DRAINAGE: Rapidly d	rained	SLOPE & AS	SPECT: NE 147	*	
HORIZON	DEPTH	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES		OTHER	
L-H	1-0					1		Forest litte	F	
Bml	0-3	10YR5.5/3 D 7.5YR4/2 M	Gravelly loam to gravelly sandy loam	Weak to moderate subangular blocky	Very friable	Abundant				
Bm2	3-7	10YR5/3 D 5YR3.5/3 M	Gravelly loam	Weak to moderate subangular blocky	Very friable	Abundant				
Bm3	7-11	10YR5/3 D 5YR3.5/3 M	Gravelly loam	Weak fine subangular blocky	Slightly hard	Abundant				
c	11-18	10YR6.5/2 D 3.5/3 M	Gravelly loam till	Pseudoplaty	Hard	Common				
R	18+		Basaltic rock							
										ntan Ang tanàn
	1									
										1 7 7
	i	1	i b		ł	1	I	1		

Laboratory Analyses

																						_									 			
			Π	1	PI	4		7,		T	EX	HANGE	ABLE B	ASES M.E	. 100G	•	1 OXA	LATE	, bi	ROPHO	5					PPM					 	PE	RCENT	
NO.	HORIZ	ON DEPTH	MOIS	т Н	1:1 1 ₂ 0	1 0.01M CaC/2	ОМ	I N	G/N	Са	Mg	Na	K	SUM	CEC	Sat. %	Fø	% Al		• Î A	I P	1	P2	s	Cu	2n	1 8	1 M	in 		 SAND	SILT	CLAY	CLA
7/394	L-H	1-0	6.61	:			1	1.60	19.6	15.35	3.8	4 0.08	1.36	20.63	44.70	46.2	1		1	}	10.	з :	186.6		13.6	64.0								
395	Bas 1	0-3	3.89	6.	1	4.8	18.0	0.94	11.1	3.22	0.7	1 0.01	0.56	4.50	17.89	25.2	0.75	0.92			88		150.6	6.7	14.0	08.8				{				
396	Bm2	3-7	3.20	6.	2	4.8	5.0	0.25	11.6	2.22	0.5	9 0.01	0.23	3.05	16.56	18.4	0.77	0.96			104.	5	194	5.2	14.7	71.0								
397	Bm3	7-11	2.88	6.	2	4.7	3.3	0.17	11.0	2.98	1.4	6 0.05	0.24	4.73	16.53	28.6	0.70	0.70			118.	8	242	9.0	16.2	64.3				ł				
398	С	11-18	2.44	6.	2	4.9	1.9	0.13	8.5	3.80	2.3	0.08	0.20	6.44	12.58	51.2	0.56	0.46			54.	3	159	7.7	12.5	44.8		ł		ļ				
				* :										{												1								1
		*		i			 				ĺ																							
												1					1																	
											1			1								ĺ												
	-	;	H	į	1			1	1	I	1	ļ		ſ		1	1	[1	ł	1	ſ	{		1	1	1	ł	ſ	ſ	"	F	ſ	ſ

LOCATION:	125°	56 'W/ 53°	49'N
-----------	------	------------	------

e

ı

۰.

Profile Description:

	SOIL	NAME: Ormond		PARENT MA	TERIAL: Shallow colluviu	m overlying basic r	ock	ELEVATION: 3200 feet
	CLAS	SIFICATION: L	ithic Rego Dark Gray	· .	DRAINAGE: Rapidly dr	ained	SLOPE & AS	PECT: \$ 60%
HORIZ	DN DEPTH	COLOR DRY O MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
LF	2-1					1		Leaves and stems partly decomposed
H	1-0							Decomposed plant remains
Ah	0-4	10YR3.5/2 D 2.5/2 M	Gravelly sandy loam	Strong fine to medium granular	Loose	Abundant		Angular gravel
Ahe	4-12	10YR4/2 D 3/1 M	Gravelly sandy loam	Strong fine to medium granular	Loose	Abundant		
AC	12-18	10YR4.5/3 D 3/2.5 H	Stony loamy sand	Moderate fine granular	Loose	Common		Angular stones and gravel
R	18+							
		1						
								1
		-						193
		1						1

Laboratory Analyses

٠

LAD.	!	1	1	1	PH		7,		1		ANGE	ABLE BA	SES M.I	£. 100G	•	0x/	ALATE	· PYI	ROPHO	<u>i</u>					PPM		 				PF	RCENT	
NO.	HORIZ	ON DEPTH	MOIST	1:1 Н ₂ О	0.01M CaCig	OM			Ca		Na	ļκ	j sum	CEC	Sat. %	F.	7 AI	1 F•	ÎA	P	1	P2	5	Cu	Zn	1 8	Min I		1	SAND	\$IFL	CLAY	CLAY
69/276	LF	2-1	12.36	6.6	6.00	77.5	3 2.26	0 19.90	82.25	12.13	0.08	3.19	97.65	98.73	98.91				1	65.	73	400	29.21	28.3	344.	1							1
277	H	1-0	9.17	6.9	6.52	50.03	2 1.55	7 18.64	76.42	9.93	0.08	2.95	89.38	90.93	98.30					92.	79 >	400	17.47	41.4	3 470.	8							
278	Ah	0-4	6.84	6.7	6.16	20.94	4 0.89	6 13.56	46.80	4.80	0.05	0.16	51.80	55.74	92.93					149	•6 >•	400	4.54	43.0	410.	0							
279	Ahe	4-12	5.37	6.4	6.25	13.8	0.63	2 12.75	34.14	4.00	0.05	0.09	38.28	43.40	88,20		ļ			97.	47 31	06.6	4.48	61.6	4 318.	7							
280	AC	12-18	3.84	6.3	5.97	6.7	l 0.32	0 12.16	19.73	2.74	0.04	0.83	23.34	27.67	84.35					83.	07 21	01.4	5.97	33,2	236.	2							
		i.																											ł				
										Ŧ																							
	1					1																		ļ					1			ł	

\$

.

t

LOCATION: 1240 131W/540 16'N

Profile Description:

SOIL NAME: Peta

.

÷

PARENT MATERIAL: Sandy glaciofluvial deposits

ELEVATION: 2700 feet

CLASSIFICATION: Degraded Dystric Brunisol

.

1

٠

SLOPE & ASPECT: Leve	1
----------------------	---

	CLAS	SIFICATION: U	egraded Dyscric Brunisol		DRAINAGE: Rapid			COI. Level
HORIZON	DEPTH IN - CM.	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
L-H	1-0					Abundant		
Ae	0-}	10YR6/2 D 3.5/2 M	Sandy loam	Weak to moderate fine subangular blocky	Soft	Abundant		Incipient to 2" thick
Bıpl	¥-6	10YR5/4 D 3/3 M	Sandy loam	Weak to moderate fine subangular blocky	Soft	Abundant		
Bjeh 2	6-10	10YR6/4 D 4/3 M	Loamy sand	Weak fine subangular blocky	Soft	Abundant		
1101	10-20	Variegated	Sand	Single-grained	Loose	Common		Some fine gravel
11C2	20+	Variegated	Coarse sand	Single-grained	Loose	Occasional		Some fine gravel
	!	i	}	1	I	I	1	1

Laboratory Analyses

			r			··········	*		1	EXC	HANGE	BLE BA	SES M.E	. 100G.			LATE	PYRC	PHOS	1				PPM						PE	CENT	
LAB. NO.	HORIZO	DEPTH	MOIST		PH 0.01M CaCl2	ОМ	" "	C/N	Са	Mg	Na	ĸ		CEC	C	Fe	% 1 Al	Fe	Î AI	 P1	P2	5	Cu	Zn	1 8	Mr	1		SAND	<u>si∟</u> ⊤	CLAY	CLAY
67/274	ี้ L-ห	3- 0	11.61	4.2	3.6	86.2	1.17	42.8	16.41	1.79	0.10	2.38	20.68	92.52	22.4					63.6	67.0		17.0	72.5	1						:	ł
275	Ae	0-1	0.70	4.2	3.7	2.84	1.21	13.6	0.60	0.25	0.04	0.18	1.07	12.28	8.7					88.1	191.3	2.5	10.8	49.1								
276	Bml	3-6	2.25	5.8	4.8	1.04	.078	8.7	1.64	0.31	0.05	0.20	2.20	8.78	25.1	0.59	0.72			> 300	> 500	2.4	19,4	88.2								
277	Bm2	6-10	1.73	6.1	5.0	0.70			2.19	0.41	0.04	0.28	2.92	7.17	40.7	0.55	0.56			203.5	366.2	2.3	20.9	78.8								
278	1101	10-20	1.21	6.2	5.1				2.23	0.25	0.03	0.22	2.74	5.49	49.9	0.72	0.51			51.9	146.8	0.8	21.8	43.0								
279	11C2	20+	0.81	6.3	5.2				2.82	0.71	0.04	0.25	3.82	5.66	67.5					11.1	43.3	1.5	30.2	42.8								
		1													ļ			ļ														
	1																															
	Ì	ţ						·																								1
	i,																				1		l						I		ļ	ł

LOCATION: 1250 34 W/540 12 N

SOIL NAME: Pinkut

ĸ

ł

PARENT MATERIAL: Colluvium over till

Profile Description:

ELEVATION: 2600 feet

CLASSIFICATION: Degraded EUTRIC Brunisol

DRAINAGE: Well drained

SLOPE & ASPECT: S 44%

HORIZÓN	DEPTH	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
LF	13-1				1			Leaves and twigs
н	1-0							Decomposed plant remains
Bm 1	0-6	10YR5/3 D 3.5/3 M	Gravelly sandy loam	Moderate fine to medium granular	Very friable	Abundant		
вш2	6-11	10YR5.5/3.5 D 3/4 M	Gravelly sandy loam	Moderate fine to medium granular	Very friable	Abundant		
Aej	11-17	10YR6/3 D 4/3 M	Gravelly loam to gravelly sandy loam	Moderate fine subangular blocky	Friable	Abundant		
ABI	17-25	10YR6.5/3 D 4.5/3 M	Gravelly loam to gravelly sandy loam	Moderate fine subangular blocky	Friable	Abundant		
AB2	25-34	10YR6.5/3 D 4.5/3 M	Gravelly loam to loam	Moderate fine to medium sub- angular blocky	Firm	Common		
Btj	34-45	10YR5.5/3 D 3.5/4 M	Gravelly loam to loam	Moderate fine to medium sub- angular blocky	Firm	Common		
110	45-56	Variegated	Gravelly loamy sand	Structureless	Hard (weakly cemented)	Occasional		
1110	56+	10YR5/3 D 3.5/3 M	Gravelly loam till	Pseudoplaty	Extremely hard			

Laboratory Analyses

10			r		PH	1			1	EXC	ANGEA	BLE BA	SES M.E	100G		OXA	LATE	PYRC	PHOS	<u> </u>				PPM						PE	RCENT	
NO.	HORIZ	N OEPTH	MOIST	1:1 H ₂ 0	0.01M CaCi2	ом	N	C/N	Ca	Mg	Na	K	SUM	CEC	Sat. X			Fe	Î AI	P1	P2	5	Cu	Zni	8	Min	1	1	SAND	SILT	CLAY	CLAY
68/612	LF	13-1	13.64	6.Z	5.84	105.8	1.994	30.79	68.18	8.81	0.06	3.35	80.40	137.8	58.34			1		50.0	100	30.68	14.21	182.3]	1					
613	H	1-0	2.30	6.7	5.99	114.3	1.110	59.76	47.31	5.37	0.03	1.38	54.09	73.66	73.43					27.3	138.1	9.21	22.25	184.1						:		
614	Bml	0-6	1.01	6.5	5.98	1.98	0.058	19.83	4.55	0.96	0.01	0.57	6.09	10.16	59.94	0.56	0.43			180.3	377.8		11.11	61.87								
615	Bm2	6-11	1.11	6.3	5.57	1.36	0.043	18.37	3.67	0.95	0.03	0.50	5.15	4.62	53.53	0.61	0.42			161.8	366	,	10.36	75.83								
616	٨ej	11-17	1.21	6.5	5.76	0.62	0.026	13.85	4.76	1.27	0.03	0.46	6.52	9.99	65.27				ļ	55.7	121.4		12.90	61.49								
617	AB1	17-25	1.32	6.5	5.84	0.56	0.023	13.91	5.61	1.46	0.04	0.36	7.47	10.71	69.75				l	12.2	50.7]	15.20	48.63								
618	AB2	25-34	2.46	6.5	5.70			}	6.72	1.99	0.05	0.37	9.13	11.89	76.79					4.6	49.7	3.07	27.66	54.82	i							
619	Btj	34-45	1.83	6.4	5.57				7.99	2.42	0.08	0.44	10.93	14.70	74.35		ļ			3.0	76.4	1.27	29.02	56.01								
620	110	45-56	0.60	6.3	6.17				3.77	1.01	0.04	0.15	4.97	7.12	69.80	0.64	0.46			5.2	42.8		18.11	48.54						l		
621	1110	56+	0.70	6.4	6.06		1				1			1						2.5	100.7	0.50	25.18	53.87								1

		NAME: Prairie		PARENT MAT	ERIAL: Lacustrine silts			ELEVATION: 2250 feet
			ark Gray Wooded		DRAINAGE: Well drain	ed	SLOPE & AS	PECT: Level
HORIZON	DEPTH	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
Ap	0-5	10YR4/2.5 D 3/2 M	Silt loam	Strong medium to fine granular	Soft	Abundant		
Ae	5-95	10YR7/2 D 5/3 м	Silt loam	Strong fine to medium platy	Slightly hard	Common		
Btl	91-17	10YR6/3 D 4/3 M	Silt loam	Strong fine to medium angular blocky	Hard to very hard	Common		Clay films
Bt2	17-24	10YR7/3 D 5/3 M	Silt loam to silty clay loam	Moderate fine angular blocky	Hard	Occasional		Clay films
c	24-30	10YR7/2 D 5.5/3 M	Silt loam	Stratified	Very friable	Occasional		
Ckl	30-38	10YR7/2 D 5.5/3 M	Silt loam	Stratified	Very friable	Occasional		Slight efferv. with HCL
CkZ	3 81	10YR7/2 D 5.5/3 M	Silty clay loam	Stratified	Friable	Occasional		Slight efferv, with HCL
	1							L PO
								1

¢

LOCATION: 1240 06 W/540 05 N

¢

۳

Laboratory Analyses

Profile Description:

								<u> </u>	r	FYC	ANGEA	BLE BA	SES M.E	. 100G.			LATE	PYR	PHOS	1				PPM							RCENT	
LAB. NO.	HORIZO	N DEPTH	MOIST	5 9.9	PH 0.01M CaClz	OM	<u>,</u> N	C/N	Ca		Na	ĸ		CEC		F.	X I AI	Fo	Î АІ	P1	P2	S	Cu	i Zn	j 8) Mn	1	1	SAND	SILT	CLAY	CLAY
67/334	Ap	0-5	3.30	5.4	5.6	61.9	0.29	12.5	14.10	3.41	0.22	0.22	17.95	24.29	73.9	ł		}		27	98	3.8	22.2	75.7								{
335	Ae	5-9]	1.94	6.6	5.7	0.7	0.05	8.5	5.40	2.75	0.11	0.10	8.36	10.40	80.4		}			4	163	2.0	13.8	51.0					2.72	85.05	12.23	0.15
	Btl					0.7			8.56	6.18	0.25	8.20	15.19	21.29	71.3	ł				2	201	14.3	29.1	60.6	{				1.44	74.96	23.60	8.64
	Bt2	17-24							9.76	7.19	0.44	0.23	17.62	19.12	92.2		{			2	363	14.0	31.3	66.0			{			74.52	25.48	812.02
338	1	24-30		i.	İ				8.68	6.36	0.44	0.19	15.67	15.42	100					1	136	5.0	31.2	67.4					0.51	79.45	20.04	4 1.33
339	Ckl	30-38	1		7.0			1	12.33	6.22	0.33	0.19	19.07	13.56	100					1	135	11.5	30.6	76.5								1
340	Ck2	38+	2.04	8.3	7.0				13.98	6.02	0.41	0.22	20.63	12.86				{		2	>300	20.5	26.5	72.7						70,60	29.40	12.62
														ł								}			{							
	1	÷	1					1							{	Į.						1				{						
	1								}	}	}	}	}	ļ	1			· .	}			1		ļ	ļ	ļ	1				1	1

LOCATION: 1250 28 W/540 14 N

SOIL NAME: Ramsey

.

,

.

4

PARENT MATERIAL: Gravelly glaciofluvial deposits DRAINAGE: Rapidly drained

ELEVATION: 3700 feet

SLOPE & ASPECT: S 9%

Profile Description:

CLASSIFICATION: Orthic Humo-Ferric Podzol

HORIZON	DEPTH	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
LH	2-0]		Forest litter
A.	0-4	10YR6/2 D 5/2 M	Cravelly losmy sand	Moderate medium granular	Soft	Abundant		
Bfh	4-8	7.5YR5/6 D 5YR4/4 M	Gravelly loamy sand	Moderate medium granular	Soft	Abundant		
Bf	8-16	10YR5/6 D 7.5YR4/4 н	Gravelly sand	Weak medium granular	Loose	Abundant		
IIC	16+	Variegated	Sandy gravel	Single-grained	Loose	Common to Occasional		
-								
	1							
-		-						l
	i I	• • •						197
	Ì	1					1	•

Laboratory Analyses

٢

.

\$

																												_			
LAÐ.	:	•	1		PH	!	*	1		EXCH	ANGEA	BLE BA					LATE	PYRO	PHOS					PPM						RCENT	
NO.	HORE	LON DEPTH	MOIST	1:1 H ₂ 0	0.01M CaCl2	ОМ	N	C/N	Ca	Mg	Na	K	SUM	CEC	Sat. %	F.	7. Î Al	Fe	7. Al	P1	P2	5	Cu	Zn	l B	Mn I	1	SAN	0 SILT	CLAY	I FINE
69/232	LH	2-0	12.36	5.0	4.76	103.4	1.598	37.54	37.53	5.28	0.09	1.62	44.52	92.90	47.92	1	1	[33.82	54.49	17.5	8.71	151.6							
233	Ae	0-4	1.21	4.6	4.28	2.76	0.056	28.63	2.43	0.56	0.06	0.12	3.17	10.96	28.92					26.72	49.59	1.27	5.82	30.87							
234	Bfh	4-8	3.84	4.8	4.36	5.50	0.052	61.38	0.31	0.16	0.05	0.21	0.73	24.82	2.94	l	}	1		158.8	230.5	11.68	16.10	59.71							
235	Bf	8-16	1.62	5.3	4.79	1.63	0.041	23.00	0.51	0.10	0.05	0.11	0.77	8.37	9,20					64.53	139.2	3.30	15.50	55.13							
236	110	16+	0.70	5.4	5.16		0.040	}	0.70	0.15	0.03	0.06	0.94	3.79	24.80]			20,74	387.7	1.26	14.35	37.76			Ì		Ì		
	;	-		ł		ĺ														1											
	• •			1								1												ļ							
		÷																		[
	!]			·										1			

.

	LOCA	TION: 1240 17	W/54° 21'N		·			Profile Description:
	SOIL	NAME: Roarin	8	PARENT M	ATERIAL: Esker (complex)	deposits		ELEVATION: 2600 feet
	CLAS	SIFICATION: 0	rthic Dystric Brunisol		DRAINAGE: Rapidly dra	sined	SLOPE & ASI	PECT: S 25%
HORIZON	DEPTH	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
LH	3-0							Forest litter
٨h	0-1	10YR4/2 D 3/2 M	Gravelly loamy sand	Weak medium granular	Soft	Abundant		
Bas	1-6	10YR5/3 D 3/3.5 M	Gravelly loamy sand	Weak fine subangular blocky	Soft	Abundant		
CI	6-14	Variegated	Gravelly sand	Single-grained	Loose	Abundant		
C2	14+	Variegated	Gravel and sand	Single-grained	Loose	Abundant		
		1						

.

7

Laboratory Analyses

·			1		Pi	-		7.				EXC	HANGE	ABLE B	ASES M.	E. 100G		1 OX	ALAT	'E '	PYRO	PHOS	Î.			<u></u>		PPM								RCENT	
LAB. NO.	HORIZO	N DEPTH	MOIST			0.01M CaCl2	ОМ	, N	- -	C/N	Ca	(Mg	Na	K	SUM	CEC		Fo	ĩ	ai 1	Fe	Î AI	P1	P2	1	s	Cu	/ Zn	1 4	1	Mn	1	1	SAND	SILT	CLAY	CLAY
69/281	LH	<u>}-0</u>	9.89	6.	2	5.4	68.24	3.	11 30	0.2	56.37	7.25	0.12	3.43	67.17	78.02	86.1	1	1	ł			68.7	134.	6		15.4	178.6	5								
282	Ah	0-1	1.52	6.	5	5.5	4,86	1.	61 17	7.5	8.22	1.37	0.03	1.34	10.96	14.54	74.3						111.7	573.	6 5	.1	12.7	137.0								}	
283	Bas	1-6	1.52	6.	0	5,1	2.43	0.1	04 13	3.6	4.37	0.51	0.04	0.58	5.50	10.62	51.8	0.5	7 0	.30			154.8	>500	8	5.8	14.2	129.4	4			}		ļ.			
284	C1	6-14	1.21	6.	4	5.9					4,45	0.51	0.03	0.38	5.37	9.13	58.8	0.7	0 0	.51			58.7	288.	4 1	.3	14.2	70.8						1			
285	C2	14+	1.11	6.	3	5.8					3.74	0.56	0.05	0.37	4.72	7.08	66.7	0.5	4 0	.22			22.7	48.	5 1	.3	17.9	59.4									
		:											{										1					ł									
	1																																				
		1										ł					ł																				
	Ì							}																													
							1	1	1			1	ł			ļ	1			ł			I	1	I		I	1	ļ	I		I	I	H	ł	1	I

LOCATION: 126º 50 W/540 55 N

SOIL NAME: Saunders

v

r

٤ ٤

PARENT MATERIAL: Basal till

Profile Description:

ELEVATION: 4500 feet

		SIFICATION: B	sequa Humo-Ferric Podzol		DRAINAGE: Well draine	:d	SLOPE & ASP	PECT: SE 26%	
HORIZON		COLOR DRY D MOIST M	TËXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER	
LH	1-0							Raw to decomposed plant remains	
٨e	0-2	10YR7/2 D 7.5YR6/2 M	Sandy loam to loam	Strong fine to medium granular	Very friable	Abundant			
Bfh	2-7	10YR5/5 D 5YR4/4 M	Sandy loam to loam	Strong fine to medium granular	Very friable	Abundant			
Bf	7-13	10YR5.5/4 D 7.5YR5/6 M	Gravelly sandy loam to gravelly loam	Moderate fine to medium granular	Very friable	Common			
AB	13-22	10YR6/3 D 4.5/3 M	Gravelly loam	Moderate fine subangular to angular blocky	Friable	Common			
Btl	22-30	10YR6/3 D 4/3 M	Gravelly loam	Moderate fine to medium angular blocky	Firm	Occasional		Clay films	
Bt 2	30-41	10YR6/3 D 4/3 M	Gravelly loam	Moderate fine to medium angular blocky	Firm	Occasional		Clay films	
c	41+	10YR6/2.5 D 5Y5.5/1 M	Gravelly loam	Pseudoplaty	Firm				1
		1							991
									1

e

	*****		1		РН	1	۶.	1		EXCH	ANGEA	OLE BA	SES M.E	. 100G.			LATE '	PYRO	PHOS	ſ				PPM					I		RCENT	
LAB. NQ.	HORIZ	ON DEPTH	MOIST	1:1 H ₂ O	, 0.01M ' CaCl2	i om	N	C/N	Ca	Mg	Na	ĸ	SUM	CEC	Sat. %	Fe	ι. Αι Ι	Fe	7. Al	P1	P2	5	Cu	l Zn I	8) Mn	1	1	SAND	SILT	CLAY	CLAY
69/333	LH	1-0	14.42	5.0	4.95	113.5	1.483	44.40	35.01	4.65	0.27	5.38	45.31	83.78	54.08					125.8	143.6	4.0	8.30	76.66								
334	Аe	0-2	2.67	5.0	3.60	3.72	0.140	15.40	2.26	0.46	0.10	0.25	3.07	20.63	14.88					8.73	15.40	1.25	7.70	39.01								
335	Bfh	2-7	5.04	5.1	3.88	7.03	0.210	19.71	2.21	0.27	0.13	0.12	2.73	29.05	9.40	2.33	1.04			14.71	28.47	5.00	19.70	115.5					28.02	41.16	30.82	13.09
336	Bf	7-13	3.74	5.3	4.05		0.119		1.04	0.16	0.07	0.11	13.8	18.47	7.47	3.07	1.02			18.67	45.13	5.00	25.16	132.2								
337	AB	13-22	2.99	5.8	4.18				0.82	0.15	0.07	0.13	1.17	15.19	7.70					13.49	60.25	2.25	30.12	150.6					37.66	28.71	33.63	17.34
338	Bt 1	22-30	2.25	5.5	4.00	ĺ			0.82	0.28	0.06	0.13	1.29	12.79	10.09]				45.50	100.2	2.50	33.74	136.7					35.66	30.05	34.29	18.13
339	Bt 2	30-41	2.04	5.4	3.93				1.22	0.37	0.11	0.14	1.84	11.62	15.83					55.61	127.5		34.44	127.5					36.03	29.94	34.03	18.06
340	C	41+	1.94	5.3	3.98				1.33	0.40	0.06	0.14	1.93	9.95	19.40	0.62	0.57			48.42	133.5		35.93	207.7					40.89	29.00	30.11	14.32
	i																														ļ	
	1										ĺ																	1			1	

÷

×

LOCATION

SOIL NAME: Savory

PARENT MATERIAL: Glaciofluvial gravels

Profile Description:

ELEVATION:

CLASSIFICATION: Orthic Humo-Ferric Podzol

٢

.

F

.

.

DRAINAGE: Well

.

1

.

SLOPE & ASPECT:

		······································					<u>`</u>	
	DEPTH	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	. OTHER
≁H	2-0							Alpine fir needles and blueberry plants
A#	0-2	10YR7/1	sl		ml	ra		
Bfh	2-9	10YR5/6	gsl	1 m sbk	mvfr	ra		
BC	9-14	10YR4/3	gsl	Sg	ml	roc		
C	14+	variegated	gls	Sg	ml	roc	f 2 f	
			1					
								1
								200
								1
		1						
	1							
			1			I	1 ·	I

.

		NAME: Slug		PAREN	T MATERIAL: Alluvial Ean			Profile Description: ELEVATION:
	CLAS	SIFICATION: M	HFP		DRAINAGE: Rapid		SLOPE & A	
HORIZON	DEPTH	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
L-H	110							
٨e	0-5	10YR7/2 D						Ranges from 1 to 2"
Bf	3-73	10YR5/6 D	fsl	l m sbk	mf r	га		
Cl	75-155	10YR5/3 D	sl	l na sbik	nfr	Ta		
110	15k-27h	variegated	sgr	Sg	ml	FOC		
								201
		:						91
	1	:	1	I	I	1	1	j I

1990 - MARINE																												Labo	ratory A	natyses
LAB.	1	1		1	PH		7.	1		EXCH	ANGEA	BLE B	ASES M.E			0XA	LATE	PYRC	PHOS					PPM				 	PERCE	NT.
NO.	HORIZO	DEPTH	MOIST	1:1 Н ₂ О	CaCl2	ОМ	N	C/N	Ca	Mo	Na	x	I SUM	CEC	i Sat. %	F.	7. Al	Fe	Î AI	P1	P2	5	Cu	i Zn	8	Min	I	 ND :	SILT ICL	TALI FINE
62/70	L-H	13-0	8.70	4.6	3.92	87.29	1.07	47.3							1				[
63A/70	Ae	0-3							NOT	AMPLEI																460.0				
63/70	Bf	3-73	2.04	5.7	4.69	2.16	.056	22.8					Ì		Ì	1.18	0.86									42.9				
64/70	CI	74-155	1.21	6.0	5.27	0.75										0.58	0.63									54.1				
65/70	110	153-275	.81	5.6	5.00																			Ì		47.9				
	1																													
	1																													
	ł			ļ	1																									
	:	1	l I	1	1			1	I	l			1		ł				1											

4

.

ι.

٠

¢

t , r

.

4

		TION: NAME: Slug SIFICATION: 01	rthic Regosol	PAREN	T MATERIAL: Alluvial fan Drainâge: Well		SLOPE & AS	Profile Description: ELEVATION: SPECT:
HORIZON	DЕРТН IN — См.	COLOR DRY O MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
L-H Ahj Cl IIC	1-0 0-6 6-18 18-27	10YR3/2-3/3 10YR4/4 variegated	l vfsl sgr	lfgr 2 m sbk	mfr mfr ml	ra Fa Foc		Brownish color related to reddish bedrock Some indication of melanization(Bm)
								- 202 -

,

٠

Laboratory Analyses

.

																				<u></u>								1 20100				
		1	T	1	F	РН	1	7.		Г	EXCI	ANGE/	ALE BA	SES M.E	. 100G.		1 ox/	ALATE	PYRO	PHOS					PP	M				_ []		RCENT
LAB. NO.	HORIZON	DEPTH	MOIS	i T	1:1 н ₂ 0	0.01M CaCl2	OM	"	C/N	<u>_</u>	Mg	Ne	K	SUM	CEC	Sat. %	Fa	7. Al	Fe	λ Ι Αι	P1	P2	5	Cu	i Zı	•	8	Min I	<u> </u>	SAND	SILT	CLAY CL
4/70	L-H	1-0	12.6	51 5	.4	4.87	100	3.43	ł				1				1											84.0				
5/70	Ahj	0-6	2.8	38 5	.4	4.49	8.09	.423	11.1	9.57	1.38	.055	.388	11.39	24.85	45.84							ł					46.0				
6/70	C1	618	2.1	ls s	.5	4.55	2.96	5	1	3.27	.67	.051	.133	4.12	15.27	26.98												30.6				
7/70	11C	18-27+	1.4	42 5	.4	4.67						ĺ									1							39.6				
																				1					ł							
		1				1																										
														ļ																		
									1																							
	ł								1			ł	ł		1	1	1	1	I	1	1	1	I	ł	I	1	1	ł	ł	11	I	1 1

f

.

		TION: 1250 39	W/54° 28'N		ERIAL: Alluvial fan dep			Profile Description
		NAME: Slug SIFICATION: 01	rthic Dystric Brunisol	FARENT	DRAINAGE: Rapidly dr		SLOPE & AS	ELEVATION: 2400 feet
HORIZON	DEPTH IN - CM.	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
.н	¥-0							Needles and twigs
Bml	0-3	5YR5/3 D 3/3 M	Loam to sandy loam	Moderate fine to medium granular	Very friable	Abundant		
Ban 2	3-6	5YR5.5/3 D 3.5/3 M	Loam to sandy loam	Moderate fine to medium granular	Very friable	Abundant		
BC	6-12	10YR6/3.5 D 3.5/3 м	Sandy loam	Weak fine subangular blocky	Very friable	Abundant		
C1	12-15	10YR6/2.5 D 5/2 H	Gravelly loamy sand	Single-grained	Loose	Abundant		
22	15-24	10YR6/2.5 D 5/2 M	Loamy sand to gravelly loamy sand	Weak fine subangular blocky	Loose	Common		
110	24+	Variegated	Gravel and sand	Single-grained	Loose	Occasional		
	ł	i						1

Laboratory Analyses

(

4

	,	1	1	1	РН		2			EXC	ANGEA	BLE BA	SØS M.E	. 100G		0XA	LATE	PYRC	PHOS	T				PPM					I		RCENT	
LAB. NO.	HORIZ	ON DEPTH	MOIST	1:1 H2O	0.01M	OM	N	C/N	Ca	Ma	Na	K	SUM	CEC	%	Fe	i Al	Fe	Î AI	P1	P2	5	Cu	Zn	1 6	i Mn	I	1	SAND	SILT	CLAY	CLAY
68/466	L-H	3 -0	10.62	4.9	4.41	92.05	1.159	46.07	27.66	7.06	0.12	26.27	61.11	94.23	64.85	1					84.51	33.19										
467	Bm	0-3	2.25	5.5	4.86	2.17	0.067	18.81	3.46	1.41	0.02	0.55	5.44	14.42	37.73	0.72	0.55			322.0	> 400	3.83	13.55	95.86							· .	1
468	Bm2	3-6	2.04	5.8	5.14	1.41	0.042	19.52	3.96	0.83	0.02	0.38	5.19	12.28	42.26	0.54	0.53			285.7	> 400	2.30	18.62	79.08			1					
469	BC	6-12	1.21	6.0	5.57	0.81	0.022	21.36	4.55	0.89	0.03	0.31	5.78	9.59	60.27					93.11	170	2.28	21.00	60.73								
470	C1	12-15	1.01	6.3	5.63	0.73	0.025	16.80	4.93	0.82	0.03	0.25	6.03	8.80	68.52	0.39	0.27			34.34	74.24	4.29	22.22	56.82								
471	C2	15-24	1.01	6.5	5.92				5.18	0.82	0.03	0.21	6.24	8.75	71.31					18.48	59.60	1.52	21.97	52.27								
472	110	24+	0.81	6.6	6.32															9.78	34.17	2.27	22.18	53.68	8							
	1	1	i r																													
	ļ	1	ł	i	1		ļ	I .	I		ļ	ļ		1		I	I	·	1	I	ļ	I		I	1	I	ļ	I	0			1

e e .

<u>ه</u> (

۲ F

LOCATION:	126°	04 W	/54° 02'N	
-----------	------	------	-----------	--

SOIL NAME: Snodgrass

(()

CLASSIFICATION:	Orthic	Dark	Gray	

e 6

ROOTS N	MOTTLES	OTHER
	ł	
Abundant		
Common		
Occasional		

PARENT MATERIAL: Kame

DRAINAGE: Rapidly drained

f +

Laboratory Analyses

Profile Description:

ELEVATION: 2700 feet

•

SLOPE & ASPECT: SW 9%

	1 I PH ; 74					**				EXCHANGEABLE BASES M.E. 100G.							ALATI		PYROP	HOS	PPM										PERCENT						
LAB. NO.	HORIZO	N DEPTH	MOIST	1: H2		0.01M CaCl2	ом	IN		C/N	Ca		Na	K			Sat. %	F.	ĩ A		Fe Î	AI	P1	P2	s	1	Cu	λΩn	1 0	1	Win I		1	SAND	SILT	CLAY	CLAY
69/281	Ah	0-4	4.06	6.5	,	6.08	11.3	4 0.5	569 1	1.56	22.79	2,45	0.07	0.88	26.19	28.20	92.87	1			[38.92	124.	3 3.9	0 2	8.62	318.0	5				1				
282	Ahe	4-7	3.20	6.2	,	5.76	6.9	B 0 . 3	363 1	1.15	12.90	1.36	0.03	0.56	14.85	20.04	74.10	ĺ					32.71	63.4	7 4.8	9 2	2.19	296.	/								
283	Bm	7-11	2.67	5.9		5.35	4.0	6 0.1	197 1	1.94	5.16	0.84	0.05	0.31	6.36	13.26	47.96	1					61.09	118.	0 4.8	8 2	0.53	183.	5								
284	BC	11-16	1.83	6.0		5.53	2.0	5 0.1	103 1	1.52	4.58	0.79	0.05	0.29	5.71	9.58	59.60						52.95	101.	3 2.2	9 2	4.95	100.	5								
285	c	16-23	1.94	6.0		5.50					5.61	0.87	0.05	0.24	6.77	9.80	69.05						35.78	82.0	6 5.1	0 2	9.31	85.3	7								
286	110	23+	1.32	6.2		5.95					5.10	0.76	0.07	0.06	5.99	7.32	81.83						6.89	92.2	0 2.5	3 2	6.60	287.	5								
		1																																			
												ļ		ł																			}				
															· ·																						
													1	ļ		1		ł		1				ł	ļ			l		1			1				1

			PARENT M	ATERIAL: Colluvium over	bedrock		Profile Description: ELEVATION:
CLAS	SIFICATION: L	ithic Alpine Dystric Brunisol		DRAINAGE: Well		SLOPE & ASP	PECT:
DEPTH IN - CM.	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
2-0		1					
0-4	5YR3/2 M	sil	l msbk	mfr	ra		
4-10	5YR3/3 M	stony l		ml	roc		
10-18	10YR4/3 M	stony sl		ml	TOC	f 1 f	
18+		- shattered	bedrock -				
	1						
	SOIL CLAS DEPTH IN - CM. 2-0 0-4 4-10 10-18	DEPTH COLOR DRY D MOIST M 2-0 - CML 0-4 5YR3/2 M 4-10 5YR3/3 M 10-18 10YR4/3 M	SOIL NAME: Shasa CLASSIFICATION: Lithic Alpine Dystric Brunisol DEPTH IN - CM. COLOR DRY D MOIST M 2-0 T E X T U R E 0-4 SYR3/2 M sil 4-10 SYR3/3 M stony 1 10-18 lOYR4/3 M stony sl	SOIL NAME: Shass PARENT MA CLASSIFICATION: -Lithic Alpine Dystric Brunisol DEPTH IN - CM. COLOR DRY D MOIST M T E X T U R E S T R U C T U R E 2-0 0-4 .5YR3/2 M sil 1 msbk 4-10 5YR3/3 M stomy 1 1 msbk 10-18 10YR4/3 M stomy sl 1 msbk	SOIL NAME: Shass PARENT MATERIAL: Colluvium over CLASSIFICATION: Lithic Alpine Dystric Brunisol DRAINAGE: Well DEFTH COLOR DRY D MOIST M T E X T U R E S T R U C T U R E C ON S I S T E N C E 2-0 0-4 SYR3/2 M sil 1 msbk mfr 4-10 SYR3/3 M stomy 1 1 m l ml 10-18 10YR4/3 M stomy sl ml ml	SOIL NAME: Shass PARENT MATERIAL: Colluvium over bedrock CLASSIFICATION: -Lithic Alpine Dystric Brunisol DRAINAGE: Well DEFFTH COLOR ORY D ORY D MOIST M TEXTURE STRUCTURE CONSISTENCE ROOTS 2-0 OF ANOIST M SIN TEXTURE STRUCTURE CONSISTENCE ROOTS 2-0 0-4 5YR3/2 M sil 1 msbk mfr ra 4-10 5YR3/3 M stony 1 1 msbk ml roc 10-18 10YR4/3 M stony s1 atomy s1 ml roc	PARENT MATERIAL: Colluvium over bedrock CLASSIFICATION:-Lithic Alpine Dystric Brunisol DRAINAGE: Well SLOPE & ASP COLOR DRY D MOIST M TEXTURE STRUCTURE CONSISTENCE ROOTS MOTTLES 2-0 Colspan="4">IN - CM. STRUCTURE CONSISTENCE ROOTS MOTTLES 2-0 SYR3/2 M sil Imsbk mfr ra oratory Analyses

1

~

1

LAB.	1		I	I	РН		7	1		EXC	ANGE	BLE BA	SES M.E	. 100G.	•	OXA	LATE	PYR	PHOS	1				PP	M						PEF	CENT	
NO.	HORIZÓ	NDEPTH	MOIST	1:1 Н ₂ 0	i 0.01M CaCl <u>2</u>	0	N N	C/N	Ca	Mg	Na	ł к	SUM	CEC	Set. %	Fe	X Ał	Fe	λ Ι ΑΙ	P1	P2	1 \$	Cu	2	n ł	B	Mn	I	s	AND	SILT	CLAY	CLA
8/70	L-H	2-0	7.64	4.7	3.80	67.	31 . 888	44.5	10.67	2.96	.151	1.83	15.43	66.66	23.15					16.15	18.51	13.99					345.0						
9/70	Ah	0-4	2.78	4.9		8.9	.225	23.0	1.13	.28	.12	.098	1.63	22.30	7.31					4.01	9.04	27.24					20.6						
0/ 70	Bm	4-10	3.63	5.4	4.20	5 6.2	.177	20.3	.73	.073	.026	.028	.86	25.07	3.43	1.33	1.14	0.69	0.80	6.11	14.72	ļ					12.9						
1/70	CI	10-18	2.46	5.5	4.57	3.2	5		.082	.030	.077	.041	.023	17.67	.13	0.84	0.86	0.38	0.61	8.30	26.13	5.64					32.3						
				1		ļ					1																						
	4 1	÷																															
																	ł																
	1															·																	
				i										l				.			1								l				

•

4 4

•

•

\$

1

SOIL	NAME: S	IE: Sidina		PARENT MATERIAL: Colluv	vial talus			ELEVATION:
CLA	SSIFICATIO	N: Orthic R	egosol		DRAINAGE: Rapid			• • • • • • • • • • • • • • • • • • •
HORIZON	DEPTH IN CM.	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
L-H	1-0							
Ahj	0-3	10YR4/2 M	1	l m gr	mrfr	ra		
С	3-10	10YR5/3 M	g1	l m sbk	mvfr	rc		angular rock fragments common
IIC	10-17	variegated	st.gls		ml	roc		numerous large angular rock fragments
111C	17-25	10YR5/3 M	g1	l m sbk	ml	roc		angular rock fragments
IVC	25+	variegated	st. gls		m1	ro		
HORIZON	DEPTH	N: Mini Hum COLOR DRY D MOIST M	o-Ferric Podzol TEXTURE	STRUCTURE	DRAINAGE: Rapid CONSISTENCE	ROOTS	SLOPE & ASPECT	2 00 0 0 0 THER
	1	MOIST M] 	1 	1		 _	· · · · · · · · · · · · · · · · · · ·
L	4-2							moss
F-H	2-0					ra		
Ae	0-1	10YR6/3 M				rc		
Bf	1-9	5YR5/4 M	gsl	l m sbk	mvfr	rc		
C	9-19	variegated		Sg	ml	roc		clean stratified s & g clean stratified s & g
IIC	19+	variegated	gs	Sg	ml	roc		clean stratified s & g
	1	L	1	I	1		Į	1

LOCATION:

. .

1

,

۲

r

Profile Description:

LO	~ &	т	۱n	ы.

4

к (

PARENT MATERIAL Steenlast till (Collumium till)

Profile Description:

	SOIL	NAME: Skeena			PARENT	MATERIAL: Steeplant till (C	Colluvium till)		ELEVATION:
	CLAS	SIFICATION: B	HFP	-		DRAINAGE: Well		SLOPE & AS	PECT:
HORIZON	DEPTH IN - CM.	COLOR DRY D MOIST M		TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
L	5-3		1						
F-H	3-0	1	}						
٨e	0-15	10YR6/3 D				mfr	ТВ		discontinuous
Bf	3-63	10YR5/8 H	51		1 m sbk	mfr	ra		
Ael	63-173	10YR6/2 D 4/2 M	gls			ml	rc		
Ae2	175-275	10YR4/1 M	gsl		l m sbk	mfr	rc		
Bt	273-343	10YR4/2 M	c1		3 m abk	mefi	FOC		
CI	34 3 +	10YR4/1 H	cl		m to abk	mefi	roc	flf	
			1						•
			1						207
			l						

Laboratory Analyses

.

۲

	,		r	······································	РН	1	5	1	<u> </u>	EXCH	ANGEA	BLE BA	SES M.E	L. 100G			LATE	PYRO	PHOS	T		 - <u></u>	PPM	_				PER	CENT
LAB. NO.	HORIZO	DN DEPTH	MOIST	·	0.01M CaCl2	OM	N	C/N	Ca	·····	Na Na	K		CEC		Fe	*	Fe	Î AI	P1	P2	\$ i Cu	l Zn		i Min i	1	SAND		OTAL: FINE
35/70	L	5-3	9.41	4.5	3.78	94.8	7		21.97	6.35	.219	5.43	33.97	84.95	39.99	1				36.65	60.18				230.0				
36/70	F-H	3-0	7.30	4.4	3.56	66.18	3 1.00	38.4	19.44	2.36	.107	1.05	22.96	85.99	26.70		ļ			32.40	41.85				240.0				
374/70	Ae	0- 1 3		1					NOT	SAMPLE	þ						1									1			
37/70	Bf	3-63	1.83	5.2	4.50	2.59	.087	17.3	5.11	.97	.055	.178	6.31	15.38	41.03	1.24	0.55	0.39	0.22	109.4	132.3				24.9	l			
38/70	Ael	6 ¹ 2-7 ¹ 2	1.52	5.5	5.14	1.09	.046	13.7	5.15	2.33	.081	.14	7.70	11.17	68.93	0.53	0.17	0.11	0.10	2.54	29.75				39.6	l			
39/70	Ae2	175-275	1.73	6.1	5.79	.75	.067	6.5	7.63	3.59	.153	.117	11.49	11.85	96.96					2.54	61.55				24.9				
40/70	Bc	275-34	1.94	6.7	6.30				10.19	5.33	.097	.178	15.79	15.60	100					3.06	107.4				5.0				
41/70	Cl	345+	1.83	6.8					9.16	4.94	.087	.180	14.37	13.70	100	0.70	0.48	0.07	0.03	3.05	116.0					ļ			1
				1						ĺ		ĺ																	ł
	}																									ŀ			

۱ د ب ۱

	SOIL	NAME: Skins		PARENT MAT	ERIAL: Colluvium over	bedrock		ELEVATION:
	CLAS	SIFICATION: MHP	P	/	DRAINAGE: Well		SLOPE & AS	PECT:
HQRIZON	DEPTH IN - CM.	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
-4	13-0					1		
•	0-2	5YR6/2 D 5YR4/2-4/3 M	sl	1 m sbk	mfr	Ta		discontinuous
£1	2 -9	5YR5/3 D 5YR4/4 M	s1	l m sbk	mfr	ra		
f 2	9-18	SYR5/3 D SYR4/3 M	gsl	l m sbk	mfr	тс		numerous stones
1	18-34	10YR5/2 D 3/3 M	gsl		mfi	roc	flf	
L	34+		- shattered bedrock wit	b black coatings along fractures -				
	1		- -					
							-	

Laboratory Analyses

	1	1		1	PH	1		1	1	EXCH	ANGEA	OLE BA	SES M.E	. 100G.		OXA	LATE	' PYRC	PHOS			 	PPM							RCENT
LAB. NO.	HORIZO	N OEPTH	MOIST	1:1 H ₂ O	0.01M CaCl2	OM	N	C/N	Ca	Mg	Na	K	SUM	CEC	Sat. %	Fo	7. Al	1 Fe	1 AI	P1	P2	\$ l Cu	Zn	1 8	i Mn	1	1	SAND	SILT	CLAY CLAY
80/70	L-H	13-0	2.67	4.6	3.82	40.66	.734	32.1	6.57	1.64	.154	1.08	9.44	55.88	16.89	l				26.18	43.12		1		432.0	b				
80A / 70	٨e	0-2	2.67	4.8	4.13	8.95	.186	27.9	1.75	.564	.118	.332	2.76	26.08	10.58					72.38	117.0				129.	4				
81/70	Bf	2-9	3.63	5.3	4.38	5.39	.193	17.1	.73	.073	.088	.135	1.03	10.47	9.84	0.99	1.61	0.65	1.32	24.40	5 73.02				6.2					
82/70	Bf	9-18	3.31	5.5	4.51	3.84			.52	.052	.088	.083	.743	18.29	4.06					23.14	67.15				8.8					
\$3/70	C1 2	18-34	1.01	5.6	4.66				.51	.020	.086	.066	.682	26.36	2.59	0.63	1.03	0.14	0.36	43.94	93.43				20.7					
	1																													
						ľ								1																
						ł								i i																
		1																.		1	1			ł	ł	I	I	8	I	1

LOCATION:

.

r .

τ *

ŕ

٣

Profile Description:

SOIL NAME: Stellako	PARENT MATERIAL: Floodplain deposits
CLASSIFICATION: Gleyed Orthic Regosol	DRAINAGE: Imperfectly drai

.

LOCATION: 125° 03'W/54° 05'N

.

1

¢ (

DRAINAGE:	Imperfec

ELEVATION: 2250 feet

.

4

SLOPE & ASPECT: NE 5%

	CLAS	SIFICATION: G	leyed Orthic Regosol		DRAINAGE: Imperfectly	drained	SLOPE & ASP	ECT: NE 5% .	
HORIZON	DEPTH	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER	
LF Cgjl	2-0 0-5	10YR5/3 D 3.5/3 M	Silt loam	Structureless	Slightly hard	Abundant	Many fine distinct 5YR4/4 D	Leaves, twigs; some partly decomposed	
Cgj2	5-12	10YR5/3 D 3.5/3 M	Silt loam	Structureless	Slightly hard	Сотпол	Many fine distinct 5YR4/4 D		
Cg j3	12-19	10YR5/3 D 4/3 н	Silt loem	Structureless	Slightly hard	Common	Many fine distinct 5YR4/4 D		
Cgj4	19-25	10YR5/4 D 4/3 м	Silt loam	Structureless	Very friable	Common	Many fine distinct 5YR4/4 D		
Cg1	25+	10YR5/4 D 4/3 M	Silt loam to fine sandy loam	Structureless	Very friable	Occasional	Meny fine faint 5YR3/4 M		
									ı
									209 -
		4							P

Laboratory Analyses

Profile Description:

	:	 I	T	1	Pł	н 1	1	7.	1		EXCH	ANGEA		SES M.E	. 100G	·	0XA	LATE	PYR	OPHOS					PPM					I		RCENT	
LAB. NO.	HORIZO	N DEPTH	MOIS	T	1:1 120	0.01M CaCl ₂	OM	N	C/N	Cą	Mg	Na	K	SUM	CEC	Set. %	F.	" Î AI	Fo	Î AI	P1	P2	5	1 Cu	1 Zn	B	l Min	I	1	SAND	SILT	CLAY	CLAY
69/314	L-F	1-0	12.8	7 6.	8	5.75	84.57	1.792	27.83	54.63	25.87	0.32	6.55	87.37	93.66	93.28				1	174.9	243	.8 58.	0 13.8	3 177.	1							
315	Cgjl	0-5	1.6	2 5.	.9	5.22	1.77	0.063	16.29	5.11	3.96	0.15	0.49	9.71	12.40	78.31					2.74	136	.1 0.7	5 17.7	8 52.0	8							i
316	Cg j2	5-12	1.8	3 6.	2	5.52	1.21			5.60	5.35	0.22	0.18	11.35	12.94	87.71					1.83	132	.3 0.7	5 17.8	2 52.1	9							i
317	Cg j3	12-19	1.7	5 6.	.5	5.81						-									2.03	150	.5 2.2	5 18.0	6 55.9	5			1				i
318	Cg j4	19-25	1.6	2 7.	.1	6.40															2.03	144	.3 1.2	5 15.2	4 49.2	9			Ì				ł
319	Cg1	25+	1.5	2 7.	.5	6.70															1.09	151	.2 4.7	5 15.9	9 52.0	3							Í
	i			ł													1																
	•																																
				1					1	l			1				1				ļ				1	I		1		l	l		i

e e

• /

	SOIL	NAME: Stellak	:0	PAREN	T MATERIAL: Floodplain depos	its		ELEVATION: 2200 feet
	CLAS	SIFICATION: Re	go Humic Gleysol		DRAINAGE: Poorly dra	ined	SLOPE & ASPECT	E 4%
HDRIZON	DEPTH	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	WOTTLES	ÔTHER
Om	4-0	5Y2/2 H				Abundant		
Ah-Om	0-4	5¥3/1 M	Silt loam	Massive	Non sticky	Abundant		
Cgl	4-10	5¥3.5/1 M	Silt loam to silty clay loam	Hassive	Sticky	Common	Few medium distinct 5YR4/3 M	
Cg2	10-20	5¥5/1.5 H	Silt loam	Massive	Plastic	Occasional	Many fine distinct SYR4/4 M	
CgJ	20+	5¥5/1 M	Silt loam	Massive	Plastic	Occasional		
								I N
		1						10
								ŧ
	1	i					1	

and the second second second second second second second second second second second second second second second

Laboratory Analyses

																	-															_			
LAD.	!	1	Π	1	PH	·		2	1	I	EXCH	ANGEA	BLE BA		5. 100G			ALATE	1 197	YROP	HOS					PPW	1							RCENT	
NQ.	HORIZON	і DEPTH	MOIST	1: H2	1.0	GaCI2	OM	N	C/H	Ca	H 2	Na	K	SUM	CEC	\$at. }	F.	Î AI	1	Fa Ì	AI	P1	P2	5	l Cu	1 Zn	1 9		Min İ			JAND	SILT	CLAY	CLAY
67/435	Om	4-0	12.3	6.	5		49 .9	1.70	17.1	56.18	15.51	2.02	0.38	74.09	87.11	85.0			1	1		7	21		37.9	48.9		1							
436	Ah-Om	0-4	-9:2	6.	7		29.9	1.24	13.8	42.62	17.70	1.62	0.24	62.18	33.42	100		.				4	30	34.5	47.0	51.9									
437	Cgl	4-10	4,7	ų 7.	6		3.1	0.10	17.0	27.49	9.79	0.89	0.16	38.32	34.46	100						3	141	16.5	16.	57.0	5								
438	Cg2	10-20	3.4	1 7.	6					19.13	7.34	0.74	0.20	27.41	24.31	100						7	217	6.5	15.0	54.3	•								
439	Cg3	20+	2.7	7.	6							}										13	270	4.0	20.0	64.2	2								
												1							1									ĺ	[
								1											ļ					ł		1									
		1	1	1					1]	}		1	1	1	I				1	1	1	ł		I	1	ł		I	1		I	1	I

٠

LOCATION: 1240 05 W/540 01 N

Profile Description:

.

.

LOCATION:	

PARENT MATERIAL . Koma

Profile Description:

	SOIL	NAME: Suskwa		PARENT	MATERIAL: Kame			ELEVATION:
	CLAS	SIFICATION: M	HFP		DRAINAGE: Rapid		SLOPE & A	SPECT:
HORIZON	DEPTH IN - CM.	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
L	4-2					1	1	
P-H	2-0							
٨e	0-1	10YR7/3 D 6/3 M	sl		m£z	IC		Discontinuous
BE I	1-5	10YR5/8 M	sl	1 m sbk	mfr	rc		
Bf 2	5-10	LOYR4/4 M	gls		m1	rc		fingers of brighter color along
C1	10-22	variegated	gls		m1 .	roc		root channels dirty gravels
110	22+	variegated	sgr		ml	roc		dirty gravels
	1							
	£ 1							
	i .							•
	1	,	1					211
			ł	i				

Laboratory Analyses

			II						1							_																
LAB.	•	1	N	· · · · · · · · · · · · · · · · · · ·	PH	1	<u></u>	1]	EXC	HANGE	ABLE 6/	ASES M.I	E. 1000		0x/	LATE	PYR	OPHOS					PPM						PEF	RENT	
NO.	HORIZO	N DEPTH	MOIST	1:1 H ₂ O	0.01M	OM	N	C/N	<u></u>	Mg	Na	K	SUM	CEC	Sat. %	F.	1 AI	l Fe	Ĩ AI	PI	P2	1 5	i Cu	l Zn	18	l Min	1	1	SAND	נו∟ד [CLAY	FINE
94/70	L	4-2	12.36	4.7	4.02	100			23.37	4.94	. 16	5.08	33.55	72.17	46.49					79.78	127.5	}	1			610.0						
95/70	FH	2-0	12.36	4.1	3.31	100	1.27		14.38	3.21	.19	4.04	21.82	87.35	24.98			1		106.7	130.3	ļ				270.0						
96 a /70	Ae	0-1	2						NOT	SAMPL	apo 🛛				}				1		}	1				1						
96/70	BEI	1-5	2.35	5.7	5.30	1.80	.095	64.7								1.37	0.82	0.32	0.215	32.96	70.11		1			67.6						
97/70	Bf 2	5-10	2.67	5.2	4.60	2.5	.090	16.3	5.13	1.08	.067	.272	6.55	16.43	39.87	1.50	0.77	0.43	0.213	72.90	112.9				1	77.5						
98/70	C1	10-22	1.52	6.1	5.82	1.23	11.27	6.60	.96	.96	.066	.21	7.84	9.24	84.85	0.96	0.67	0.13	0.10	48.22						29.4						}
99/70	110	22+	1.42	6.3	6.06								ł					l		7.20	51.72	ł	ļ			25.4						ł
	1		i i								İ	ļ														1					i	
	1						1				{					Į –																ł
	ł							ļ	- -				ł							ł									{ {			1

n 1. é t. , i é t.

	SOIL N	AME: Tatin		PARENT MATE	ERIAL: Steepland till (C	Colluvium over till)		ELEVATION:
		IFICATION: BIHI	PP	·	DRAINAGE: mwd		SLOPE & ASF	PECT:
HORIZON	DЕРТН IN - СМ.	COLOR DRY Q MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
L	3-2							
F-H	2-0							
Aej	0-3							
Bf	3-8	5YR6/6 D 5YR3/4-4/4 M	fsl	l m sbk	mfr	ra		influence of downslope
٨e	8-15	10YR6/3	sil	2 m sbk	mfr	roc		gravitational movement
AB	15-20	10YR5/3	sil	2 c sbk	mfi	roc		throughout profile
Bt	20-27	10YR4/2-4/3M	sicl	2 m abk	mvfi	ro		
C1	27+	10YR4/2 M	sicl	po -	slfi	ro	flf	
								1
								212
		* • •		,				1
]		

s 🥐

Laboratory Analyses

1						,	2		Γ	EXCH	ANGEA	BLE BA	SES M.E	. 100G		I OXA	LATE	PYRC	PHOS	T T				PPM				,	1		CENT
LAB. NQ,	HORIZO	N DEPTH	MOIST	1:1 H ₂ Q	0.01M	OM	N	C/N	Ca	Mg	Na	K	i sum		. 6	F.	i Ai	Fe	AI	P1	P2	5	I Cu	Zn	9	Min	 	1	SAND	SILT I	CLAY CL
28/70	L	3-2	11.61	5.1	4.5	100	1.40													16.9	67.5					300.	P				
29/70	F-H	2-0	13.89	4.8	4.13	100	1.74		36.67	3.30	.167	2.62	42.76	105.1	40.66					54.1	67.2					755					
30a/70	Aej	0- 5							NOT S	AMPLEI	•																			1	
30/70	Bf	¥-8	2.15	6.7	6.01	4.23	.129	19.0	14.71	. 53	.063	.099	15.40	20.14	76.46	1.31	1.22	0.21	0.13	1.33	4.49					28.1				Í	
31/70	٨e	8-15	1.52	7.1	6.64	1.82	.075	14.1	11.67	. 508	.065	.074	12.31	11.93	100	0.44	0.17	0.14	0.13							8.1					i
32/70	AB	15-20	1.83	7.3	6.61	1.63	.088	10.7	13.44	.60	.091	.12	14.25	13.87	100	ļ				0.71	65.6					6.6					
33/70	Bt	20-27	1.21	7.5	6.76				10.4	. 51	.175	.089	1	10.64	100		1	1		0.71	103.2					3.0	4				
34/70	C1	27+	1.11	7.5	6.86				10.11	. 506	.064	.096		10.06	100	0.7	5 0.58	0.04	0.03	1.21	115.2					2.	5				
											1							.		1			1	1			l	l	H		1

LOCATION:

t

.

۳

Profile Description:

LOCATION: 1240 29'W/540 16'N

PARENT MATERIAL: Basal till

Profile Description:

SOIL NAME: Twain

CLASSIFICATION: Bisequa Humo-Ferric Podzol

_	_	 	

DRAINAGE: Well drained

ELEVATION: 3500 feet

SLOPE & ASPECT: NE 15%

HORIZON COLOR STRUCTURE CONSISTENCE ROOTS MOTTLES OTHER TEXTURE DRY D IN - CM. MOIST M ----Needles and twigs L 3-2 2-0 Abundant Decomposed and semi-decomposed FH litter 5.00 10YR6/2 D Soft 0~2 Sandy loam Moderate to strong medium Abundant ٨e 4/2 M granular Bf 1 2-7 10YR5/4 D Silt loam Moderate to strong medium Soft Common 7.5YR4/4 M granular 10YR6/3.5 D Silt loam Bf2 7~12 Moderate fine to medium subangular Soft Common 4/4 M blocky 12-19 10YR7/2 D Silt loam Strong fine to medium angular and AB Friable Common Few clay skins in pores 4.5/3 M subangular blocky Bt1 19-26 10YR7/2.5 D Gravelly silt loam Strong medium angular blocky Common clay skins Firm Occasional 3/3.5 M Be2 26-32 10YR7/2.5 D Gravelly silty clay loam Strong medium angular blocky Occasional Many clay skins Firm . 3/3.5 M N 10YR7/2 D BC 32-42 Gravelly loam Pseudoplacy Firm Occasional Some clay skins 13 4/2.5 M t 10YR6/2 D C 1 42-49 Gravelly sandy loam to Single-grained Friable gravelly loam 4/3 M C2 Very firm

10YR7/2 D Gravelly loam to gravelly 49+ 4/2.5 M sandy loam

£

3

×

£

Laboratory Analyses

.

	- <u></u>	1			РН	1			ſ	EXC	ANGEA	BLE BA	SES M.E	. 100G.		OXA	LATE	PYRO	PHOS	<u> </u>				PPM					ſ		RCENT	
LAB. NO.	HORIZO	DEPTH	MOIST	1:1 H ₂ 0	0.01M	OM	N	C/N	Ca	Mg	Na	K	SUM	CEC	Sat.	Fe	7 Al	Fe	Î Ai	P1	P2	i s	Cu	i Zn i	B	l Mn	I	1	SAND	SILT	CLAY	CLAY
69/322	L	3-2	12.11	4.5	3.85	116.8	1.252	54.12	11.59	4.04	0.09	2.24	17.96	84.60	21.23	l			1	47.09	67.8	35.0	4.48	51.57								
323	FH	2-0	11.11	4.4	3.66	103.9	1.270	47.48	11.49	3.38	0.12	1.60	16.59	79.55	20.85	1			Į	42.22	56.1	27.0	4.72	53.61					ł			
324	Ae	0-2	1.52	5.5	4.63	2.32	0.078	17.28	5.58	0.81	0.06	0.28	6.73	12.13	55.48					82.23	147.2		5.84	41.88			ļ					
325	Bfl	2-7	3.20	6.1	5.06	2.60	0.096	16.02	2.58	0.57	0.07	0.30	3.52	14.80	23.78	0.91	1.20			126.4	288.9	0.25	11.09	113.5					27.36	56.68	15.96	
326	Bf 2	7-12	2.35	6.1	4.98	1.38	0.074	10.82	1.33	0.46	0.05	0.28	2.12	10.20	20.78	0.65	0.88	}		45.03	106.4	2.50	12.79	101.0								}
327	AB	12-19	1.94	6.1	4.79	0.47	0.032	8.53	6.63	2.40	0.09	0.30	9.42	13.17	71.53					15.29	185.5		22.94	58.62					17.02	64.25	18.73	3.67
328	Bel	19-26	1.94	6.3	5.30	1			8.36	3.03	0.10	0.29	11.78	12.80	92.03		1	}		7.14	279.3		25.74	58.62					20.29	57.60	22.11	7.60
329	Bt2	26-32	2.25	6.6	5.58				10.23	3.74	0.18	0.31	14.46	14.56	99.31		1	}		4.50	337.4		28.37	65.44					19.49	52.46	28.05	15.44
330	BC	32-42	1.62	6.7	5.71			1	8.33	3.10	0.12	0.24	11.79	11.83	99.66			ļ		4.27	284.5		20.83	53.35					l			ĺ
331	Cl	42-49	1.01	6.8	5.80	1			4.75	1.82	0.13	0.17	6.87	7.49	91.72	0.16	0.10	·		4.65	176.7	ļ	13.6	46.66				1				ł

.

1

.

۰.

	LOCA.	TION: 1259 31	W/54° 14'N					Profile Description:
	SOIL	NAME: Twain		PARENT	MATERIAL: Basal till			ELEVATION: 3800 feet
	CLASS	SIFICATION: Hum	ic Eluviated Gleysol		DRAINAGE: Poorly draf	ined		CT: 5 47,
HORIZON	DEPTH	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
LF	6-5					1		
Oh	5-0					Abundant		
Ah	0-4	10YR3/1 M	Silty loam	Moderate medium granular	Very friable	Abundant		
Ahe	4-8	10YR3.5/2 M	Silty loam	Moderate fine platy	Friable	Common		
Aegl	8-12	2.5¥5/2 M	Gravelly loam	Massive	Very firm	Occasional	Few fine faint	
Aeg2	12-18	5¥4.5/1 M	Gravelly loam	Massive	Very firm	Occasional	10YR5/4 M Common medium distinct 7.5YR5/6M	
Btg	18-24	5Y4/1 M	Gravelly clay loam	Massive	Very plastic		distinct 7.51K5/0M	
Cgl	24-34	2.5¥4.5/2 M	Gravelly clay loam	Massive	Plastic		Common medium distinct 10YR5/6 M	
Cg2	34+	2.5¥4.5/2 H	Gravelly clay loam	Massive	Plastic		Common medium distinct l0YR5/6 M	
]							. 1
								214
		i 						· +*
		; }				· ·		

,

.

Laboratory Analyses

ł

LAB.		1			РН	1	7,		1	EXCI	ANGE	BLE BA	SES M.E	. 100G.		ox/	LATE	' PYRC	PHOS	T T				PPM		L.C			1	PE	RCENT	
NO.	HORIZO	NDEPTH	MOIST	1:1 H ₂ O	0.01M CaCiz	OM	N	C/N	Ca	Mo	Na	×	SUM		Sat. X	F.	% Al	Fe	ι Αι	P1	P2	5	l Cu	l Zn	8	Min	1		SAND	SILT (CLAY	CLAY
69/305	LF	6-5	11.61	5.8	5.19	46.82	0.878	30.93	32.37	7.21	0.30	2.08	41.96	40.01	100	ľ				39.06	56.36	41.00	35.99	93.47				1				
306	Oh	5-0	8.93	5.6	4.95	32.17	0.680	27.44	25.49	7.04	0.35	0.85	33.73	74.67	45.17	ĺ	1	ļ		15.25	24.18	11.00	33.77	88.51			Í					
307	Ah	0-4	6.72	5.1	4.51	11.27	0.373	17.43	11.53	2.42	0.12	0.70	14.77	51.01	28.96					4.27	- 8.11	11.50	61.36	146.7								
308	Ahe	4-8	4.93	5.3	4.44	7.82	0.220	20.61	7.66	2.10	0.13	0.23	10.12	34.85	29.04					3.69	18.78	7.25	35.94	107.5								
309	Aegl	8-12	1.32	5.5	4.88	1.06	0.035	17.34	2.43	0.56	0.06	0.07	3.12	6.80	45.88					1.52	97.27	2.50	11.91	51.93					53.45	36.5	10.02	1.89
310	Aeg2	12-18	1.83	6.4	5.72		0.029	,	5.60	1.47	0.07	0.12	7.26	8.86	81.94					1.02	115.06	2.50	14.26	50.92							1	
311	Btg	18-24	2.35	6.8	6.49				11.77	3.32	0.11	0.27	15.47	15.25	100					1.02	142.27	0.25	31.47	64.48					40.71	31.3	27.96	15.90
312	Cgl	24-34	2.46	6.7	6.42				1					l						1.02	154.71		37.14	63.53							1	
313	Cg2	34+	2.46	6.8	6.43				1											2.05	169.06		37.14	64.55					42.08	30.3	27.57	17.94
									1				1	1				ł			1			1								1

LOCATION: 1239 58 W/549 03 N

SOIL NAME: Vanderhoof

Ĺ

PARENT MATERIAL: Glaciolacustrine clay deposits

Profile Description:

ELEVATION: 2300 feet

	CLASS	IFICATION: OF	thic Gray Wooded (Luvisol)		DRAINAGE: Well to mod	erately well	SLOPE & AS	PECT: SW 4%
HORIZON	DEPTH IN - CM.	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
L-H	1-0					Abundant		Forest litter
Ae	0-3	10YR6/2 D 5/2 M	Silty clay loam	Massive medium to coarse platy	Slightly hard	Abundant		
▲B	3-5	10YR6/2 D 5/2 M	Silty clay loam	Moderate coarse platy	Hard	Abundant		
BA	5-8	10YR6/2 D 5/3 M	Silty clay	Strong coarse columnar	Hard	Common		
Btl	8-15	10YR4/3 D 3/4 M	Silty clay	Strong coarse prismatic	Hard	Common		Hany clay films
Bt2	15-20	10YR4/3 D 3/4 M	Silty clay	Strong coarse prismatic	Hard	Along structure interfaces		Many clay films
BC	20-29	10YR5/3 D 3/3 M	Silty clay	Moderate fine to medium angular blocky breaking vertically in lower part to medium laminations	Hard	Occasional along structure inter- faces		Few clay films along structure inter- faces, root channels and between laminations
с	29+	10YR5/2-4/3D 4/3-3/3M		Stratified	Hard			
		1						1

Laboratory Analyses

•

4

LAB.	1	1		1	P	чн	1	7.	1		EXCH	ANGEA	BLE BA	SES M.E	. 100G	•	OXA	LATE	PYR	OPHOS					PPM	_					PE	RCENT	
NO.	HORIZ	-	MOIS	T	1:1 H ₂ O	0.01M CaCl2	ОМ	"	C/N	Ca	Mg	Na	K	SUM	CEC	Sat. %	F.	7 Al	F e	Î AI	P1	P2	\$	Cu	l Zn	B	1 Mr		1	SAND	SILT	CLAY	CLAY
66/316	L-H	1-0	13.3	8 6	6	6.5	66.03	1.8	2 41.6	51.02	18.82	0.75	3.46	73.35	101.9	71.96					128.6												
68/424	Ae	0-3	2.8	8 6	.2	5.6	4.03	0.17	2 13.60	7.59	4.83	0.13	0.77	13.32	20.40	65.29					165.5	1	1.03							4.71	62.68	32.61	1.95
68/425	AB	3-5	1.9	4 6	.0	5.5	1.18	0.07	2 9.44	4.21	3.82	0.13	0.35	8.51	12.37	68.80					40.78				ļ								
66/318	BA	5-8	2.6	7 6	••0	5.4	1.19	0.06	15.3	5.60	1.70	0.20	0.46	13.96	18.12	77.02					7.6	!	5.1							0.98	50.00	48.9	6 11.95
319	Bel	8-15	3.2	5 6	.2		0.97	0.05	14.3	7.01	11.05	0.35	0.44	18.85	22.82	82.60					3.0	4	4.6							0.88	44.7	54.3	7 15.41
320	Bt2	15-20	3.3	0 6	.8	6.2	0.83	0.05	16.6	7.23	12.19	0.52	0.39	20.33	25.53	74.63					2.3		5.7							0.67	45.68	53.6	5 14.56
321	.+ BC	20-29	3.3	6 7	.8	6.9				7.21	14.06	0.91	0.34	22.52	26.10	86.28					1.9	1	7.8							0.31	46.90	52.7	9 13.24
322	C	29+	2.8	3 8	-0	7.4				8.53	14.19	1.10	0.31	23.12	23.24	99.48					1.2	9	9.0							0.21	52.02	47.7	7 11.86
		ļ																															
		1		1		1		{		1		1		1		1		1	1	}	1 1	!			}		{	1	ł	1	1	{	

. .

٤, ١,

.

ι

۶. ۲.

•

	CLASS	HEICATION: OHE	P		DRAINAGE: Well		SLOPE & AS	PECT:
HORIZON	DEPTH IN - CM.	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
L	5-3							
FH	3-0		·					
Ae	0-2	10YR7/2 D 10YR5/2 M	s 1		mfr	ra		Ae varies from 3" to nil
Bf	2-9	10YR5/6 D 10YR4/4 M	sl	l na sbk	mfr	ra		scattering of Ae into Bf along root channels
BC	9-15	10YR6/3 D 5/3 M	stony gsl	l n sbk	ml	rc		
C1	15-27	10YR5/2 D 5/3 M	stony gsl		ml	roc		
R	27+		bedrock					varies in depth lithic profiles common - bedrock fracturing common
								216
		† # #						3

LOCATION:

ı

SOIL NAME: Utsun

۲

ŗ

PARENT MATERIAL: Colluvium over acidic bedrock

.

.

Profile Description:

ELEVATION:

Laboratory Analyses

	· · · · · · · · · · · · · · · · · · ·	1	Τ	1	PH	1		2	1		EXC	ANGEA	BLE BA	SES M.E	E, 100G	•	OXA	LATE	PYRO	PHOS					PPH		_						RCENT
AB. 10,	HORIZON	DEPTH	MOIST	1: H ₂		D.01M CaCl2	OM	N	C/N	Ca	Mg] Na	l K	SUM	CEC	Sat. %	F.	% Al	Fe	2 A I	Pl	P2	5	Cu	Zn	18	1	Mn	1	1	SAND	SILT	CLAY CL
/70	L	5-3		1.	s	4.4						[95.0	95.0											
/70	FH	3-0	13.38	1.	5	4.1	1.00	1.10		12.70	3.17	0.25	5.06	21.18	94.56	22.40					100.3	112.2	2										
/70	Ae	0-2	10.13	5.	3	4.62	2.28	.0948	13.9	4.63	0.66	0.08	0.39	5.76	13.41	42.95					39.98	64.43						23.7					
70	Bf	2-9	3.73	6.	1	5.11	3.37	.0983	19.8	3.22	0.41	0.50	0.42	4.10	19.74	20.77	1.54	2.15			43.57	160.7	,				:	12.4					
70	BC	9-15	0.81	6.	1					3.43	0.45	0.07	0.30	4.25	10.21	41.63					55.95	84.68	3										
0 /70	C1	15-27	1.21	5.	9	5.56				6.33	1.11	0.12	0.31	7.83	10.07	78.15	0.51	1.19			22.67	82.49						14.2					
									1																						1		

L.	oc	AT	10	N:
----	----	----	----	----

.

¢.

ć

ì

Profile Description:

ELEVATION:

SOIL NAME: Windfall

PARENT MATERIAL: Colluvium

DRAINAGE: Well

.

SLOPE & ASPECT:

.

CLASSIFICATION: MHFP

		SIFICATION: MI			DHAINAGE: Well		SLOPE & AS	PECT:
HORIZON	DEPTH IN - CM.	COLOR DRY D MOIST M	TEXTURE	STRUCTURE	CONSISTENCE	ROOTS	MOTTLES	OTHER
L-H	11-0							
Aej	0- <u>1</u>							As varies from 0 to 2" in stabilized
Bf	½-11	10YR5/4 D 4/4 M	stony loam	l msbk	mfr	TA		sites
C1	11-23	10YR6/4 D 4/4 M	stony fal	l msbk	mfr	roc		
C2	23-45+	10YR4/2 M	stony sl		mfr	roc	f 2 f	coarse pieces of fractured bedrock
		:						a
								217
ļ		1						

Laboratory Analyses

.

*

			π																				 	_	_						
LAB.	1	1]	1		н		3	-		EXC	HANGE	BLEB					LATE	' PYF	ROPHOS				PP	A						CENT
NO.	HORIZO	DEPTH	MOI	ят н	1:1 H ₂ O	0.01M CaCl2	OM	N	C/N	Ca	Mg	Na .	<u>і к</u>	SUM	CEC	Sat. %	F.	1 AI	Fe	ÎAI	P1	i PZ	\$ i Cu	¦ Zn	0		Min	1	SAND	SILT I	OTAL FINE
66/70	L-H	13-0	11.6	60 4.	.7	4.21	97.	4 1.57	35.3	32.58	5.07	.067	2.90	40.62	99.93	40.65					46.87	53.01				3	40.				
67 A/7 0	Aej	0-3								NOT	SAMPLE	n																	i.		
67/70	Bf	3-11	1.4	3 5.	.4	4.44	3.18	. 109	16.9	2.94	. 507	.040	.253	3.74	17.85	20.95	1.2	0.58			112.5	172.4				4	4.1				
68/70	Cl	11-23	1.7	3 5.	6	4.69	1.73	.079	12.7	1.83	.407	.065	.163	2.47	10.38	23.80	0.7	0.67			76.30	132.2				4	2.7				
69/70	C2	23-45+	1.2	1 5.	8	5.51				3.44	.86	.096	.241	4.64	8.75	53.03					14.17	50.61				4	4.0	ł	l.		
				1	-																								ł		
		•																					Ì								
	1	i •																	[ĺ							
	г 1															1	1		1										1		
																1															

e i c

APPENDIX II

Vegetation¹

The following are non-technical definitions of terms, frequently used in publications on vegetation. It is hoped that the reader can familiarize himself with these terms, so that he can benefit more fully from the plant ecological information contained in this report. Less common terms will be explained whenever they are encountered in the report.

- The tree cover of an area is primarily a living expression of:
- 1. the climate
- 2. the soil
- 3. the nature of disturbances and the time elapsed between and after these disturbances

If it were possible to eliminate the disturbances, the tree cover would become a direct expression of the climate and the soil. Tree stands undisturbed for a long period of time (usually several hundreds of years) and which reach a condition in which the same species of trees are perpetuated indefinitely, are referred to as <u>climax stands</u>. If such stands grow on sites not modified by an extreme soil condition (as wetness or unusual drought), which favors different species of trees than those growing on more average sites, they reflect the conditions created by the climate and the soil. Such stands are referred to as <u>climatic climax stands</u>. Where extreme soil conditions override the climatic conditions, so that climax stands differing in tree species composition from climatic stands result, often the term <u>edaphic climax</u> (edaphos = bottom or ground) is used.

Areas covered by similar climatic climax stands (possibly with inclusions of edaphic stands, which may resemble different climatic climaxes), are referred to as forest zones.² Since forest zones are the biological expression of climate and the soil (geo), they are also called biogeoclimatic zones (Krajina 1965).

In mountainous terrain, due to the change in climate with increasing elevation, the forest zones are arranged in belts between elevational limits. In less accentuated terrain the soil material may become the dominant factor in determining the species composition of climax stands. An intricate network of differing climatic climax stands corresponding with the distribution of soil materials may be expected in this type of terrain.

It will be evident that in the latter type of distribution of climax stands it may become difficult to distinguish between "climatic" and "edaphic" climatic climaxes. However, this is a difficulty in terminology only. It does not indicate a lack of understanding of the site quality. In practice it is important to know what can grow on the site and the classification of such sites is of lesser importance to the land user.

- 1 Detailed technical description of vegetation to be appended available spring 1973.
- 2 In forestry, forest zone is sometimes used in a less restricted manner, to indicate an area where any particular combination of tree species occurs or tends to occur.

Areas in which similar patterns in the distribution of forest zones occur are referred to as <u>formations</u> or <u>regions</u>. Minor variations in the distribution of the forest zones due to minor variations in climate or soil materials are often designated as <u>sections</u>.

Areas in which two or more formations, forest zones, sections or other vegetation types blend, are called <u>transitions</u>.

Disturbances (clearing, fire, grazing, logging, etc.) can radically alter the species composition of a stand. With few exceptions, such disturbed sites, if given sufficient time, will develop, through one or more intermediate stages, into a stand of a species composition similar to that of the original climax stand. This process of development towards a climax stand is referred to as <u>secondary succession</u>. The stages through which succession takes effect are called <u>seres</u> or <u>seral stages</u>.

Species other than those forming the local climax stands are called <u>seral species</u>. Through the process of succession, seral species are ultimately replaced by climax species. Seral species which invade recently disturbed sites, thus forming the initial stage of succession, are suitably termed pioneer species.

For interpretive use it is important to know the species of the climax as well as the seral species and which sequence of seral stages culminates in what climax.

Climate

Climatological data for the area was obtained from two sources, the Climatology Section, B. C. Land Inventory (CLI) and the Atmospheric and Environmental Services, Canada Dept. of Environment. The data collected by the B. C. Land Inventory is short term and designed to supplement the long term records obtained by A. E. S.

Frost Free Period and Growing Degree Days	(from Climatology Section - B. C.
	Land Inventory (CLI))

STATION	GDD	FROST FREE PERIOD
Skeena Crossing	2091	99
New Hazelton	1994	85
Insect - L/O	1760	108
Andimavl	1775	87
Kitwanga	1453	59
Four Mile L/O	1660	112
Texas L/O	1289	78
Murder Creek	1684	76
Kathlyn	1433	48
Hudson Bay	1319	50
Smithers DOT	1789	84
Smithers CDA	1618	44
Blunt Creek	1557	92
Bulkley 1500	1625	57
Bulkley 1700	1609	43
Bulkley 1900	1679	80
Bulkley 2100	1840	89
Chapman Burn	901	18
Babine Lake DOT	1219	40
Telkwa River	1294	54
Telkwa DOT	1630	35
Barrett Hatt L/O	1557	88
Owen	1228	
Owen L/O	1014	67
Goosly 200	1388	45

For more detailed description as to methodology, data collection, etc., contact Climatology Section, B. C. Land Inventory (CLI), Victoria, British Columbia.

The above are site specific data and are not necessarily representative of large land units in the vicinity of the station. The wide range in frost free periods and growing degree days is significant and has tremendous influence on the various land uses.

APPROXIMATE ANNUAL 19	68	ELEVATION
New Hazelton	22.37	1030
Quick	21.49	1750
Smithers	21.58	1718
Telkwa (McLure Lake)	17.31	2150
Topley Landing	24.42	2360

AVERAGE MONTHLY AND ANNUAL MEAN TEMPERATURES

TT /													Annua1
Wist			27	36	46	52	56	55	49	39	27	19	<u>37</u>
Babi	ne L 8		25	35	44	52	56	55	47	37	26	14	<u>35</u>
New				41	50	55	59	57	50	41	30	20	<u>39</u>
Smit	hers 13		port 29		48	53	57	56	50	42	27	18	<u>38</u>
Telk	wa 14	20	29	38	47	53	57	56	50	39	27	18	<u>37</u>
Burn		ke 20	26	36	45	52	55	55	48	39	26	17	<u>36</u>
Avera	age j	opt.				<u>:</u>	Summ	er p	<u>pt</u> .				
							1.29						

Babine Lake 20.83	1.29 1.99 1.91 1.58 <u>1.73</u> 8.50					
New Hazelton 18.92 Quick 1 yr. only 23.36	1.17					= 9.03 = 7.90
Smithers (Airport) 20.61	1.31	1.78			-	= 8.26
Smithers (CDA) 18.88	1.35	1.74	1.88	1.53	1.47	= 7.97
Telkwa 17.00	1.10	1.88	1.87	1.40	1.38	= 7.63
Telkwa (McLure Lake) 17.67	1.11	1.93	1.70	1.40	1.43	= 7.57

APPENDIX IV

DESCRIPTIONS OF LANDFORMS (CORDILLERA AND PACIFIC COAST)

A. General Origin of Landforms (Genetic)

1. <u>Aeolian</u> - materials laid down by wind - sand and silt - poorly to moderately well sorted

J. <u>Fluvial</u> (Alluvial) - materials laid down by recent streams and rivers - variable textures (few boulders or coarse

- fragments)
- moderately well to well sorted and moderately well to well stratified
- 4. <u>Glacial fluvial</u> materials deposited by glacial meltwater
 gravel and sand
 ranges from well sorted and well stratified to
 - poorly sorted and poorly stratified

5. (Glacial) lacustrine - materials deposited in quiet fresh water - sand, silt and clay - well sorted and well stratified

6. <u>(Glacial) marine</u> - materials deposited in salt or brackish water - variable textured (most often silt, clay and sand) - moderately well sorted and moderately well stratified, often containing shells

- 7. <u>Glacial till (basal)</u> materials deposited by ice directly without intervening transportation by water - variable textures (most often heterogeneous mixture of sands, silts and clays - some often stony and bouldery) - unsorted and unstratified
- 8. <u>Glacial till (Ablation)</u> materials deposited directly by ice with some modification and transportation by glacial meltwater
 variable textures (often stony and bouldery)
 - poorly sorted and partially stratified

- 9. <u>Bedrock</u> exposed consolidated bedrock of various types - no surface mantle
- 10. Organic materials of organic origin which accumulate in and around closed basins or moisture receiving positions within the landscape or in cool, moist regimes
 generally unstratified
 - usually wet

B. Surface Form or Pattern of Landforms (Morphologic)

- 1. Beach long, narrow smoothly curving to straight ridges, having generally smooth surfaces (0-30% slopes) occupying areas adjacent to former or present bodies of water
 - when in groups, they are more or less parallel, tending to parallel a present or former shoreline
 - no drainage pattern of significance
- 2. <u>Channelled (ridge and swale)</u> characteristic ridge and swale topography (0-10% slopes common)
 - ---often a pattern or series of closely spaced curvilinear ridges and swales
 - a poorly integrated drainage pattern may be evident connecting swales
- 3. <u>Delta</u> relatively level (0-25% slopes) usually triangular shaped form occurring at the mouth of a stream as it enters a lake or ocean
 - may have numerous presently occupied or abandoned channels which appear as an integrated drainage pattern
 - often end abruptly in a fairly steep face where associated with a glacial water body
- 4. <u>Drumlin(ized)</u> elongated smooth streamlined hills (cigar-shaped) which most often occur in clusters (5-40% slopes)
 - striking parallelism of arrangement
 - tendency for development of modified trellis drainage pattern
- 5. <u>Dune(d)</u> characteristic undulating (5-40% slopes) chaotic assemblages of mounds, ridges and hills with variable size, shape and height depending on the particular kind of dune
 - the duned landscape has a surface of low relief, but with many steep slopes
 - no drainage pattern related to the dune forms themselves, but a non-integrated system connecting intervening swales between dunes is common

- 6. <u>Eroded (active) or Dissected (non-active)</u> dissected or eroded by a series of closely spaced gullies or a tightly knit dendritic drainage network (20-80% slopes)
- 7. Esker(s)-crevasse filling(s) irregular sinuous round to flat topped ridges (10-50% slopes) which seem to ignore underlying topography
 - steep side slopes common
 - esker oriented in the direction of glacial movement while crevasse fillings can be oriented in any direction, but are commonly straight
 - no drainage pattern
- 8. Fan level to steeply sloping (0-50% slopes) fan-like form occurring where a stream runs out onto a level plain or meets a slower stream - no drainage pattern as such, but often marked by variegated current scars, abandoned and presently occupied channels
 - noticeable slope towards the fan toe or apron
- 9. <u>Fluted</u> level to gently irregular topography (0-25% slopes) marked by shallow, straight parallel troughs - dendritic drainage pattern
- Hummocky strongly rolling to steep and hilly (20-60% slopes) with roughly equidimensional hills and hollows
 non-integrated, deranged drainage pattern common
- 11. <u>Kame</u> level to strongly irregular (10-50% slopes) hummocks, mounds and terraces often associated with or adjacent to valley walls. - hills and hollows varying in depth and height
 - often short and discontinuous
 - weakly developed non-integrated drainage pattern
- 12. <u>Kettle(d)</u> depression(s) most often steep sided (10-60% slopes) associated with glaciofluvial deposits - visible radial drainage pattern into the depression
- 13. <u>Plain</u> flat to gently undulating surface form (0-10% slopes) - slopes most often simple
 - variable drainage pattern depending on texture of material
- 14. <u>Talus cone</u> very steeply sloping (50%+ slopes) roughly cone shaped form at the foot of a steeper slope or rock cliff - no drainage pattern
- 15. <u>Terrace</u> relatively level (0-5% slopes) flat surface which is terminated by an abrupt change in slope on one or more sides. - often occur in sequence on valley walls or paired on opposite sides of a valley

- 16. <u>Slump(ed)</u> crumpled looking chaotic mixture of complex topography at the base of a steep slope. - source of slump (0-70% slopes) while slump itself may be (10-40% complex topography) - non-integrated, deranged drainage pattern
- 17. <u>Meltwater channel</u> an incised flat bottomed channel often appearing oversized for the present stream which occupies it - side walls (10-60% slopes); channel bottom (0-10%)

GLOSSARY

ALLUVIUM - A general term for all deposits of modern rivers and streams.

- ASSOCIATION A sequence of soils of about the same age, derived from similar parent materials, and occurring under similar climatic conditions but having different characteristics due to variation in relief and in drainage.
- AVAILABLE NUTRIENT That portion of any element or compound in the soil that can be readily absorbed and assimilated by growing plants.
- AVAILABLE SOIL MOISTURE The portion of water in a soil that can be readily absorbed by plant roots; generally considered to be that water held in the soil up to approximately 15 atmospheres pressure.
- BEARING CAPACITY The average load per unit area that is required to rupture a supporting soil mass.
- BEDROCK The solid rock that underlies soil and the regolith or that is exposed at the surface.

BOULDERS - Stones which are larger than 24 inches in diameter.

- CAPABILITY CLASS, SOIL A rating that indicates the general suitability of a soil. It is a grouping of subclasses that have the same relative degree of limitation of hazard. The limitation or hazard becomes progressively greater from Class 1 to Class 7.
- CAPABILITY SUBCLASS, SOIL A grouping of soils that have similar kinds of limitations and hazards. It provides information on the kind of conservation problem or limitation. The class and subclass together provide information about the degree and kind of limitation for broad land-use planning and for the assessment of conservation needs.
- CARBON-NITROGEN RATIO (C/N RATIO) The ratio of the weight or organic carbon to the weight of total nitrogen in a soil or in organic material.
- CATION EXCHANGE CAPACITY (CEC) A measure of the total amount of exchangeable cations that can be held by a soil. Expressed in milliequivalents per 100 g of soil.
- CLAY As a soil separate, the mineral soil particles less than 0.002 mm in diameter; usually consisting largely of clay minerals. As a soil textural class, soil materials that contain 40 or more percent clay, less than 45 percent sand and less than 40 percent silt.

COBBLES - Rock fragments 3 to 10 inches in diameter.

COLOUR - Soil colours are compared with a Munsell colour chart. The Munsell system specifies the relative degrees of the three simple variables of colour; hue, value and chroma. For example: 10YR 6/4 means a hue of 10YR, a value of 6, and a chroma of 4.

- COMPACTION The packing together of soil particles by forces exerted at the soil surface resulting in increased soil density.
- CONSISTENCE (SOIL) The mutual attraction of the particles in a soil mass, or their resistance to separation or deformation. It is described in terms such as loose, soft, friable, firm, hard, stick, plastic, or cemented.
- CREEP Slow mass movement of soil and soil material down relatively steep slopes primarily under the influence of gravity, but facilitated by saturation with water and by alternate freezing and thawing.
- DRAINAGE (SOIL) (1) The rapidity and extent of the removal of water from the soil by runoff and flow through the soil to underground spaces. (2) As a condition of the soil, it refers to the frequency and duration of periods when the soil is free of saturation.
- EDAPHIC (1) Of or pertaining to the soil. (2) Resulting from, or influenced by, factors inherent in the soil or other substrate rather than by climatic factors.
- EROSION The wearing away of the land surface by detachment and transport of soil and rock material through the action of moving water, wind or other geological processes.
- FRIABLE Soil aggregates that are soft and easily crushed between thumb and forefinger.
- FROST HEAVE The raising of a surface caused by ice in the underlying soil.
- GEOMORPHOLOGY The study of landforms as they relate to geologic composition and history.
- GLEYED SOIL An imperfectly or poorly drained soil in which the material has been modified by reduction or alternating reduction and oxidation. These soils have lower chromas or more prominent mottling or both in some horizons than the associated well-drained soil.

GRAVEL - Rock fragments 2 mm to 3 inches in diameter.

GROUNDWATER - Water in the soil beneath the soil surface, usually under conditions where the pressure in the water is greater than the atmospheric pressure and the voids are completely filled with water.

HABITAT - The natural environment of an organism.

ORGANIC HORIZONS - May be found at the surface of mineral soils or at any depth beneath the surface in buried soils or overlying geologic deposits. They contain more than 30 percent organic matter. Two groups of these layers are recognized:

- 0 An organic layer or layers developed under poorly drained conditions, or under conditions of being saturated most of the year or on wet soils that have been artificially drained.
- Of Fibric layer, an organic layer which is the least decomposed of all the organic soil materials. It has large amounts of well-preserved fiber that is readily identifiable as to botanical origin.
- Om Mesic layer, an organic layer which is intermediate in decomposition between the less decomposed fibric and the more decomposed humic materials. This material has intermediate values for fiber content, bulk density and water contents. The material is partly altered both physically and biochemically.
- Oh Humic layer, an organic layer which is the most decomposed of all the organic soil materials. It has least amount of plant fiber, the highest bulk density values and the lowest saturated water content. This material is relatively stable having undergone considerable change from the fibric state primarily because of oxidation and humification.
- L-F-H- These are organic layers developed under imperfectly to well drained conditions.
- L An organic layer characterized by the accumulation of partly decomposed organic matter.
- F An organic layer characterized by the accumulation of partly decomposed organic matter. The original structures are discernible with difficulty. Fungi mycelia are often present.
- H An organic layer characterized by an accumulation of decomposed matter in which the original structures are indiscernible.

MASTER MINERAL HORIZONS AND LAYERS - Mineral horizons are those that contain less organic matter than that specified for organic horizons.

A - A mineral horizon or horizons formed at or near the surface in the zone of removal of materials in solution and suspension and/or maximum accumulation of organic matter. Included are: (1) horizons in which organic matter has accumulated as a result of biologic activity (Ah); (2) horizons that have been eluviated of clay, iron, aluminum, and/or organic matter (Ae); (3) horizons having characteristics of (1) and (2) above but transitional to underlying B or C (AB or A and B); (4) horizons markedly disturbed by cultivation or pasture (Ap).

- B A mineral horizon or horizons characterized by one or more of the following: (1) an enrichment in silicate clay, iron, aluminum or humus, alone or in combination (Bt, Bf, Bfh, and Bh); (2) an alteration by hydrolysis, reduction or oxidation to give a change in colour or structure from horizons above and/or below and does not meet the requirements of (1) and (2) above (Bm, Bmg).
- C A mineral horizon or horizons comparatively unaffected by the pedogenic processes operative in A and B, excepting (1) the process of gleying, and (2) the accumulation of calcium and magnesium carbonates and more soluble salts (Cca, Csa, Cg and C).
- R Underlying consolidated bedrock, such as granite, sandstone, limestone, etc. The boundary between the R layer and any overlying unconsolidated material is called a lithic contact.

LOWER CASE SUFFIXES

- b Buried soil horizon.
- c A cemented (irreversible) pedogenic horizon.
- ca A horizon with secondary carbonate enrichment where the concentration of lime exceeds that present in the unenriched parent material. It is more than four inches thick and if it has a Ca CO3 equivalent of less than 15 percent it should have at least 5 percent more CaCO3 equivalent, it should have 1/3 more CaCO3 equivalent than IC.
- cc Cemented (irreversible) pedogenic concretions.
- e A horizon characterized by removal of clay, iron, aluminum or organic matter alone or in combination. It is higher in colour value by one or more units when dry than an underlying B horizon.
- f A horizon enriched with hydrated iron. It usually has a chroma of three or more. The criteria for an f horizon (excepting Bgf) are that the oxalate-extractable Fe and Al exceeds that of the IC horizon by 0.8 percent or more (Fe + Al) 0.8% and the ratio of organic matter to oxalate-extractable iron is less than 20. The horizons are differentiated on the basis of organic matter content into: Bf, less than 5 percent organic matter; Bfh, 5 to 10 percent organic matter; Bhf, more than 10 percent organic matter.
- g A horizon characterized by gray colours and/or prominent mottling indicative of permanent or periodic intense reduction. Chromas of the matrix are generally one or less.
- h A horizon enriched with organic matter. When used with A alone, it refers to the accumulation of organic matter and must contain less than 30 percent organic matter. It must show one Munsell unit or value darker than the horizon immediately below or have one percent more organic matter than the IC. When used with A and e it refers to an Ah horizon which has been degraded as evidenced, under natural conditions, by streaks and splotches and often by platy structure.

- j Used as a modifier of e, g, n, and t to devote an expression of, but failure to meet the specified limits to the suffix it modifies.
- k Presence of carbonate as indicated by visible effervescence with dilute HC1.
- m A horizon slightly altered by hydrolysis, oxidation or solution, or all of them to give a change in colour or structure or both. The suffix is used with B to denote a B horizon that is greater in chroma by one or more units than the parent material or that has granular, blocky or prismatic material or that has granular, blocky or prismatic structure without evidence of strong gleying and has (Fe + A1) 0.8%. It may not be used under an Ae horizon but may be used under an Aej horizon. This suffix can be used as Bm or Bmgj.
- p A layer disturbed by man's activities, i.e. by cultivation and/or pasturing. To be used only with A.
- s A horizon with salts including gypsum which may be detected as crystals or veins, or as surface crusts of salt crystals, or by distressed crop growth, or by the presence of salt tolerant plants.
- Sa A horizon with secondary enrichment of salts more soluble than calcium and magnesium carbonates where the concentration of salts exceeds that present in the unenriched parent material. The horizon is four inches or more thick. The conductivity of the saturation extract must be at least 4 mmhos/cm and must exceed that of the C horizon by at least one-third.
- t A horizon enriched with silicate clay. It is used with B alone (Bt, Btg, etc.)
- HUMMOCKY Hilly, uneven landscape resulting from deepseated soil movement usually of a rotational nature.
- INCLUSION Soil type found within a mapping unit that is not extensive enough to be mapped separately or as part of a complex.
- LANDFORM Structural configuration of the topography as a result of past and present geological activity.

LEACHING - The removal from the soil of materials in solution.

LIQUID LIMIT (UPPER PLASTIC LIMIT) - The water content corresponding to an arbitrary limit between the liquid and plastic states of consistency of a soil. The water content at this boundary is defined as that at which a pat of soil cut by a groove of standard dimensions will flow together for a distance of half inch under the impact of 25 blows in a standard liquid limit apparatus.

- MAPPING UNIT Any delineated area shown on a soil map that is identified by a number. A mapping unit may be a soil unit, a miscellaneous landtype, or a complex.
- MOTTLES Irregularly marked spots or streaks, usually yellow or orange but sometimes blue. They are described in order of abundance (few, common, many), size (fine, medium, coarse) and contrast (faint, distinct, prominent). Mottling in soils indicates poor aeration and lack of good drainage.
- PARENT MATERIAL The unaltered or essentially unaltered mineral or organic material from which the soil profile develops by pedogenic processes.
- PEDOLOGY Those aspects of soil science involving constitution, distribution, genesis and classification of soils.

PERCOLATION - The downward movement of water through soil.

- PERMEABILITY The ease with which water and air pass through the soil to all parts of the profile. It is described as rapid, moderate or slow.
- pH The intensity of acidity or alkalinity, expressed as the logarithm of the reciprocal of the H+ concentration. pH 7 is neutral, lower values indicate acidity and higher values alkalinity.
- PLASTIC LIMIT The water content corresponding to an arbitrary limit between the plastic and the semisolid states of consistency of a soil.
- PLASTICITY INDEX The numerical difference between the liquid and the plastic limit. The plasticity index gives the range of moisture contents within which a soil exhibits plastic properties.
- PROFILE, SOIL A vertical section of the soil through all its horizons and extending into the parent material.
- REACTION, SOIL The degree of acidity or alkalinity of a soil, which is usually expressed as a pH value. Descriptive terms commonly associated with certain ranges in pH are: extremely acid, <4.5; very strongly acid, 4.5-5.0; strongly acid, 5.1-5.5; moderately acid, 5.6-6.0; slightly acid, 5.1-6.5; neutral, 6.6-7.3; slightly alkaline, 7.4-7.8; moderately alkaline, 7.9-8.4; strongly alkaline, 8.5-9.1; and very strongly alkaline, >9.0.
- SAND A soil particle between 0.05 and 2.0 mm in diameter. The textural class name for any soil containing 85 percent or more of sand and not more than 10 percent of clay.
- SEEPAGE The escape of water downward through the soil. (2) The emergence of water from the soil along an extensive line of surface in contrast to a spring where the water emerges from a local spot.
- SILT Soil mineral particles ranging between 0.05 and 0.002 mm in equivalent diameter. Soil of the textural class silt contains 80 percent silt and less than 12 percent clay.

- SLUMP A deep-seated, slow moving rotational failure occurring in plastic materials resulting in vertical and lateral displacement.
- SOIL The unconsolidated mineral material on the immediate surface of the earth that serves as a natural medium for the growth of land plants.
 Soil has been subjected to and influenced by genetic and environmental factors of: parent material, climate (including moisture and temperature effects), macro- and micro- organisms, and topography, all acting over a period of time.
- SOIL TEXTURE The relative proportions of the various soil separates in a soil as described by the classes of soil texture.

For convenience, soil textures are grouped together into five classes as follows:

Coarse textured - sands, loamy sand, loamy fine sand Moderately coarse textured - loamy very fine sand, sandy loam, fine sandy loam Medium textured - very fine sandy loam, loam, silt loam, silt, sandy clay loam (light) Moderately fine-textured - clay loam, silty clay loam, sandy clay loam (heavy)

Fine-textured - sandy clay, silty clay, clay

- STRATIFIED MATERIALS Unconsolidated sand, silt and clay arranged in strata or layers.
- STRUCTURE The combination or arrangement of primary soil particles into secondary soil particles, units or peds, which are separated from a adjoining aggregates by surface of weakness. Aggregates differ in grade (distinctness) of development. Grade is described as structureless (no observable aggregation or no definite orderly arrangement: amorphous if coherent, single-grained if noncoherent), weak, moderate, and strong. The aggregates vary in class (size) and are described as fine, medium, coarse, and very coarse. The size classes vary according to the type (shape) of structure. The types of structure mentioned in this report are:

Granular - having more or less rounded aggregates without smooth faces and edges.

Platy - having thin, plate-like aggregates with faces mostly horizontal. Blocky - having blocklike aggregates with sharp, angular corners. Subangular blocky - having blocklike aggregates with rounded and flattened faces and rounded corners.

By convention an aggregate is described in the order of grade, class, and type, e.g. strong, medium, blocky and moderate, coarse, granular. In the parent material of soils the material with structural shapes may be designated as pseudoblocky, pseudoplaty, etc. In stratified materials a bed is a unit layer distinctly separate from other layers and is one or more cm thick, but a lamina is similar layer less than 1 cm thick. TOPOGRAPHY - The shape of the ground surface such as hills, mountains or plains. The soil slopes may be smooth or irregular. The slope classes used in this report are defined as follows:

depressional or nearly level very gently sloping or gently undulating gently sloping or undulating moderately sloping or gently rolling	0 to 0.5 0.5+ to 2 2+ to 5 5+ to 9
strongly sloping or moderately rolling	94 to 15
steeply sloping or strongly rolling	15+ to 30
very steeply sloping or hilly	30+ to 60
extremely sloping or very hilly	over 60

- UNIFIED SOIL CLASSIFICATION SYSTEM (ENGINEERING) A classification system based on the identification of soils according to their particle size, gradation, plasticity index and liquid limit.
- WATER TABLE The upper limit of the part of the soil or underlying rock material that is wholly saturated with water.
- WATER-HOLDING CAPACITY The ability of a soil to hold water. The waterholding capacity of sandy soils is usually considered to be low, while that of clayey soils is high. It is often expressed in inches of water per foot depth of soil.
- WEATHERING The physical and chemical disintegration, alteration and decomposition of rocks and minerals at or near the earth's surface by atmospheric agents.

