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Executive Summary

The Habitat Recovery Implementation Group (RIG) of the British Columbia Coastal Northern Goshawk (Accipiter gentilis laingii) Recovery Team has developed a habitat model framework to assess the amount, quality, and distribution of goshawk habitat across the species range in British Columbia.  The overall model framework consists of a nesting habitat model, a foraging habitat model, and a territory model that assesses the amount, quality and distribution of nesting and foraging habitat with respect to local territory size and spacing patterns of goshawks.  The structures of the nesting and foraging habitat models were based on the Habitat Suitability Index (HSI) methodology.  A goal associated with model implementation was to conduct model verification activities for the nesting and foraging model outputs within each of four goshawk conservation regions: Haida Gwaii, North Coast, South Coast and Vancouver Island.  The objectives of verification activities are to provide estimates of model accuracy and to provide modelers with data to evaluate and refine the models to improve their performance.  This report summarizes goshawk model verification work conducted in the southern portion of the North Coast Conservation Region (Bute Inlet to Dean Channel) in October 2008.

Verification involved comparing model ratings to field ratings, as assessed by goshawk experts.  Both model and field ratings used continuous scores between 0 and 1.  Formal assessment training was conducted to standardize rating criteria and calibrate estimates among field personnel prior to and during field work to reduce bias and variation among observers.  Also, the field assessments were ‘blind’ – field personnel did not know the model predictions for the areas they assessed.  Model accuracy was examined at three scales (0.8 ha subsample, 10 ha sample unit, and ~ 3 million ha project) to address spatial accuracy issues identified during a similar project on Haida Gwaii and to provide information for potential use of the model outputs at those scales.  The primary scale of interest was the 10 ha sample unit scale because that was large enough to address plot level spatial accuracy issues but still small enough to be relevant to stand-level management activities.  The sampling design consisted of 55 sample units, with 9 subsamples in each, located across the project area using a random cluster design.  Three accuracy assessment analysis methods were used: 1) correspondence of model to field ratings using 2- and 4-class bins, 2) correspondence of model to field ratings within a 0.125 HSI unit range, and 3) an approach based on the difference between model and field ratings.  Prior to field work the Habitat RIG identified a 70% model accuracy target to benchmark model performance against.  

At the ~3 million ha project scale (i.e. completely aspatial comparison of model predictions and field ratings) the accuracy of both the nesting and foraging models exceeded 70% for all scoring approaches.  At the 10 ha sample unit scale, the only scoring method where model accuracy exceeded 70% was using the 2-class correspondence method (71% for nesting and 86% for foraging).  (The score for the difference-based approach also exceeded 70% for both nesting and foraging models, but a 70% target may not be appropriate for this method; see discussion in body of report).  The accuracy scores using the 4-class correspondence method and 0.125 HSI correspondence methods were less than 57% for the both nesting and foraging models.  In addition to having substantial errors, model outputs were also biased.  The nesting model outputs overestimated suitability by 0.09 HSI units, on average, and the foraging model underestimated suitability by 0.06 HSI units, on average.  From the error matrix using the 4-class correspondence approach, these biases were expressed as 45% false positive errors and 20% false negative errors for the nesting model, and 12% false positives and 45% false negatives for the foraging model.  

Key patterns of model performance and implications relating to model use include:

1. Both the nesting and, to a lesser degree, foraging model outputs have a substantial error rate at the 0.8 ha subsample and 10 ha sample unit scales.  This requires precautionary use of the model outputs, possibly including:
a) verification activities, such as air photo assessment or ground truthing, depending on the use of the outputs, 
b) model revisions tailored to specific uses or areas (e.g. possibly adding canopy closure to the nesting model where accurate data are available), and
c) not using these models for certain activities due to their low accuracy at specific scales.

2. Model errors are largely driven by forest cover errors.  This has two implications:

a. Errors in the underlying data largely preclude model revisions to improve performance, and

b. Use of the model outputs should be consistent with generally accepted practices and limitations associated with using forest cover data for other forest management and habitat management activities.

3. Model accuracy decreases with the spatial resolution of the analysis scale.  Correspondingly, use of the model should become more precautionary at finer spatial resolutions.  For example, the importance of field verification would be much greater for an exercise assessing the impact of proposed cutblocks on nesting habitat than it would be for an exercise comparing the amount of suitable nesting habitat among Landscape Units.

4. In addition to errors, both nesting and foraging models have bias associated with their predictions.  The nesting model tends to overestimate suitability (0.09 HSI units on average); the foraging model tends to underestimate suitability (0.06 HSI units on average).  For management of nesting habitat this has two implications:

a. When dealing with aspatial model outputs (i.e. simple habitat amounts by quality) the user should recognize that the model predictions are an overestimate of what likely really occurs and precautionary approaches that account for that bias should be considered.

b. When dealing with spatial outputs (e.g. delineating patches of high suitability habitat for some type of management exercise) the nesting model has more false positives than false negatives.  This means that the model infrequently misses potentially suitable habitat, but habitat that is classified as suitable by the model is sometimes lower quality in reality.  

(Implications for foraging habitat biases are reversed, but have lower importance because the bias is smaller, foraging habitat is much more extensive than nesting habitat, and lower management emphasis is associated with foraging habitat.)

5. With respect to the 70% accuracy target, model outputs only met that level when categorized using a coarse, 2-class system (Unsuitable, HSI= 0-0.5; Suitable, HSI= 0.5-1).  However, there are compelling reasons to consider stratifying across the broad 2-class bins, such as subdividing classes (e.g. Suitable into Moderate and High) or using raw HSI values, for management purposes:

a. Within each 2-class bin there is a significant, albeit highly variable, relationship showing that, on average, true suitability increases with increasing HSI values.

b. Management across the range of suitable HSI values is required to provide representation across the range of environmental conditions that occur within a class.  For example, with the nesting habitat model, if management exercises treated all suitable habitat (HSI values 0.5-1.0) equally, and were biased toward the lower end of that range, it could result in a bias towards steeper slopes, higher elevations, younger stands, and suboptimal forest composition and BEC variants.  In addition to these conditions generally being suboptimal (point a, above), it is important for goshawk habitat management to account for variation in individual selection and to provide resistance and resiliency against factors such as climate change and pest outbreaks.  

It is important to emphasize that this strategy does not reduce the expected accuracy of the model outputs below the 2-class score.  Stratification is conducted only to provide representation across the range of conditions with the category of interest.  

At the time this report was completed the Habitat RIG was still discussing the relative merits of each scoring method and interpretation of the results.  A third party biometric review of these methods and results was planned and additional scoring analyses were also being considered.  For an update on the current status of this project contact Erica McClaren at Erica.McClaren@gov.bc.ca.  
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Coastal Northern Goshawk Habitat Model Field Assessment

Introduction

The Habitat Recovery Implementation Group (RIG) of the British Columbia Coastal Northern Goshawk Recovery Team has developed a habitat model framework to assess the amount, quality, and distribution of goshawk habitat across the species range in British Columbia.  The overall model framework consists of a nesting habitat model, a foraging habitat model, and a territory model that assesses the amount quality and distribution of nesting and foraging habitat with respect to local territory size and spacing patterns of goshawks.  A goal associated with model implementation was to conduct model verification and/or validation activities for the nesting and foraging model outputs within each of the four goshawk conservation regions Haida Gwaii, North Coast, South Coast and Vancouver Island.  The purposes of verification/validation activities are to provide estimates of model accuracy and to provide modelers with data to evaluate and refine the model ratings and structure to improve its performance.  As part of early accuracy assessment design discussions, the Habitat RIG identified an accuracy target of 70±80% to benchmark model performance against.  I interpreted this target in the normal statistical confidence interval context, and used the mean and variance of individual sample scores to derive an 80% confidence interval.  

Although both verification and validation are methods of testing model performance, they differ in the types of information they use to compare to model predictions.  Habitat model verification tests model performance using an indirect measure of use by the species of interest, such as sign (e.g. cone piles for a foraging model for red squirrels) or field ratings by a species expert (Brooks 1997).  Validation examines model performance using a direct measure of density of, or use by, the species of interest (Brooks 1997).  Although preferred, habitat model validation generally requires much more intensive work to obtain the required data than verification.  For the goshawk model, validation of the nesting model would require locating an independent sample of nest areas; validation of the foraging habitat model would require a telemetry study that compared relative habitat use of goshawks to the foraging HSI ratings.  Although collection of validation data remains a longer term goal, neither of these validation data types could be obtained within the current timeframes or budgets of the Habitat RIG, and the RIG decided to conduct verification of the nesting and foraging models using field ratings by species experts. 

This report summarizes goshawk model verification work conducted in the southern portion of the North Coast Conservation Region (Bute Inlet to Dean Channel) in October 2008.  This project assessed the nesting and foraging habitat outputs of the Coastal Northern Goshawk Habitat Model (Mahon et al 2008).  The habitat models are expert opinion models (calibrated with local data) consistent with Habitat Suitability Index (HSI) methodology (US Fish and Wildlife Service 1981).  Key variables in the model include (from forest cover) inventory type group, height, age, distance to edge, and (from TRIM) slope, elevation.  Model outputs for nesting and foraging habitat suitability are a continuous rating from 0-1.  The specific project objectives were:

1. Provide accuracy estimates of the nesting and foraging model outputs at plot (~1ha), stand (10-50ha) and study area scales for the southern half of the NCCR.

2. Provide model experts with data to evaluate and refine ratings for specific areas of uncertainty (e.g. when age and height of second growth become optimal).

Methods

Issues from Prior Verification Work

A stratified random, point-based verification project was conducted on Haida Gwaii in 2006/07 (strata were quartile categories [nil, low, moderate, high] of the 0-1 suitability index).  Point level nesting habitat accuracy was 58%, project level nesting accuracy was 85%.  Four key issues arose from that work that I tried to address in this project.

1. Access needed to be more seriously factored into future sample plans.  Poor access on Haida Gwaii resulted in <40% of the target random sample being assessed.

2. Spatial accuracy was a substantial problem.  At several of the field plots there were discrepancies between the field and GIS data (e.g. clearcut vs mature forest).  Frequently, corresponding data occurred within 100m of the sample point, suggesting the issue was more related to spatial accuracy than map attribute error.  

3. A 4-class categorical field rating system was used in the field and that approach was unsatisfactory in two ways.  First the classes were constraining in the field when actual suitability was near a class break (i.e. measurement precision was not fine enough).  The second issue related to scoring.  In several cases model and field ratings were close, but straddled a category boundary (e.g. HSI=0.74, field rating = High, but with a comment suitability was at the low end of High) and were scored as being inaccurate due to the arbitrary category boundaries.

4. To assess observer bias, two observers provided independent ratings at each plot on Haida Gwaii.  Although there were some differences in ratings between observers, the ratings usually corresponded, and it was suggested that survey effort would be better allocated by having observers work independently and sample more areas.  This project recognized that observer bias could still be an issue and formal standardization and calibration exercise were conducted to minimize observer bias.

Sources of Error and Bias

Errors in the model output can be attributed to four main types of error and bias:

1. Spatial Accuracy.  

a. 20-100m spatial error is common in both the TRIM DEM and Forest Cover

b. Additional spatial uncertainty is introduced when the FC is converted to raster and the DEM is aggregated to 100m pixels.  

2. Inventory Attribute Error.

a. Various errors and biases in the Forest Cover are known to occur.  In addition input data is dated ~ 2005 and lacks more recent cutblocks.  Accuracy is also scale-sensitive with moderate accuracy at the level of individual polygons, but generally good accuracy at large scales, such as TSAs.  

b. TRIM data is assumed to be accurate although several anomalies occur across the study area.  

3. Observer Bias.  Different field biologists can also have different interpretations of habitat suitability in the field.  This is another confounding factor and attempts were made to minimize observer bias via standardization and calibration exercises prior to field assessments and by using observers with several years of goshawk habitat assessment experience.

4. Goshawk Model Error.  This is really what we are trying to assess, with the other factors being confounding variables we need to account for.  Model error can result from inappropriate rating of individual attributes and inappropriate combinations of attribute ratings via the model equation.

The first three sources of error are essentially nuisance factors that confound our ability to assess the main factor of interest, model error.  Aspects of the study design explicitly attempted to address those confounding factors.  

Overview of Study Design

This project was consistent with provincial approaches developed to formally assess accuracy of ecosystem maps (Meidinger 2003; Moon et al. 2005) and more generally with the principles and practices of thematic map accuracy assessment (Congalton and Green 2009).  The following are key study design factors that were designed to address concerns /limitations identified in prior work, account for confounding factors affecting model assessment, and to meet key standards associated with map assessment.

1. A multi-scale assessment approach was used to facilitate accuracy assessment at subsample (~1 ha), sample unit (10ha) and study area scales. A small-area sample design (Moon et al. 2005) formed the basis of this approach and was designed specifically to account for spatial accuracy problems of point samples.  

2. A priori sample size/power calculation was conducted to ensure an adequate sample size was achieved to meet desired confidence levels for the primary scale of interest – 10 ha sample unit scale.   

3. The delineation of the project area involved an explicit tradeoff between constraining the extent of the area to portions that were accessible by boat or road while maintaining as representative a sample of the total central coast as possible.  

4. Field assessments were done by goshawk experts.  Criteria for field ratings were standardized prior to field work and calibrated at the start and middle of the field program.  

5. Habitat suitability in the field was rated using the same continuous 0-1 range as output from the model to provide the most direct comparisons between model and field ratings and to avoid the limited measurement precision associated with using categorical ratings.  

6. Field assessments were ‘blind’ – that is that field personnel did not know the model predictions for the sites they were assessing.  

7. Three accuracy scoring approaches were used to assess the robustness of overall results and maximize the information gained from the assessment.  

Details about each of these factors are outlined below. 

Study Area

The study area encompassed the southern portion of the Recovery Team’s North Coast Conservation Region from Bute Inlet to Dean Channel, including the Broughton Archipelago and most of the Discovery Islands.  The geography of the regions is characterized by steep, forested coast mountain range bisected by long, narrow inlets often extending inland more than 100 km.  The overall vegetation biome is considered temperate rainforest, although precipitation patterns vary considerably across the region depending on distance from the coast, elevation and aspect, and a major rain shadow effect from Vancouver Island that influences the southern half of the study area.  Three Biogeoclimatic zones occur, the Coastal Western Hemlock (CWH) zone, the Mountain Hemlock (MH) zone, and the Alpine Tundra (AT) zone.  

Based on the access problems encountered during the Haida Gwaii verification work, the overall study area was reduced to an access-constrained study area within 800 m of the coast line or roads.  This was an explicit tradeoff trade-off decision that attempted to balance having areas accessible to field sampling while still maintaining a representative sample of the larger overall study area.  To assess the potential bias associated with using the access constrained study area a post-hoc test of the proportion of field plots across BEC variants was compared to the proportional extent of each variant within the overall study area.  

Assessment Scale and Sample Unit Design

Accuracy assessment was evaluated at three spatial scales: 0.8 ha subsample, 10 ha sample unit, and ~3 million ha study area.  The scale of primary interest was the 10 ha scale, which was large enough to account for the spatial accuracy issue associated with plot-level sampling on Haida Gwaii (equivalent to the subsample scale used here) but still small enough to be relevant to stand-scale type management such as assessing cutblock locations, Old Growth Reserve Areas, and Wildlife Habitat Areas.

The sampling design method that was used was a 10 ha sample unit, with subsamples within it.  This approach is consistent with the “small area” sampling design developed by Moon et al. (2005) to account for spatial accuracy issues and very small map units when assessing accuracy of ecosystem maps.  In this project, accuracy was assessed for the three scales of interest based on the level of spatial dependency enforced for comparisons of field and model data.  At the subsample scale, field and model data were compared using data from the same plot.  At the sample unit scale the field ratings and model predictions from the subsamples were compared aspatially within the same sample unit (i.e. without maintaining subsample level comparison).  For example, consider a simple rating scheme of suitable (1) and unsuitable (0) habitat, and a sample unit with four subsamples having field/model ratings of 0/1, 1/1, 0/0 and 1/0.  At the subsample level the accuracy is 50% because two out of four of the subsamples have ratings that correspond.  The sample unit level accuracy is 100% because both model and field ratings contain two 0’s and two 1’s.  Essentially what we are saying when using the small area sampling approach is that we are confident that both the field and model subsamples occur within the sample unit, but we are not confident of exactly where they are due to spatial accuracy concerns at the subsample scale.  At the project scale the field and model data are compared completely aspatially, irrespective of sample unit or subsample location.  

The specific sampling design consisted of a 10 ha sample unit that was surveyed using nine subsamples spaced 100 m along a 900m triangular transect (Figure 1).  A triangular transect was used, following Moon et al. (2005), because it provided a good balance between representative coverage of the sample unit and efficient sampling, with the surveyor completing the transect near where they started, thus minimizing travel time.  


[image: image1]
Figure 1.  Sample unit design used in goshawk habitat model verification on the Central Coast.  The sample unit was a 10 ha circular area (green circle) that was surveyed using nine subsamples (brown dots) spaced 100 m apart.  (Base map here is forest cover shaded by 4-class nesting habitat suitability model predictions).  

Sample Size Requirements

A detailed approach for determining sample sizes requirements to meet specific confidence levels using small area sampling are identified in Moon et al (2005).  Approximate sample sizes associated with desired confidence levels, acceptable sampling errors and sample variance are provided below in Table 1.  Based on relative conservative values of 90 % confidence level, 7% sample error, and 22.5% sample variance a sample size estimate of 30 is generated.  In addition to meeting statistical requirements, consideration was also given to ensuring general habitat representation across the study area.  Types of representation generally include the range of model outputs, the range of underlying environmental conditions, and geographic representation across the study area.  I focused representation considerations on BEC variant as a surrogate of potential environmental and geographic variation and conducted a post-hoc test of the sample as an overall assessment of representation.  As a general rule of thumb a minimum sample of 50 is considered to provide reasonable environmental and geographic representation within a stratum or project area (Congalton and Green 2009).  Based on this information, a sample size of 50 was used as a target sample size and 30 as an absolute minimum.  

Table 1.  Approximate sample size requirements for small area sampling accuracy assessment.

	Confidence level
	Sample Error
	Sample Variance (SD)

	
	
	0.150
	0.175
	0.200
	0.225

	0.9
	0.05
	26
	35
	46
	59

	0.9
	0.07
	13
	18
	24
	30

	0.9
	0.09
	8
	11
	14
	18

	0.8
	0.05
	16
	22
	28
	36

	0.8
	0.07
	8
	11
	14
	18

	0.8
	0.09
	5
	7
	9
	11


Sample size requirements are specific to the overall study area of interest and, generally, sample sizes will not be sufficient to assess accuracy of strata or subregions of the original area the sample size was initially estimated for.  In this project the area of inference was the entire project area and accuracy statements cannot be made for subportions of the overall study area (e.g. BEC zone).  To have been able to assess accuracy at a strata level, such as within BEC zone, sample size requirements would have had to be increased as a multiple of the number of units within the strata (e.g. 3 BEC zones would require 3x30=90 samples).  

Sample Plan Design

A clustered, random sample design was used to locate sample units across the access constrained project area.  This approach meets the random sample requirement to provide a statistically valid and representative sample while grouping sample units within a specified distance for more efficient sampling (Meidinger 2003).  The way sample units were selected was to first randomly select 15 points across the constrained study area.  In addition to the access constraint of having to be within 800m of the coast or a road, I further constrained the random sample so that it could not start in Nil value (HSI values 0-0.25) habitat.  This was because the Habitat RIG had high confidence in both 1) model performance for those habitat types and 2) the accuracy of the underlying forest cover associated with those conditions, so that verifying them in the field would have been largely uninformative.  I then buffered each of the 15 original random points by 5 km and selected another seven random points within each buffer area, resulting in eight points within each cluster.  I used each random point as a starting point for the sample unit transects and a random bearing was taken to start the 900 m triangular transect.  The nine subsamples were plotted using a custom tool for ArcGIS developed by Jeff Jenness for this project.  As a result of being generated in GIS the distances between subsample plots were horizontal distance, not slope distance.  

Following initial sample unit selection, a comprehensive map assessment of each sample unit transect was conducted to ascertain whether the area could actually be accessed in the field.  Key factors that were examined were road conditions, stream crossings, and slope gradient.  Map information used in the evaluation included TRIM water, DEM slopes, TRIM roads, a recent cutblock layer, satellite imagery, and Google Earth.  Sample units that required crossing of ≥3rd order streams or >140% slope were rejected.  With respect to road condition, sample units were rejected if they required access > 1 km along a road where there was evidence that the road may not be drivable via motorcycles.  Those conditions included obvious alder regeneration, deactivation, and bridge removal (most of which were relatively evident on Google Earth).  Conversely, recent cutblocks provided evidence the road was likely open.  A sample unit transect was also rejected, if more than two subsamples occurred in non-habitat types such as water or rock.  If a transect was rejected, the first resampling approach was to reverse the initial transect bearing by 180 degrees.  If the transect was still unacceptable it was dropped and a new random starting point and transect bearing were drawn.  

Field Assessment

At each sample unit cluster, sample units were surveyed in their order of the random draw.  Each sample unit was surveyed by one biologist except during calibration surveys.  With three surveyors, either three or six sample units were normally surveyed at each cluster, depending primarily on how much travel time was expended traveling between clusters.  Surveyors navigated to each subsample plot using GPS units loaded with the plot coordinates from the GIS-based sample plan.  Recent model GPS units with SiRF technology proved to be critical in obtaining consistent reception and accurate locations under thick canopy and in the mountainous terrain.  

Field assessment consisted of 2 components:

1. Field rating of goshawk habitat suitability (nesting and foraging), and

2. Collection of basic habitat attribute information that could be used to 

a. verify relationships between habitat conditions influencing goshawk use (e.g. subcanopy flyways) and proxies available in GIS databases (e.g. stand height), 

b. quantify errors and biases in forest cover information, and

c. evaluate relationships between suitability and individual environmental variables that could provide a basis for adjusting attribute rating curves in the models

Habitat Suitability Rating

Field ratings by species experts are essentially a subjective interpretation of habitat quality.  To ensure that field ratings approximated true habitat quality for goshawks it was important that assessments were conducted by experienced goshawk ‘experts’.  Personnel who conducted this work had the following expertise:  they had worked with goshawks for at least six years, had conducted habitat assessments at >50 goshawk nest areas, were familiar with goshawk nesting and foraging habitat selection literature, were familiar with standard habitat assessment procedures including stand mensuration and BEC classification, and had experience in temperate rainforest ecosystems.  

In addition to ensuring that assessments were conducted by experienced personnel, formal exercises were conducted to standardize the criteria each biologist used to develop field ratings and to calibrate field ratings before and during the field program.  These exercises included: 1) a thorough review of the BC Coastal Goshawk Habitat Model (Mahon et al 2008) and discussion of its assumptions, local data, and broader goshawk habitat literature, 2) explicit definition of typical habitat conditions found across the range of habitat suitability and standardization of the criteria that would be used to decide on ratings in the field, and 3) calibration surveys by all personnel on the same transect to ensure ratings are similar among observers (one at the beginning of the surveys and one mid way through).  Typical habitat conditions found across the range of habitat suitability are outlined in Tables 1 and 2 for goshawk nesting and foraging habitat, respectively.

Field personnel estimated suitability ratings for goshawk nesting and foraging habitat using a continuous scale 0 – 1, consistent with the HSI model outputs.  The general thought process used to derive a rating was to first decide on the appropriate quartile, then decide on a more precise rating based on the whether the suitability was on the low, middle, or high end of that quartile.  Usually ratings were usually estimated to 0.05 increments because it was difficult to estimate suitability at resolutions finer than that.  The exception to using 0.05 increments was that ratings could not occur on quartile breaks (0.25, 0.50, 0.75).  This was done to remove any uncertainty as to which class the rating belonged to if categorized.  To avoid the quartile values, ratings were reduced or increased by 0.01 units.  Ratings were based on the ‘best half’ of the area within the 50m radius subsample plot.  

Table 2.  Description of rating interpretations and typical habitat conditions found across the gradient of nesting habitat suitability for Northern Goshawks in Coastal BC.  The purpose of this table was to provide a basis for goshawk experts to standardize the criteria they used to decide on suitability ratings in the field.  This is not a cookbook type lookup table that non-experts could use to generate reliable field calls.

	Suitability Rating
	0 – 0.25

(Nil)
	0.25 – 0.50

(Low)
	0.50 – 0.75

(Moderate)
	0.75 – 1.00

(High)

	Interpretation
	Unsuitable.  Habitat fails to provide minimum requirements.
	Suitability Unknown.  Habitat provides theoretical minimum requirements for supporting a nest, but use by goshawks is rarely observed.  Suitability of two or more habitat variables is suboptimal, substantially reducing the overall suitability of the stand.  
	Suitable.  Suitability of one or two habitat variables is lower than optimal conditions but minimum requirements still exceeded.  Minority of nest sites expected to occur in Moderate class habitat.  
	Suitable.  All habitat variables meet optimal conditions.  Majority of nest sites are expected to occur in High class habitat.

	Nest Platforms1
	None
	Very Limited
	Somewhat Limited
	Common

	Subcanopy Flyways2
	Either overdense stands with virtually no flyways or very open stands with few, interspersed trees with virtually no canopy 
	Flyways limited by multistoried stand structure or overdense stand (e.g. young forest)
	Flyways somewhat limited by multistoried stand structure
	Many clear flyways >30m in length below a closed overstory

	Forest Spp
	non-forested or forested bog
	Yc, Pl, Bl, Cw
	Ba, Hm, deciduous
	Hw, Ss, Fd

	Structural Stage
	0 - 4
	4 - 7
	5 - 7
	(5) 6 + 7

	Height
	<14m
	14 - 20
	20 - 26
	> 26m

	Canopy Closure
	<20%
	<35%
	35 – 45%
	( 45%

	Expected % use3
	0%
	0-10%
	10-25%
	70-90%


1 Branches large enough and in appropriate form to support a nest

2 Flyways through the B2 and A3 layers to access nests and prey

3 Expected distribution of a sample of nest areas at a regional level.  Use of moderate and low quality habitats reflects heterogeneity of individual selection and issue of preference vs minimum requirement.

Table 3.  Description of rating interpretations and typical habitat conditions found across the gradient of foraging habitat suitability for Northern Goshawks in Coastal BC.  The purpose of this table was to provide a basis for goshawk experts to standardize the criteria they used to decide on suitability ratings in the field.  This is not a cookbook type lookup table that non-experts could use to generate reliable field calls.

	Suitability Rating
	0 – 0.25

(Nil)
	0.25 – 0.50

(Low)
	0.50 – 0.75

(Moderate)
	0.75 – 1.00

(High)

	Interpretation
	Unsuitable.  Habitat fails to provide minimum requirements.
	Suitability Unknown.  Habitat provides theoretical minimum requirements for supporting a nest, but use by goshawks is rarely observed.  Suitability of two or more habitat variables is suboptimal, substantially reducing the overall suitability of the stand.  
	Suitable.  Suitability of one or two habitat variables is lower than optimal conditions but minimum requirements still exceeded.  Minority of foraging activity expected to occur in Moderate class habitat.  
	Suitable.  All habitat variables meet optimal conditions.  Majority of foraging activity is expected to occur in High class habitat.

	Prey Availability1
	Prey not present or not accessible
	Prey abundance and/or accessibility substantially impaired
	Either prey abundance or accessibility somewhat impaired
	Both prey abundance and accessibility M-H

	Subcanopy Flyways2
	Either overdense stands with virtually no flyways or non-forested types
	Flyways limited by multistoried stand structure or overdense stand (e.g. young forest)
	Flyways somewhat limited by multistoried stand structure
	Many clear flyways >30m in length below a closed overstory

	Forest Spp
	Non-vegetated, rock, water, urban, agriculture?
	Yc, Pl, Bl, Cw,

non-forested, forested bog
	Ba, Hm, deciduous
	Ss, Fd (Hw)

	Structural Stage
	0 - 4
	4 - 7
	5 - 7
	(5) 6 + 7

	Height
	<14m
	14 - 20
	20 - 26
	> 26m

	Canopy Closure
	<10%
	<25%
	25 – 35%
	( 35%

	Expected % use3
	0%
	10-20%
	20-40%
	50-80%


1 Availability = abundance and accessibility

2 Flyways through the B2 and A3 layers to access nests and prey

3 Expected distribution of foraging locations at a population/regional level.  Use of moderate and low quality habitats reflects heterogeneity of individual selection and prey availability.

Measuring Environmental Variables

An example field data form is provided in Appendix 1 that shows the environmental variables measured in the field.  The general approach to sampling environmental variables was to use non-intensive measurement techniques that could be conducted quickly with the explicit trade-off of surveying more sample units less precisely as opposed to surveying fewer sample units more precisely.  This follows the decision made by the Habitat RIG for the approach to use for measuring habitat data during the Haida Gwaii verification project.  Forest composition, and canopy closure were measured using visual estimates.  Stand height was measured as the average of 2-6 codominant tree heights measured using a laser distance measurer.  Stand diameter was measured as the average of 2-6 codominant trees using a dbh tape or regular tape measure.  

Accuracy Scoring

The fundamental basis for assessing habitat model accuracy was to compare habitat model predictions to field ratings.  Three scoring methods were used, each with their own relative strengths and weaknesses.  The first two methods follow the standard approach used for assessing the accuracy of thematic maps (Congalton and Green 2009), which is based on the idea of ‘accuracy’ being the proportion of times model predictions correspond to field observations within arbitrary bounds.  The first method assessed accuracy with respect to 4- and 2-class categories with fixed class breaks (quartiles and 0.5 along the 0-1 HSI range, respectively).  The second method assessed correspondence between model predictions and field ratings within a ±0.125 HSI unit range around the field values, as opposed to having fixed class breaks.  The third method used a fundamentally different approach and considered ‘accuracy’ from its normal statistical definition, which is how close an estimate is to the true value.  

As part of early accuracy assessment design discussions, the Habitat RIG identified an accuracy target of 70±80% to benchmark model performance against.  I interpreted this target in the normal statistical confidence interval context, where the mean and variance of individual sample scores would be used to derive an 80% confidence interval, and if the confidence interval overlapped with, or was greater than 70% model performance could be deemed to have met the target.  For the first two ‘correspondence’ scoring methods, below, the scores for the subsample scale and project scale analysis are simply counts without a variance associated with them, so a confidence interval was not calculated.  At the 10 ha sample unit scale, which is the primary scale of interest, the 80% confidence interval was based on the mean and variance of the 55 sample unit scores.  

Correspondence within Categories

Evaluating the thematic accuracy of maps has a long history and principles and practices for accuracy assessment of remotely sensed data are well established (Congalton and Green 2009).  The fundamental basis of that evaluation approach is to compare the proportion of times map predictions correspond to reference data collected in the field.  Although initially developed for categorical land class types, the approach has been easily applied to continuous data, such as canopy closure or height, by simply classifying the continuous values into categories.  Comparisons of map and field data are summarized using an error or confusion matrix.  An error matrix is basically a contingency table with reference (field) data headings along the top, x-axis and map data on the y-axis, with the results for each map-field comparison tallied in the corresponding cells (Table 4).  Overall accuracy is simply the proportion of corresponding observations (sum of the diagonal cells) relative to the number of samples.  Two types of errors can also be calculated from the error matrix.  False positives (commission errors) are the proportion of observations in cells above the diagonal.  False negatives (omission errors) are the proportion of observations in cells below the diagonal.  

Table 4.  An example error matrix used to estimate the accuracy of map data (after Congalton and Green 2009).  

	
	
	
	Field Data
	
	
	

	
	
	Nil
	Low
	Moderate
	High
	Total

	
	Nil
	65
	4
	22
	24
	115

	Model 
	Low
	6
	81
	5
	8
	100

	Data
	Moderate
	0
	11
	85
	19
	115

	
	High
	4
	7
	3
	90
	104

	
	Total
	75
	103
	115
	141
	434


	Overall Accuracy =
	(65+81+85+90) / 434 = 74%

	False Positives =
	(4+22+24+5+8+19) / 434 = 19%

	False negatives =
	(6+0+4+11+7+3) / 434 = 7%


More sophisticated analysis techniques have been developed for accuracy assessment and are commonly used.  Although not used for this project in the current analysis, these techniques are worth mentioning and may wish to be pursued in the future.  The Kappa statistic is a corrected version of the simple accuracy statistic, above, which takes to into account the likelihood of chance agreement within cells (Congalton et al. 1983).  Fuzzy accuracy assessment is also commonly used, and gives full or partial score to map predictions that are within a certain number of classes (normally one) of the field data (Gopal and Woodcock 1994).  

For this project two categorical systems were evaluated using this scoring method: 1) a 4-class system using quartile breaks across the 0-1 HSI range representing Nil, Low, Moderate, and High value classes, and 2) a 2-class system with a break at the HSI value of 0.5, representing Unsuitable and Suitable classes.  

The categorical scoring method was applied to the three analysis scales examined in this project as follows.  For the 0.8 ha subsample scale, all plot level data were scored using subsample pair-wise comparisons in one combined error matrix.  Although subsamples are not independent within each sample unit, this has limited potential for bias because all sample units had a similar number of subsamples.  For the 10 ha subsample scale, pair-wise comparisons of model and field data were not enforced at the plot level.  Rather, the score was simply the proportion of corresponding habitat classes between the model and field data irrespective of their location within the sample unit.  Examples of subsample scale scoring and sample unit scale scoring for the same data are shown in tables 5 and 6.  The overall accuracy score was calculated as the mean of all the sample unit scores, and the 80% confidence limit was calculated using the mean and variance from the scores of the 55 sample units.

Although sample unit scores could be calculated without explicit pair-wise comparisons, it was not possible to estimate commission and omission errors for the 10 ha sample unit scale without re-pairing the model-field data for use in an error matrix.  This was done by independently ranking the model predictions and field observations and using similar rank orders as new model-field data pairs.  This approach makes the assumption that the near optimal pairing of field and model ratings resulting from the sorting occurred in reality, and plot-level mismatches were due to spatial accuracy errors at the subsample plot level. 

Table 5.  Example accuracy scoring using 4-class correspondence at the subsample scale, which maintains explicit plot-level comparisons of model predictions and field ratings.  

	SampleID
	Field Rating
	Model Rating
	Field Class
	Model Class
	Subsample Score

	T1-1
	0.90
	1.00
	H
	H
	1

	T1-2
	0.90
	1.00
	H
	H
	1

	T1-3
	0.00
	1.00
	N
	H
	0

	T1-4
	1.00
	0.00
	H
	N
	0

	T1-5
	0.55
	0.45
	M
	L
	0

	T1-6
	0.70
	0.675
	M
	M
	1

	T1-7
	0.45
	0.675
	L
	M
	0

	T1-8
	0.30
	0.45
	L
	L
	1

	T1-9
	0.45
	1.00
	L
	H
	0

	
	
	
	
	Total
	4/9=44%


Table 6.  Example accuracy scoring summary for the same data from Table 5, at the sample unit scale, assessing the correspondence of field and model data aspatially within the sample unit.  The rationale behind this approach is that we are not sure about the positional accuracy of the assessment at the subsample level, but we are confident that both the field and model data occur within the sample unit.

	Rating Class
	Number of corresponding model and field ratings

	H
	3

	M
	2

	L
	2

	N
	1

	
	Score = 8/9 = 89%


For the ~3,000,000 ha project scale, the score was the proportion of corresponding habitat classes between the model and field data assessed completely aspatially with respect to subsample and sample unit locations. 

Correspondence within a 0.125 HSI Unit Range

One of the recognized limitations of classifying continuous data into categories for accuracy assessment is that it imposes arbitrary breaks in the data (Fielding 2002).  Often this results in values that are actually quite close (e.g. model = 0.74 and field = 0.76) being scored as wrong because of the class breaks (e.g. quartile breaks in a 4-class system).  One approach to deal with this issue is to assess correspondence between field and model ratings using a range around the field ratings.  This approach is consistent with the traditional accuracy assessment consideration of accuracy being the proportion of times the field and model ratings correspond, but it does not constrain the comparison to arbitrary class breaks.  For this assessment the Habitat RIG chose to use a range of ± 0.125 HSI units, which is consistent with the average acceptable difference within the 4-class quartile categories.  

For the 0.8 ha subsample scale assessment scoring was straightforward – if the absolute difference between the model predictions and field ratings was ≤ 0.125 the subsample was scored as correct, if it was > 0.125 it was scored as incorrect.  An example of this method for one subsample is provided in Table 7.  The overall score was simply the number of correct scores divided by the number of subsample units.  

Table 7.  Example accuracy scoring using 0.125 HSI unit range to assess correspondence at the subsample scale, which maintains explicit plot-level comparisons of model predictions and field ratings.  In this example, the overall score is the same as using the 4-class correspondence method in Table 5, however, two of the scores (T1-5 and T1-8) are reversed.  

	SampleID
	Field Rating
	Model Rating
	Difference
	Subsample Score

	T1-1
	0.90
	1.00
	0.100
	1

	T1-2
	0.90
	1.00
	0.100
	1

	T1-3
	0.00
	1.00
	1.000
	0

	T1-4
	1.00
	0.00
	1.000
	0

	T1-5
	0.55
	0.45
	0.100
	1

	T1-6
	0.70
	0.675
	0.020
	1

	T1-7
	0.45
	0.675
	0.230
	0

	T1-8
	0.30
	0.45
	0.150
	0

	T1-9
	0.45
	1.00
	0.550
	0

	
	
	
	Total
	4/9=44%


At the 10 ha sample unit scale the model and field ratings were compared aspatially by sorting the two ratings independently within each sample unit and scoring the resulting rank order pairs using the 0.125 difference rule.  The sample unit score was calculated as the number of correct scores divided by the number of subsamples (Table 8).  The overall accuracy score was calculated as the mean of all the sample unit scores.  

Table 8.  Example accuracy scoring using 0.125 HSI unit range for correspondence at the 10 ha sample unit scale, which compares plot-level model predictions and field ratings aspatially.  The aspatial comparison is achieved by independently sorting the model and field ratings and then comparing the new rank order pairs.   

	Field Rating
	Model Rating
	Difference
	Subsample Score

	1
	1
	0.000
	1

	0.9
	1
	0.100
	1

	0.9
	1
	0.100
	1

	0.7
	1
	0.300
	0

	0.55
	0.675
	0.125
	1

	0.45
	0.675
	0.225
	0

	0.45
	0.45
	0.000
	1

	0.3
	0.45
	0.150
	0

	0
	0
	0.000
	1

	 
	 
	Total
	6/9=67%


For the overall project scale, the model and field ratings were compared completely aspatially by sorting the two ratings independently for all of the project data and then scoring the resulting rank order pairs using the 0.125 difference rule.  The project scale score was calculated as the number of correct scores divided by the total number of rank order pairs. 

Accuracy Based on the Difference between Model and Field Ratings

Although the previous method addresses the scoring problem associated with the arbitrary nature of fixed class breaks across a continuous range in the first method, it is still constrained by the equally arbitrary decision of what constitutes an acceptable difference between model and field ratings (e.g. 0.125).  This final accuracy assessment approach is free of any arbitrary bounds on either bin sizes or the location of breaks along the continuous range.  Rather, it assessed accuracy based on the differences of the raw field and model HSI values.  This approach is based on the usual statistical definition of accuracy – how close an estimate is to the true value (Zar 1999).  Three key statistics were calculated:  Model error was the average of the absolute differences between model predictions and field observations.  Model bias was the average of the simple differences (i.e. keeping positive and negative sign associated with the difference) between model predictions and field observations.  Model accuracy was calculated as simply ‘1-model error’ or ‘1 - |model prediction - field observation|’.  A detailed explanation rationalizing this scoring method is provided in Appendix 2. 

It is important to emphasize that this method of calculating accuracy is fundamentally different than the normal map accuracy assessment approach (categorical scoring, Congalton and Green 2009), which treats accuracy as the proportion of times maps predictions match field conditions according to arbitrary bounds.  Although the ‘difference-based accuracy score’ outlined in this section is consistent with the normal statistical definition of accuracy, I have not seen this approach used for assessing map accuracy, and I leave it to the reader to decide whether they think it is appropriate or not.  Also, because of the fundamental difference in the way accuracy is calculated, the 70% a priori accuracy target established by the Habitat RIG may not be appropriate for this method.  Based on the calculation used in this method, a target of 87.5% would be consistent with the RIG’s decision to use ±0.125 in the previous scoring method.  

Although the appropriateness of the accuracy score associated with this approach may be debatable, the calculations for model error and bias should not controversial.  Therefore, my focus in using this approach is on error and bias, to examine overall model performance, rather than accuracy and how accuracy compares to an a priori target. 

Results

A total of 488 subsample plots were surveyed within 57 sample units, across 13 sample unit clusters.  The general location of sample unit clusters is shown in Figure 2.  Most sample units contained nine sample units, one had 12 and four had six (the larger sample unit was a test case to assess the feasibility of a larger sample unit; the smaller ones were reduced in size due to either time or spatial constraints that precluded surveying the full 9 plot triangle) .  Twenty-eight plots were dropped from analysis because 5 were opportunistically located in the field and 23 plots ended up being on sites where recent stand removing disturbance had occurred and had not been updated in the forest cover database (e.g. roads, clutblocks, landslides and major windthrow).  After data screening, 460subsample plots from 55 sample units were used in subsequent analysis.  


[image: image2]
Figure 2.  Distribution of sample unit clusters (red stars) across the overall study area, the southern half of the Northern Goshawk North Coast Conservation Region.

Overall representation of the field sample was assessed by examining sample effort (percent of subsample plots) relative to the extent of BEC variants occurring in the overall study area (Table 9).  Although somewhat variable, post-hoc analysis indicates the field sample provided reasonable representative coverage across the 11 BEC variants that occurred in the study area.  

Table 9.  A comparison of sample effort (percent of subsample plots) relative to extent of BEC variants occurring in the overall study area.

	BEC Variant
	Extent of Study Area
	% of 
Study Area
	% of 
Subsample Plots

	AT  unp
	576506.4
	19.3%
	0%

	CWH dm
	35314.6
	3.2%
	8.6%

	CWH ms 2
	120505.0
	4.0%
	12.7%

	CWH vh 1
	125580.1
	4.2%
	5.5%

	CWH vh 2
	288943.4
	9.7%
	8.6%

	CWH vm 1
	602310.0
	20.2%
	27.7%

	CWH vm 2
	393520.8
	12.2%
	7.4%

	CWH vm 3
	74772.3
	2.5%
	3.1%

	CWH ws 2
	87913.4
	2.9%
	0%

	CWH xm 2
	156787.2
	5.3%
	19.1%

	MH  mm 1
	389907.7
	12.1%
	7.4%

	MH  mm 2
	128253.7
	4.3%
	0%

	
	2980314.6
	99.9%
	100.0%


Prior to conducting the three accuracy assessment scoring procedures, the raw subsample level comparisons of model predictions and field observations for nesting habitat were plotted as part of general data exploration (Figure 3).  That plot shows two patterns.  First, is that there is substantial variation in the relationship between model at field rating at the subsample level.  Second, there is a clear relationship, on average, of increasing model predictions with field ratings.
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Figure 3.  Correlation between field and model ratings for goshawk nesting habitat.  The y intercept was set to zero because we have high certainty of nil model predictions and nil habitats were not surveyed in the field.  

Correspondence within Categories

The accuracy scores for nesting habitat using the categorical scoring approach at each of the three scales of interest are provided for the 4-class scheme and the 2-class scheme in Tables 10 and 11, respectively.  An example error matrix, showing how the scores were calculated for the summary tables is provided in Table 12.  For the 4-class scheme model accuracy was very low at both the subsample and sample unit scales model accuracy, substantially below the 70% target.  Only the completely aspatial project scale score exceeded the 70% target.  There was also substantial bias in the model predictions at the subsample and sample unit scales with over twice as many false positive errors than false negative errors.  When the categorization scheme was reduced to 2-classes the accuracy score was substantially higher with both the subsample and sample unit scores near the 70% level.  Although the 2-class scheme had fewer errors, the bias was stronger with over three times as many false positives as false negatives.  

Table 10.  Accuracy scores for goshawk nesting habitat in the Central Coast at three scales and using a categorical scoring approach applied to a 4-class rating scheme.  

	Level
	Scale
	Score
	Bias

	Subsample
	0.8 ha
	34.8%
	45% false positives, 20% false negatives

	Sample Unit
	10 ha
	48.1%
	36% false positives, 15% false negatives

	Project
	3 M ha
	83.2%
	-


Table 11.  Accuracy scores for goshawk nesting habitat in the Central Coast at three scales and using a categorical scoring approach applied to a 2-class rating scheme.  

	Level
	Scale
	Score
	Bias

	Subsample
	0.8 ha
	68.0%
	25% false positives, 8% false negatives

	Sample Unit
	10 ha
	71.1%
	23% false positives, 6% false negatives

	Project
	3 M ha
	83.2%
	-


Table 12.  The error matrix showing how scores were calculated for the subsample scale score for the 4-class scheme used in Table 10.  

	
	
	
	Field Data
	
	
	

	
	
	High
	Moderate
	Low
	Nil
	Total

	
	High
	28
	47
	51
	6
	132

	Model 
	Moderate
	47
	50
	53
	5
	155

	Data
	Low
	19
	17
	66
	44
	146

	
	Nil
	2
	0
	9
	16
	27

	
	Total
	96
	114
	179
	71
	460


	Overall Accuracy =
	(28+50+66+16) / 460 = 34.8%

	False Positives =
	(47+51+6+53+5+44) / 460 = 44.8%

	False negatives =
	(47+19+17+2+0+9) / 460 = 20.4%


Scores for foraging habitat using 4- and 2-class schemes are provided in Tables13 and 14, respectively.  Similar to the results for nesting habitat, accuracy scores for foraging habitat at the subsample and sample unit scales using the 4-class scheme are quite low.  The bias of the foraging model was opposite to the pattern for nesting however, with the far more false negative errors produced by the foraging model.  The majority (66%) of these errors occurred in one specific circumstance – where the model rated habitat as Moderate and the field ratings were High (Table 15).  This situation primarily occurred in 60-90 year old second growth stands.  Using a 2-class system the accuracy scores were quite high, well above the 70% a priori target.  

Table 13.  Accuracy scores for goshawk foraging habitat in the Central Coast at three scales and using a categorical scoring approach applied to a 4-class rating scheme.  

	Level
	Scale
	Score
	Bias

	Subsample
	0.8 ha
	43.7%
	12% false positives, 44% false negatives

	Sample Unit
	10 ha
	44.6%
	11% false positives, 44% false negatives

	Project
	3 M ha
	69.7%
	-


Table 14.  Accuracy scores for goshawk foraging habitat in the Central Coast at three scales and using a categorical scoring approach applied to a 2-class rating scheme.  

	Level
	Scale
	Score
	Bias

	Subsample
	0.8 ha
	86.3%
	7% false positives, 7% false negatives

	Sample Unit
	10 ha
	86.4%
	7% false positives, 7% false negatives

	Project
	3 M ha
	99.8%
	-


Table 15.  The error matrix showing how scores were calculated for the subsample scale score for foraging habitat using the 4-class scheme used in Table 13.  The large error number in the High field x Moderate model cell, in darker yellow, accounts for 66% of the total error and is the primary driver in the model bias to underestimate true suitability.

	
	
	
	Field Data
	
	
	

	
	
	High
	Moderate
	Low
	Nil
	Total

	
	High
	104
	20
	3
	1
	128

	Model 
	Moderate
	172
	72
	30
	0
	274

	Data
	Low
	2
	29
	16
	0
	47

	
	Nil
	1
	1
	0
	9
	11

	
	Total
	279
	122
	49
	10
	460


	Overall Accuracy =
	(104+72+16+9) / 460 = 43.7%

	False Positives =
	(203+3+1+30+0+0) / 460 = 11.7%

	False negatives =
	(172+2+29+1+1+0) / 460 = 44.6%


Correspondence within a 0.125 HSI Unit Range

The accuracy scores for nesting habitat at the three scales of interest using 0.125 HSI unit range for correspondence are provided in Table 16.  The accuracy scores for the subsample and sample unit scales are somewhat higher than the scores resulting from the 4-class categorical scoring approach, but still well below the 70% target.  The higher scores simply reflect the change in correspondence window being used (range of correspondence is approximately the same, but boundaries float around field ratings as opposed to being fixed at arbitrary locations [e.g. quartiles]). 

Table 16.  Accuracy scores for goshawk nesting habitat in the Central Coast at three scales and using a 0.125 HSI unit range to assess correspondence between model and field ratings.  

	Level
	Scale
	Score

	Subsample
	0.8 ha
	36.4%

	Sample Unit
	10 ha
	57.4 ± 6.8%

	Project
	3 M ha
	76.1%


The accuracy scores for foraging habitat at the three scales of interest using 0.125 HSI unit range for correspondence are provided in Table 17.  Again, accuracy scores for the subsample and sample unit scales are lower than the 70% target, but higher than the scores using the 4-class categorical scoring approach.  

Table 17.  Accuracy scores for goshawk foraging habitat in the Central Coast at three scales and using a 0.125 HSI unit range to assess correspondence between model and field ratings.  

	Level
	Scale
	Score

	Subsample
	0.8 ha
	48.3%

	Sample Unit
	10 ha
	51.1 ± 5.8%

	Project
	3 M ha
	69.7%


Accuracy Based on the Difference between Model and Field Ratings

Accuracy estimates for nesting habitat based on the difference of HSI scores between the model predictions and field ratings are provided in Table 18.  At the focal sample unit scale the average error (difference between model and field ratings) was 0.18 HSI units, corresponding to an accuracy of 82%.  Although both the subsample scale and sample unit scale accuracy scores are higher than 70%, they are both lower than 87.5%, which may be a more appropriate target because it is consistent with the difference range used in the second scoring method (Correspondence within 0.125 HSI units).  A bias of +9% (model overestimating suitability) is consistent across the three scales of interest.  The magnitude and direction of average errors at the sample unit scale is summarized in Table 19.  This shows that the model overestimated suitability by more than 0.10 HSI units at 30 sample units and underestimated suitability at only five units.  

Table 18.  Accuracy scores, bias and average errors for goshawk nesting habitat in the Central Coast at three scales and using the difference between the raw model and field rating scores to assess accuracy.  

	Level
	Scale
	Score
	Bias
	Error

	Subsample
	0.8 ha
	78 ± 4%
	+8.8 (overestimate)
	22

	Sample Unit
	10 ha
	82 ± 3%
	+8.8 (overestimate)
	18

	Project
	3 M ha
	91 ± 0.3%
	+8.8 (overestimate)
	9


Table 19.  A summary of the average model-field rating differences for 55 sample units examining goshawk nesting habitat suitability in the Central Coast.  The model overestimated habitat suitability at many more sample units, and to a greater degree, than it underestimated at.    

	 
	Model underestimating
	Correspondence
	Model overestimating

	Difference
	<-0.4
	<-0.3
	<-0.2
	<-0.1
	-0.1 to 0.1
	>.1
	>.2
	>.3
	>.4

	No. Samples
	0
	0
	0
	5
	19
	10
	7
	8
	5


Accuracy estimates for nesting habitat based on the difference of HSI scores between the model predictions and field ratings are provided in Table 20.  At the focal sample unit scale the average error (difference between model and field ratings) was 0.14 HSI units, corresponding to an accuracy of 88%.

Table 20.  Accuracy scores, bias and average errors for goshawk foraging habitat in the Central Coast at three scales and using the difference between the raw model and field rating scores to assess accuracy.  

	Level
	Scale
	Score
	Bias
	Error

	Subsample
	0.8 ha
	86 ± 1%
	-6.2 (underestimate)
	14

	Sample Unit
	10 ha
	88 ± 1%
	-6.2 (underestimate)
	12

	Project
	3 M ha
	94 ± 0.3%
	-6.2 (underestimate)
	6


Table 21.  A summary of the average model-field rating differences for 54 sample units examining goshawk nesting habitat suitability in the Central Coast.  The model overestimated habitat suitability at many more sample units, and to a greater degree, than it underestimated at.    

	 
	Model underestimating
	Correspondence
	Model overestimating

	Difference
	<-0.4
	<-0.3
	<-0.2
	<-0.1
	-0.1 to 0.1
	>.1
	>.2
	>.3
	>.4

	No. Samples
	0
	1
	6
	17
	25
	5
	1
	0
	0


Accuracy of Environmental Variables

At this point, comparison of field measurements to GIS values for equivalent variables in the model has been limited to tree species composition and stand height.  For these two variables the field measurements differed from the forest cover data values at 50% of the subsamples.  This included 112 cases where the species composition was different enough to result in a difference of Inventory Type Group, and 128 cases where the height differed by at least 5 m.  The most frequent forest cover composition error was an underestimate of western red cedar.  Errors associated with height were largely unbiased, with an average difference of only 1.2 m (forest cover height minus field measurement).  

Although not currently a variable in the model, we also examined the accuracy of canopy closure because that has been considered as a variable for the nesting model.  Canopy closure differed by at least 10% between field measurement and forest cover values at 216 subsample plots.  There was a strong bias in this difference with forest cover data values being 16 units higher than the field estimates on average and with the forest cover data being higher than the field values at 201/216 plots with errors.   

This comparison of forest cover data to field measurements needs to interpreted cautiously because field measurements were non-intensive (often visual estimates) and collected at a single plot, whereas the forest cover data is supposed to represent average polygon conditions.  However, it is useful for examining broad relationship patterns, and those indicate that major errors in the forest cover appear to exist.  

Discussion

Model Accuracy

Although the Habitat RIG identified an a priori target of 70% accuracy I caution against expending too much effort debating what it means if specific scoring methods meet or do not meet the target.  Ultimately, both the accuracy target and preference for one scoring approach over another are subjective decisions reflecting personal beliefs, values, and agendas.  Rather, discussion and use of the verification results would be better spent focusing on broad patterns of model performance that are consistent irrespective of scoring method.  

One of the major patterns that is consistent among scoring methods is that both the nesting and, to a lesser degree, foraging model outputs have a substantial error rate at the 0.8 ha subsample and 10 ha sample unit scales.  This requires precautionary use of the model outputs, possibly including:

a. verification activities, such as air photo assessment or ground truthing, depending on the use of the outputs, 

b. model revisions tailored to specific uses or areas (e.g. possibly adding canopy closure to the nesting model, where accurate data are available), and

c. not using these models for certain activities due to its low accuracy at specific scales.

With respect to the 70% accuracy target, model outputs only met that level when categorized using a coarse, 2-class system (unsuitable, HSI= 0-0.5; suitable, HSI= 0.5-1).  There are compelling reasons to still consider stratifying across the broad 2-class bins, such as subdividing classes (e.g. Suitable into Moderate and High) or using raw HSI values, for management purposes:

a. Within each 2-class bin there is a significant, albeit highly variable, relationship showing that, on average, true suitability increases with increasing HSI values (Figure 3).

b. Management across the range of suitable HSI values is required to provide representation across the range of environmental conditions that occur within a class.  For example, with the nesting habitat model, if management exercises treated all suitable habitat (HSI values 0.5-1.0) equally, and were biased toward the lower end of that range, it could result in a bias towards steeper slopes, higher elevations, younger stands, and suboptimal forest composition and BEC variants.  In addition to these conditions generally being suboptimal (point a, above), it is important for goshawk habitat management to incorporate the range of suitable conditions to account for variation in individual selection and to provide resistance and resiliency against factors such as climate change and pest outbreaks.  

It is important to emphasize that this strategy does not reduce the expected accuracy of the model outputs below the 2-class score.  Stratification is conducted only to provide representation across the range of conditions with the category of interest.  For example, in the EBM co-location project a 2-class scheme was used to categorize model outputs and a target area of Suitable (HSI=0.5-1) nesting habitat was considered in the exercise; hence the expected accuracy is 71%.  To ensure representation across a range of environmental conditions, however, a secondary target was set that 50% of the suitable nesting habitat should be High and 50% should be Moderate.  This secondary goal does not affect the expected accuracy with respect to the primary target because both High and Moderate are nested within the larger Suitable category, it only ensures that a range of Suitable conditions are included.

Sources of Model Errors

As indicated in the last section of the results, error rates for key model variables in the forest cover database were quite high.  These forest cover errors probably represent the major source of errors associated with model outputs.  This has two major implications:

a. Errors in the underlying data largely preclude model revisions to improve performance, and

b. Use of the model outputs should be consistent with generally accepted practices and limitations associated with using forest cover data for other forest management and habitat management activities.

Another major factor contributing to errors and bias between the field ratings and model predictions for the nesting model was the condition of subcanopy flyways.  In many cases the nesting ratings of otherwise optimal stands were lower in the field than predicted by the model because they had suboptimal subcanopy flyways (Photo 1).  Although the importance of subcanopy flyways was recognized during model development (Mahon et al. 2008), GIS variables corresponding to subcanopy flyway condition were not directly available.  Canopy closure was considered as a potential proxy, based on the observation that moderate canopy closure (45-70%) often corresponded with good flyway development.  However, canopy closure was not included in the nesting model because it was not available in some forest cover databases, and would generally not be available in projected forest estate models, which the goshawk model was planned to be applied to.  Based on the high error rate (47%) and bias (overestimating in 93% of errors) of canopy closure in the forest cover in the Central Coast, little benefit would likely have been gained by having it as a variable in the model.  A similar issue was noted for Haida Gwaii, where >98% of the forest cover polygons had canopy closure class of either 5 or 6 (both considered optimal condition for nesting habitat), therefore including canopy closure there would have provided little ability to discriminate among stands.  In areas were accurate canopy closure does exist, however, it may be a useful variable to include in the nesting model, as a proxy for subcanopy flyway condition, to improve model performance.  


[image: image4]
Photo 1.  A consistent pattern observed for goshawk nesting habitat on the Central Coast was that, for what would otherwise be optimal conditions, suitability was reduced due to poor subcanopy flyway conditions resulting from relatively open canopy closure and heterogeneous vertical stand structure.  

In the 4-class error matrix for the foraging model (Table 15), there was an especially high error rate associated with High value field plots being predicted as Moderate by the model.  Inspection of the actual HSI values for those plots indicated that the issue was partly related to the location of the class break at 0.75.  Many of the plots in question were 60-90 year old second growth stands that were rated on the low end of High in the field (e.g. 0.76-0.85) and had model prediction on the high end of Moderate (e.g. 0.65-0.75).  This is reflected by the higher accuracy score using the 0.125 HSI range correspondence method, where there is no fixed class break.  Applying an age revision, discussed below, will reduce the errors for this specific circumstance, although to what exact degree was not calculated.  

Model Bias

In addition to errors, both nesting and foraging models have bias (systematic errors that result in average differences between the field observations and model predictions) associated with their predictions.  The nesting model tends to overestimate suitability (9% on average); the foraging model tends to underestimate suitability (6% on average).  For management of nesting habitat this has two implications:

a. When dealing with aspatial model outputs (i.e. simple habitat amounts by quality) the user should recognize that the model predictions are an overestimate of what likely really occurs and precautionary approaches that account for that bias should be considered.

b. When dealing with spatial outputs (e.g. delineating patches of high suitability habitat for some type of management exercise) the nesting model has more false positives than false negatives.  This means that the model infrequently misses potentially suitable habitat, but habitat that is classified as suitable by the model is sometimes lower quality in reality.  

(Implications for foraging habitat biases are reversed, but have lower importance because the bias is smaller, foraging habitat is much more extensive than nesting habitat, and lower management emphasis is associated with foraging habitat.)

Differences and Similarities in Accuracy Results among Scoring Methods

A summary of the accuracy scores using the different scoring methods at the 10 ha sample unit scale is provided in Table 22.  The purpose of using multiple scoring methods was explicitly to account for and be able to assess potential biases associated with the different methods.  Differences in accuracy scores primarily reflect the differences in constraints associated with the analysis method, rather than heterogeneity of the underlying data.  The score is lowest for the 4-class correspondence method, which imposes the tightest constraints, in terms of class size and range breaks.  The accuracy score is highest for the difference based method, which does not impose any type of arbitrary class size or range break constraint.  The other two scores are intermediate, reflecting the intermediate nature of their constraints.  

Ultimately the preference or appropriateness of one method over another is a subjective decision based on the intended use of the model outputs.  For biologists responsible for building and revising the model, the results from the difference based approach are probably the most informative, because they reflect model performance without any subjective constraints on category sizes or class breaks.  For a manager who wants to use model outputs categorized in a certain way, knowing how often model predictions correspond to field observations within specific classes may be more relevant.  

Table 22.  Accuracy scores for goshawk nesting habitat at the 10 ha sample unit scale using 4 different scoring methods (± values are for 80% confidence intervals).  

	Scoring Method
	Accuracy Score
	Benchmark

Score
	Bias

	Correspondence within 4-classes
	48.1± 5.4%
	70 
	36% false positives, 
15% false negatives

	Correspondence within 2-classes
	71.1± 3.5%
	70
	23% false positives, 
6% false negatives

	Correspondence within 0.125 HSI range
	57.4 ± 6.8%
	70
	-

	Difference-based approach
	82 ± 3%
	87.5?
	+8.8 (overestimate)


Analysis Scales

Differences in accuracy scores across scales using the same method reflect the degree to which spatial comparisons of the field and model data from the same plot are maintained.  At the 0.8 ha subsample scale the field and model data are compared directly for the same plot.  At the 10 ha sample unit scale the field and model ratings are compared aspatially across the sample unit.  Again, the basis for this analysis approach is to account for the problem of incongruous environmental conditions between the field and GIS data at the plot level that result from spatial accuracy errors.  In using this approach we are saying that we are not confident of the spatial accuracy of the data at the subsample scale, but we are confident that both occur within the sample unit.  It is important to acknowledge that this approach assumes that all of the improvements in accuracy between the subsample and sample unit scales are due to spatial errors at the subsample level.  This may not always be the case, however, and true errors could cancel each other out by using aspatial, within-sample unit comparisons, thus overestimating true accuracy.  At the ~3 million ha project scale the field and model data were compared completely aspatially.  Using this approach we are saying that we are not even sure if the spatial accuracy of the data correspond with 10 ha sample units, but we are confident that they are representative of the overall study area.  This is the same approach used with non-spatial timber supply analysis.  

The primary analysis scale of interest for this project was the 10 ha sample unit scale because it was large enough to account for the problem of spatial error noted during the Haida Gwaii project, but small enough to be relevant for most stand-scale management issues.  

Model accuracy always decreases with the spatial resolution of the analysis scale.  Correspondingly, use of the model should become more precautionary at finer spatial resolutions.  For example, the importance of field verification would be much greater for an exercise assessing the impact of proposed cutblocks on nesting habitat than it would be for an exercise comparing the amount of suitable nesting habitat among Landscape Units.

Implications of 10 ha Sample Unit Scale for Management

Based on questions within the Habitat RIG, it is important to emphasize that the 10 ha sample unit scale this assessment focused on does not have any implications for changing the 1 ha pixel resolution of the maps generated by the models.  There was a question within the RIG about whether conducting accuracy at a 10 ha scale meant that the actual model outputs needed to changed in any way to be used for management purposes; for example be averaged to a 10 ha pixel from the current 1 ha pixel size?  The answer to that is an absolute no!  The accuracy assessment was done on the current 1 ha pixel model outputs and if the outputs were generalized in any way the accuracy scores would not be applicable to the resultant output.  The 10 ha sample unit is simply an analysis mask used to address the spatial accuracy problems associated with sub-100m plot comparisons.  For example, consider a sample unit that straddled a mature forest stand and a cutblock and had five subsamples with HSI=1 (High) and four subsamples with HSI=0 (Nil), and that the model and field ratings all corresponded exactly using a 4-class scoring method.  If the model results were generalized somehow, and the resulting predictions were 0.5 (Moderate) across the sample unit the accuracy score using 4-class correspondence would be 0% because the field ratings would still be either High or Nil.  

The only implications of using these accuracy results for management are with respect to the size of management units relative to the analysis scales.  For example, for a 10 ha cutblock the average accuracy of model outputs across the cutblock would be equivalent to the 10 ha sample unit scores reported here.  If a smaller management unit was under consideration, say a 5 ha cutblock, the average accuracy of the model outputs across the cutblock would be expected to be intermediate between the subsample and sample unit scales reported here.  Conversely, if a larger, 20 ha cutblock was considered the average accuracy of the model outputs across the cutblock would be somewhat better than for sample unit scale reported here.

Using Verification Results for Model Revisions

High variation and errors between 1) field measurements and GIS values for the same variables and 2) between suitability ratings and those habitat variables limited the degree to which existing model parameters could be evaluated and revised.  Recognizing this resulted in more of a qualitative evaluation than a quantitative one, verification results generally supported most of the existing model parameters.  Two revisions are planned for the HSI models, based on improved expert opinion resulting from this project and other ongoing goshawk work.  

The most significant change is an adjustment to the rating curve for age in both the nesting and foraging models.  In the original nesting model suitability increased linearly from 0 at 30 years to 1 at 140 years.  In the revised model, suitability also starts increasing from 0 at 30 years but the slope of the curve is steeper and becomes optimal (1) at 95 years.  The change for the foraging model is similar, also revising the optimal age down from 140 to 95 years.  The basis for this change is that key structural characteristics of the stand, and for the foraging model prey, were observed to achieve optimal conditions at earlier ages than initially thought.  This revision will result in higher suitability ratings for both nesting and foraging models in second growth stands.  For the foraging model this revision will at least partly address the high error rates between the High field and Moderate model cell in the 4-class error matrix (Table 15).  For the nesting model, this revision will increase the bias of the model overestimating suitability but should reduce the overall error rate by more appropriately classifying second growth stands.    

The second revision is that downgrades for steep slope in the nesting model are being adjusted to allow steeper slopes to be considered as optimal habitat.  In the original model downgrades started at 60% because no goshawk nests were known to occur on slopes steeper than that.  Now downgrades will not start until 90% slope.  That change is based on 1) the initial recommendation by Volker Michelfelder (BC Environment, Bella Coola) that optimal nesting conditions could occur up to ~100%, 2) similar field observations by field personnel during this project, and 3) the recent location of a small number of goshawk nests on slopes in the 60-90% range.  
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Appendix 1.  Field data form for coastal goshawk habitat model verification.

Coastal Goshawk Habitat Verification

Sample Unit ID 


  Plot ID 

  

UTM ___/____________/_____________

Location 







Surveyor  

  Date 




Nesting Rating 

  Foraging Rating 




Nesting Platforms: 








Flyways: 








Nesting Comments 








Foraging Comments 








Extent of Similar Habitat 







Plot-in-Context* 








* Comments about surrounding habitat; how similar/different from plot; extent of similar habitat; % of H,M,L, etc

Habitat Variables

BEC Variant 


  Tree Comp. 




Site Series 


  Str. Stg. 




Stand Ht 

  Avg DBH 

  

Canopy Cl. 


  Slope 





Dist. to Edge 


  Edge Type 





Comp to FC  








Misc. Comments 







Nest Platforms: Non-existent, Very limited, Somewhat limited, Common

Flyways: 
Good - Many clear flyways >30m in length below a relatively closed overstory


Moderate – Modest impairment by multistoried stand structure


Poor – Major impairment by multistoried stand structure or overdense stand; too open due to low canopy closure


Very Poor – Flyways virtually non-existent due to overdense B2 and A3 layers, or canopy virtually absent

Appendix 2.  Rationale for HSI rating difference based accuracy scoring approach.

Background Information for Accuracy Assessment

Habitat Quality as a Continuous Range

A basic premise of habitat ecology is that habitat quality for any species varies from having no value to some optimal condition over a continuous range.  That premise is a fundamental assumption that is reflected in the primary outputs of our nesting and foraging models.  It was also the basis for using continuous ratings in the field assessments.  

It is important to note that it is arbitrary which side of the range we use to reference from.  Any point along the range represents both how much better suitability is than nil, and how much less suitability is than optimal.  For example a score of 75 is both 75 units better than nil and 25 units less than optimal.
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Categorizing Model Outputs

In some cases it is useful to summarize continuous values, such as those from our habitat models, in categories to simplify the pattern of those values (e.g. Nil, Low, Moderate, High).  It is important to emphasize that categorizing continuous outputs is simply a summary/analysis tool.  Categorized values were never intended to be a final output of the habitat models, just as true habitat quality does not function as discreet categories.

Problems with Categorizing Continuous Values in Accuracy Assessment

1. The number and size of bins (categories) is always arbitrary and imposes an analysis mask bias.  As you increase the number of bins, the size of them decreases, and the potential for model and field values falling in the same bin and being scored correct decreases.
e.g.
4 - 25% bins   model score 76 vs field score 95 = correct (within 75-100 bin)
 
5 - 20% bins   model score 76 vs field score 95 = incorrect (in different bins)

Glen is currently proposing to use 20 - 5% bins in his categorical analysis, which, in my opinion, is an inappropriately small bin size.  By comparison, Erica and Frank used 4 - 25% bins on Haida Gwaii.

2. Using categories imposes arbitrary discontinuities (breaks) along the continuous range.  For example with 4 - 25% bins, breaks are imposed at 25, 50 and 75.  
In a comparison of 74 vs 76 the score would be incorrect using 25% bins when in reality the estimate is very accurate (close to truth).  
In a comparison of 76 vs 100 the score would be correct using 25% bins, when in reality the estimate is quite inaccurate (far from truth).

3. Categorical scoring methods represent a tabular count of matches and mismatches and do not have a variance associated with them (although there may be away to derive a non-parametric variance).  As a result, there is no way to generate a confidence interval associated with the accuracy score, at least as far as I am aware.

These problems limit the utility of a categorical scoring approach for assessing overall accuracy of our nesting and foraging models.

That position notwithstanding, there may be certain circumstances where someone classifying the model outputs for management or analysis purposes wants to know how robust the accuracy of the model outputs are once classified.  Essentially the question becomes:

How accurate is the model when classified into x bins?

Or, maybe more appropriate,

How many bins can the model be classified into and still meet the a priori accuracy target?

Accuracy, Precision, and measurement precision

Accuracy, by definition, is a measure of how close an estimate is to a true value.

Precision, in a statistical sense, is how close repeated measures of the same value are to each other.  Statistical precision is reported as some measure of variance.

In our model outputs we get a habitat suitability estimate for a pixel of habitat (100m).  That estimate has unknown accuracy (hence the interest in accuracy assessment) and zero variance.  Variance is zero because the model is deterministic and the same estimate results from equivalent inputs no matter how many times you run the model.

In the field we assume our ratings are, on average, unbiased (i.e. accurate).  This may not be completely true relative to a goshawk’s perception of habitat, but it is a fundamental assumption of both the model and the verification approach.

In terms of precision, we assume there is unknown, but not insignificant, variance associated with field ratings.  That variance results from a number of sources: observer bias, random individual variation, imperfect perception in the field, etc.  We do not have an estimate of what that variance is and, while we might be able to quantify components of it (e.g. observer bias) through additional field work, it is probably impossible to quantify all of the variation associated with field ratings.  An educated guess is that an 80% confidence level would be in the order of ± 10-15%.  

While recognizing variance is present, we still assume that field estimates are, on average, unbiased overall.

Another related issue is measurement precision.  Measurement precision relates to how precisely (finely) something can be measured using a certain device or method.  In the case of our field assessments, the measuring method/device is expert opinion.  We decided to generally use 5% increments in our field ratings because it was difficult to consistently perceive changes in suitability finer than that.  Five % increments were also fine enough to compare to the 1% increments output from the model with minimal bias associated with the increment size.  

Glen has suggested that this level of measurement precision imposes a categorical structure on our ratings, which is incorrect.  As an analogy, consider a 10 kg spring scale with 1 kg increments.  A generally accepted measurement precision in this circumstance is to estimate to the midpoint of the finest measurement increments, which would result in 0.5 kg estimates.  Just as measurements from the scale produce estimates along the continuous range from 0-10 kg with a measurement precision of 0.5 kg, our field assessments provide a rating of habitat quality along a continuous range from 0-100 with a measurement precision of 5%.  Measurement precision does not impose a break in a continuous range, nor does it significantly affect statistical precision (variance) until the measurement increments become so large that only a few values exist within the range.

Rationale behind Mahon’s Scoring Approach

As outlined in the workplan and during my RIG presentation I calculated model accuracy as:



1 - |model rating – field rating|

The basis for an accuracy assessment using this approach is having two values of habitat quality on comparable scales, a field value that we assume is true and a model prediction, and assessing how close the model prediction is to the field rating.  
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Intuitively, the difference between the values represents how different, or inaccurate, the model rating is with respect to the field observation.  In this case the model overestimates suitability by 15%
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Conversely, accuracy can be viewed as the portion of the range outside of the two values where they are in agreement.  To help understand this idea, remember that any point along the continuum represents both how much better suitability is than nil, and how much less suitability is than optimal.  Both ratings are in agreement that suitability is greater than 75 and that suitability is less than 90.  75+10=85% accuracy.  The general equation for calculating this is  1 – |model rating – field rating|.
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