

Outline

History Leading to 2015

- Kokanee
- Gerrard Rainbow
- Kootenay Lake Fishery
- IHN Virus
- Nutrient Program

Recap Cument Status

- Koka nee, Gerrards, Nutrients a nd the Fishery

Future - Goals and Actions

- Kokanee - promote population recovery
- Gerrard Ra inbow - population management, trophy fishery
- IHN Virus- mitigation
- Nutrient Program - continued food production for kokanee

Questions, Your Input and Ideas

History - Kokanee

- Kokanee numbers fluctuate
- Improvements since nutrient restoration
- Fry estimates more than doubled with nutrient restoration and have remained high (2014 was post nutrient a verage)
- Recent very strong reduction in 2 and 3 year old survival
- $2014 \sim 150,000$ spawners and 33 million eggs lowest recorded
- 1991 - low before nutrient restoration 285,000 spawners and 41 million eggs

History - Gerrard Rainbow Trout

- Daily bank counts since 1961
- Cyclical
- Long term average ~550
- 2012 peak 300\% higher than long term average, and nearly 200\% higher than prior record.
- Recent decline

History - Kootenay Lake Fishery

- Estimated direct expenditures between \$3-5 million annually
- Trout lic ence sales higher in the last four years than ever (c orresponding inc reases in effort)
- 2014-15 sales high $(\sim 5,000)$, but likely decrease in 2015
- Angler ha rvest low despite high effort (~13\%; harvest likely not driving current change in abundance)

History - Kootenay Lake Fishery

- Catch rate in the past 4 years for a lmost all size classes were highest ever observed (peak 2011-12)
- Decreasing catch rates in the past two years forall size classes over 2 kg
- Likely signific a nt dec rea se in catch rates currently; not yet reflected in survey results
- Increasing catch ratesfor the smallest fish (highest everobserved)

History - What about the Fish Disease in Kokanee?

- Infectious hematopoietic necrosis virus (IHN) found for the first time in adult kokanee spawners at Meadow Creek in 2013 and again in 2014;
- Kokanee fry samples 2014 and Gerrard spawners testing indic a ted no viral infection
- Potential sources; migrating animal (e.g. birds), present in the past but undetected, introduced by a person/boat, or many other possibilities.
- Disease (e.g. IHN virus) and parasites are rarely a majorfactor that affect wild population status- likely the case for Kootenay Lake:
o no signific ant fish kills identified (2013 event, likely small impact -?)
o adults have spawned successfully despite infection
o egg to fry survival has rema ined high (IHN typic ally kills fry)
o levels of infected kokanee declining
o rainbow trout not currently infected
- IHN virus is not hamful to people, and can't transfer to people by either touching or eating infected fish.

History - Nutrients

- Productivity in the lake has increased
o Gerrard abundance has increased
o Kokanee biomasshas increased 2.5 times since nutrient additions
o Zooplankton has inc reased, partic ularly in the South Arm

Current Status - Recap

- Recent low older Kokanee abundance
- Kokanee fry ~average abundance
- Recent record high Gerrard trout abundance
- Decreasing Gerrard rainbow trout size a nd large fish abundance, degrading condition of trout in fishery
- High abundance of young Gerrard rainbow trout - could increase koka nee recovery time
- Nutrient program continuesto produce fish food
- IHN virus remains present

Kokanee: stock recovery

- Fall fry abundance in 2014 remained high (over 15 million) suggesting recovery could be signific ant in just two years; *if predatorabundance declines rapidly.
- Fry production in 2015 likely to be 7-12 million. Even with low spawner number, recovery build ing block present.
- The signific ant uncerta inty a round recovery time centers on predatorresponse to curent low kokanee abundance

Actions

- Regulation change
- In the short term proposing a decrease in koka nee quota (0/day) effective April 2015.
- Could provide 2.5 million extra eggs
- Expert Review: Provincial stock a ssessment tea m and Freshwater Fisheries Soc iety BC engaged to review all options, such as stocking, to speed recovery of koka nee stocks, then mainta in abundance

Gerrard rainbows:

population management, trophy fishery

- We expect a sharp decline in spawner number and large fish catch rate in 2015
- Small fish catch rates suggest we currently have the raw material to maintain orincrease Gerrard numbers askokanee abundance increases

Actions

- Regulation Change: In the short term, daily rainbow quota on the Main Lake proposed to increase to $4 /$ day, 1 over 50 cm dec reasing juvenile Gerrard abundance has likely benefits for kokanee rec overy ($\sim 10,000$ caught annually, only 3,000 harvested);
- Expert Review: In the short and medium term: Provincial stock assessment team engaged to help better understand predator/prey dynamics in the lake, and inform future management decisions.
- Future Regulation change: if and when juvenile cohort abundance has been reduced suffic iently a nd kokanee abundance increases

Nutrient Restoration: maintain food

- Proven performer
- Quick koka nee recovery depends on continued nutrients (food forfish)
- Action: Optimization of timing and inputs
o Investigate timing with fry outmigration to increase juvenile Kokanee survival
o Increased monitoring and continued consideration of natural variability and climatic events (flow, temp and natural input) will ensure nutrient additions are optimized to best move up the food chain.

Future -Fish Disease in Kokanee?

- There is no practical way of controlling disease in wild fish populations
- We can't rule out virus as a factor: continue to limit virus at spawning channels where we have some control
o carcass removal
o flushing
o summerdrying
o koka nee testing will continue a nnually

Questions and your ideas

- Looking for your input and to answer any questions as we further develop actions
o Input and question form provided tonight can be retumed to organizers
o Questionsanswered and update on actionsprovided on Ministry web page:
o www.env.gov.bc.ca/kootenay/fsh/main/ma infish.htm
o Google "Kootenay Fisheries"
- Update bulletin will be available soon
o email list (sheet at the door)
o Regionalweb page
www.env.gov.bc.ca/kootenay/fsh/main/ma infish.htm

Appendix Q\&A

How Long Until Recovery?

- Recovery time hard to predict because of uncerta inty in predator response
- Best case - Less than one kokanee generation (~2 years)
o We currently have the building blocks for quick recovery - fry production and young Gerrard abundance
o Potential uptum in koka nee spawners by 2017 and concurent stabilization in Gerrard catch rate and size
o Requires an increase in koka nee survival rates, and a corresponding strong reduction in predator abundance
- Worst Case - two koka nee generationsormore (8+years)
o If predator numbers are slow to drop off and young Gerrards exert additional pressure on depressed koka nee stocks

KLRT Creel Survey Comparison

- KLRTvs C reel: effort estimates - within 0.5% of each other (C reel 46,053; KLRT46,311angler days)
- $>50 \mathrm{~cm}$ BT a nd RB catch and ha rvest - $\mathbf{1 . 5}$ to $\mathbf{2 x}$ higher in KLRT- likely reflects survey bias that is well recognized including anglers that do not report if they did not catch, recollection bias ascreel completed on day of catch (with harvest in hand) and survey up to $1.5 y$ ss latter, anglers reporting boat catch not personal catch and other (creel survey a valuable reference point to correct for survey bias)
- Year to year predictive power is intemally consistent - KLRTcatch rates by size class in one year predict future catch rates of larger fish, so useful index of abundance and fishery performance

Where are the Really Big Fish (>25 lbs)

- Was happening well before current pred:prey mismatch
- Catch data not suitable to differentiate big ($>15 \mathrm{lbs}$) vs very big ($>251 \mathrm{lbs}$).
- Peaks in the past (small numbers) but not since mid 2000's.

1. Natural mortality plus a ngler ha rvest removal at high enough rate for none to make it to $>25 \mathrm{lbs}$ (need to get >8yrs old).
2. Large fish corresponded in past with Gerrard peaks, but latest peak $2 x$ past peaks, so competition with each other may have been strong enough to limit size
3. Adequate prey size not available for the very biggest (energetics poor if koka nee size is small for very la rgest fish?).
4. Genetic Selection - anglers preferentially remove the largest fish
5. Combination of some of the above.

Worms in Fish

- Worms reported by anglers a re "broad fish tapewom", native to Kootenay Lake
- La rvae infect both freshwater and ma rine fishes, a nd a re always present in the Kootenay Lake rainbow population at some level.
- There is no practical way of controlling parasites in wild fish populations. For anglers, the key consideration is care in the preparation of your catch prior to consumption.
- Tapeworm eggs are exc reted in the feces of animals hosting the adult tapewom (fish-eating birds or mammals), develop in water into larvae that work their way through the food chain and eventually into fish.
- Heavy infestations of these laval tapewoms could kill some fish, especially those an already weakened condition, such as older fish, malnourished fish, or post-spawning migrants that are just retuming to the lake.
- Parasite loads fluctuate. Although more trout appearto be affected by these parasites now than in the recent past, some anglers and retired fish biologists recall relatively high levels of parasites in past decades.
- We don't know for sure why these parasites are more common at some times, but this cycle is common in other populations

Impact of Proposed Regulation Changes

Gerrard Rainbow Trout

- annual small rainbow catch is 10,000-15,000 fish, and only 25-30\% harvested
- Anglers can help: there is potential to reduce the young Gerrard population by as much as 10,000 fish in one year if all fish were kept.
- For perspective, total production of 1 year old Gerrards annually is ~20,000, which decreases by the time they enter the fishery.

Kokanee

- measurable increase in egg numbers from 0 harvest. The estimated gain could be $\sim 10 \%$ or more in 2015.

Assumed potential harvest under 15/d limit $=10,000 \mathrm{KO}$		
limit	harvest	number of extra eggs to MC
0	0	$2,500,000$
2	6125	968,750
5	9125	218,750
15	10000	0

Kokanee Distribution

Kokanee Distribution

- Density of koka nee higher after south a m nutrients
- No signific ant change in distribution, with high densitiesat all transects in both the north and south arms

Avg Pre and Post Nutrient program densities of 1-3+ Kokanee in Kootenay Lake

Secchi - measure of transparency

Kootenay Lake North Arm Secchi Annual Mean

Kootenay Lake South Arm Secchi Annual Mean

South Arm Secchi

Kootenay Lake South Arm Monthly Mean \pm Min and Max Values

North Arm Secchi

Kootenay Lake North Arm Monthly Mean \pm Min and Max Values

Turbidity

01

Phytoplankton

Zooplankton - Adult Kokanee Food

 Daphnia

Zooplankton - Kokanee Food Total Density

South Arm Kootenay Lake Zooplankton Annual Mean Total Density

Phosphorus - Top 20 meters

Phosphorus - Bottom

Oxygen Profile in a higher
phytoplankton year

South: KL6 Oxygen (mg/L)

Phosphorus loading

Phosphorus loading

Phosphorus loading in Kootenay River

Kootenay River Average Annual Total Phosphorus

Kootenai(y) River Nutrient Addition Bio-Monitoring Sites

Nutrient addition Zones

