

An Overview of the CLEVER Model: the real-time flood forecasting system for BC — Challenges, science, operations, history and uncertainties

Charles Luo BC River Forecast Centre, FLNRORD April 29, 2021

Contents

- 1. Why the CLEVER Model Challenges of real-time flood forecasting in BC 🏏
- 2. Model structure 🏏
- 3. Science: Distributed open channel routing An improved kinematic wave scheme
- Science: Lumped watershed routing An improved temperature-index snowmelt model
- 5. Codes and user interfaces 🏏
- 6. Input data and data assimilation 🎾
- 7. Model calibration flexibility to adapt to climate changes 🏏
- 8. Producing forecasts informative and easy to read 🏏
- 9. Model history developing, expanding and upgrading
- 10. Post freshet review of model performance statistics and flooding events 🏏

11. Modeling uncertainties – understanding limitations 🏏

12. Types of modeled stations 🏏

1. Why the CLEVER Model - Challenge Monel Basins (2) RIVER FORECAST CENTRE BUSINESS TRANSFORMATION time flood forecasting in B Total length of Model Area: 700,401 (km², 74% of BC) rivers in BC = Alaska 42,150 km > Canada earth's Model stations: 311 circumference BRITISH SASKATCHEWAN COLUMBIA Challenge 1. Seattle Supper large areas WASHINGTON Area (km²): SOUTH DAKOTA British Columbia: 947,900 OREGON IDAHO WYOMING =91% of the following states: NEBRASKA **United States** Washington: 184,827 NEVADA UTAH COLORADO KANSAS

OKLAHOMA

TEXAS

13

 Washington:
 184,827

 Oregon:
 254,806

 Idaho:
 216,443

 Montana:
 380,800

 ----- 1,036,876

CALIFORNIA OLas Vegas

ARIZONA NEW MEXICO

Los Angeles

San Diegoo

1. Why the CLEVER Model – Challenges of realtime flood forecasting in BC

14

1.Why the CLEVER Model – Challenges of realtime flood forecasting in BC

Stantec Consulting Ltd, 2014. River Forecast Performance Measures Development Project Final Report, Alberta Environment and Sustainable Resource Development, Edmonton, AB

Table 3-1: Flood Forecasting Centre Staffing												
FFC	No., of Staff	Forecast Area (km²)	Staff per service area ratio	Forecast Population	Staff per population ratio							
CBRFC	14	785,932 km²	~ 1:56,000	12.7 M	~ 1:1,000,000							
UD&FC	23	7,770 km ^{2**}	~ 1:340	2.3 M	~ 1:100,000							
FCDMC	***	13,985km ²		3.9 M								
ASWFN		295,280km ²		6.5M								
	^	() 005hm2	1:4,600	8.0 M	~ 1:1,000,000							
C	Challenge	3.	1:7,800	5.3 M	~ 1:500,000							
Very li	mited re	sources	1:600	0.5 M	~ 1:80,000							
GRCA	41	7,000km*	~1:170	985,000	~1:24,000							
BCRFC 🗰	4.5 <=4	950,000 km ²	~ 1:200,000	4.5 M	~ 1:900,000							
BRFC	12	71,000 km ²	~ 1:6,000	12.0 M	~ 1:1,000,000							
HFC	12	650,000 km ²	~ 1:50,000	1.3 M	~1:1,000,000							
ARFCWB*	50	Not available		22.7M								
HIC*	25	Not available		6M	16							

1. Why the CLEVER Model – Challenges of realtime flood forecasting in BC

Challenge 4. Very limited time for modeling (about 90 minutes each day)

1. Why the CLEVER Model – Challenges of realtime flood forecasting in BC

Challenge 4. Very limited time for modeling (about 90 minutes each day) Challenge 3. Very limited resources Challenge 2. **Tremendous heterogeneity** Challenge 1. Supper large areas

<u>Channel Links Evolution Efficient</u> <u>Routing (CLEVER) Model</u>

2. Model structure – watershed simplification

2. Model structure – Watershed routing

RIVER FORECAST CENTRE BUSINESS TRANSFORMATION

PREMIER'S AWARD ORGNIZATIONAL EXCELLENCE 2020

RIVER FORECAST CENTRE BUSINESS TRANSFORMATION **2. Model structure** – Open channel routing

ORGNIZATIONAL EXCELLENCE 2020

RIVER FORECAST CENTRE BUSINESS TRANSFORMATION **2. Model structure** – Model flow chart

PREMIER'S AWARD

3. Science: Distributed open channel routing — An improved kinematic wave scheme

RIVER FORECAST CENTRE

BUSINESS TRANSFORMATION

Highly regulated hydrograph

Kinematic wave of Saint Venant Equation: $\begin{cases} \frac{\partial Q}{\partial x} + \frac{\partial A}{\partial t} = 0 \\ S_0 = \frac{n^2 Q^2}{A^2 R^{4/3}} \end{cases} \qquad Q_{i,j} = V_{i,j} A_{i,j} \qquad V_{i,j} = \frac{1}{n} \sqrt{S_0} R_{i,j}^{2/3} \\ F_{inite} \text{ difference with the Preissmann scheme;} \end{cases}$ $A_{i,j} = \frac{\Delta t (Q_{i-1,j} + Q_{i-1,j-1} - Q_{i,j-1}) + \Delta x (A_{i,j-1} + A_{i-1,j-1} - A_{i-1,j})}{\Delta t V_{i,j} - \Delta x}$ V unknow -> Iteration: $(A_{i,j})^{(k)} = \frac{\Delta t (Q_{i-1,j} + Q_{i-1,j-1} - Q_{i,j-1}) + \Delta x (A_{i,j-1} + A_{i-1,j-1} - A_{i-1,j})}{\Delta t (V_{i,j})^{(k-1)} + \Delta x}$ $r_{i,j} = \frac{Q_{i-1,j-1} - Q_{i-1,j-2}}{Q_{i-1,i} - Q_{i-1,j-1}} \qquad \varphi(r) = max[0, min(1,r)] \qquad \text{Minmod Flux limiter}$ $\left[(A_{i,j})^{(k)} = \frac{\Delta t Q_{i-1,j} + \Delta x A_{i,j-1}}{\Delta t (V_{i,j})^{(k-1)} + \Delta x} + \varphi (r_{ij}) \frac{\Delta t (Q_{i-1,j-1} - Q_{i,j-1}) + \Delta x (A_{i-1,j-1} - \overline{A_{i-1,j}})}{\Delta t (V_{i,j})^{(k-1)} + \Delta x} \right]$

PREMIER'S AWARD ORGNIZATIONAL EXCELLENCE 2320

3. Science: Distributed open channel routing — An improved kinematic wave scheme

Luo, C. 2021. Comparing Five Kinematic Wave Schemes for Open-Channel Routing for Wide-Tooth-Comb-Wave Hydrographs. Journal of Hydrologic Engineering, ASCE, 26 (4).

River length (km)	Δx (km)	Δt (s)	$\frac{\Delta x/\Delta t}{(m/s)}$	River segments	Scenario
150	1	3,600	0.278	150	SCN1
150	2.5	3,600	0.694	60	SCN2
150	5	3,600	1.389	30	SCN3
150	7.5	3,600	2.083	20	SCN4
150	10	3,600	2.778	15	SCN5
150	25	3,600	6.944	6	SCN6
150	50	3,600	13.889	3	SCN7

4. Science: Lumped watershed routingAn improved temperature-index snowmelt model

x = y

Water balance equation: W = R + M + G - E - I

Time Efficiency

Temperature-index method: $M = M_f(T_i - T_b)$ M: snowmelt M_f : melt factor T_i : air temperature T_b : base temperature snow starts to melt

Simple

4. Science: Lumped watershed routingAn improved temperature-index snowmelt model

29

5. Codes and user interface

RIVER FORECAST CENTRE

BUSINESS TRANSFORMATION

PREMIER'S AWARD

🚰 Microsoft Visual Basic for Applications - [Module1 (Code)] Edit View Insert Format Debug Run Tools Add-Ins Window Help 🦇 File 📕 i 🖪 💷 🏊 🔟 🧕 🚰 😽 3 🔀 🗐 🕶 🛃 🐰 -AA III III Ln 9654, Col 1 Ci l Project - VBAProject х (General) CLOSE_SUB_MD_FILES -Microsoft Visual Basic for Applications - [Module2 (Code)] With the second seco 🦂 <u>F</u>ile Edit View Debug <u>Run T</u>ools <u>A</u>dd-Ins Insert Format Window Help - Microsoft Excel Objects Sheet13 (TP_DIST) 🔲 🔛 🤡 😭 😽 🕱 🖻 - 🛃 🕺 🖻 🛍 🗛 10 CH 3 📕 i 🖪 🖪 🖌 🏊 - 11 Ln 1194, Col 1 Sheet4 (MODELING) Project - VBAProject X Sheet79 (CHLINKS) (General) FiveMinuteQ to Hourly Ŧ ThisWorkbook Ŧ E 🗄 🖓 Modules Microsoft Visual Basic for Applications - [Module3 (Code)] Module 1 🖃 🍇 VBAProject (CLM 0MOD 🦀 <u>F</u>ile <u>E</u>dit View Run Tools Add-Ins Window Help Insert Format Debug Module2 - Microsoft Excel Objects Module3 Bheet13 (TP_DIST) Ŧ 🗙 🖻 - 🛃 🕺 🖻 🛍 🗛 3 i 🖪 🖪 🏊 Ln 585, Col 1 Module4 Sheet4 (MODELING) Project - VBAProject X Module 5 Bheet79 (CHLINKS) HYPERLINK_FIGURES_TO (General) -ThisWorkbook Ŧ E 🗄 😁 🦳 Modules Range("A19:A20").Select WBAProject (CLM 0MOD 🖧 Modulet With Selection - Microsoft Excel Objects Module2 .HorizontalAlignment = xlLeft Sheet13 (TP DIST) Module3 .VerticalAlignment = xlBottom Module4 Sheet4 (MODELING) .WrapText = False Module 5 (CHLINKS) .Orientation = 0 ThisWorkbook .AddIndent = False .IndentLevel = 0 Module 1 .ShrinkToFit = False 🖧 Medule2 5 modules .ReadingOrder = xlContext Module3 .MergeCells = False Module4 End With 🖧 Module5 12,492 lines

RIVER FORECAST CENTRE BUSINESS TRANSFORMATION 5. Codes and user interfaces

ORGNIZATIONAL EXCELLENCE 2020

4	utoSave 💽 🖁	9° (°	- -	CL	M_0MODEL.x	lsm - Excel	Q	Search					•		0	Luo, Charle	es FLNR:EX	8	困 —		4
Fil	e Home Inser	rt Page	Layout	Formulas	Data	Review Vi	ew Developer	Help	ACROBAT									ß	Share	₽ Com	iment
C1	$(1 \times f_x) = (2 + f_y)$																				
			-02				-							_							
		B	C	D	E	F		01.0	J	К	L	M	N		P	Q	R	S The fell		tons are	J
2	ENDING DATE	2021-03-31	2021-04-20	TODAY	DAY	FI	RESHET STARTS ON:	01-0	1				SIMU		A: 2021-04-20			for runn	ing on C d	tons are	2 by:
3	NO SIM/FOR DAYS	30	10					01 2					SIMU	LATED TO	D: 2021-04-29			Tor runn	ing on e a	inve onig	y.
4	INPUT PATH	INPUT\																Copy i	nput data	files from	m G
5	OBS CLIMATE DATA	CLIMATE_O	BS.xlsx					1		1			METHODOLOG	Y AND M	ACROS DEVEL	OPED BY:		drive	IT running	on C ari	ve
6	FOR CLIMATE DATA	CLIMATE_F	OR.xlsx				WATERSHED		CHANN	EL I			DR. CHARLES	LUO, P.	ENG.			Deckup Cub Mardal files		del files t	ta C
7	OBS FLOW DATA	DISCHARGE	OBS.xlsx_				ROUTING ONLY	Y R				\wedge	BC RIVER FORECAST CENTRE, JUNE 2013				drive if running on			on C dri	ive
8	OBS FLOW DATA HR	DISCHARGE	_OBS_HOU	R.xlsx																on o an	
9	OUTPUT PATH	OUTPUT\		0/ALL					/			/							50050	OTINIC	
10	CALIBRATION PATH	CALIB/	OPEN	1-1FRASER	-		RU	JN TI	HE 🔪						00.000				FORECA	STING	
11			SUB-MD		<u>.</u>					\setminus \checkmark					US FOR:		TING M	DEL	DEIMO		
12			CLOSE				CLEVE	KK	NODE	╚┖╱			CHAININEL LIN	KS EVO					FURECA	ISTING	
14			SUB-MD	5-55TC VI			(WATERSHED	& CHAN	INEL ROUTI	NG)									MSGB		
15	WATERSHEDS	311		ALL									191	CHANNE					NO MS	GB	
16	1	REDP	08KA007	7 1FRASER				HARG	ε πάτα η				REDP MCBR	1	1FRASER				MSGB		
17	2	MCBR	08KA005	5 1FRASER									MCBR MORK	2	1FRASER						
18	3	DORE	08KA001	L 1FRASER		EXPT STA		1		_ 1	EXPT STA		MORK FRTP	3	1FRASER						
19	4	<u>MCKA</u>	08KA009	9 1FRASER		10:13 AM	EXPORT		EXPOR	T	10:14 AM		FRTP BOHA	4	1FRASER						
20	5	MORK	08KA013	1FRASER		10:14 AM	CALIBRATION		FORECA	ST	10:24 AM		BOWN BOHA	5	1FRASER						
21	6	FRTP	99FK004	IFRASER		ENDED					ENDED		BOHA HANS	6	1FRASER						
22	7	TORP	99FK003	IFRASER									HANS HAMG	7	1FRASER						
23	8	BOWR	08KD007						Default na	the "CALID	Δ		HAMG SMDG	ð	1EDASED						
24	10	MGRE	08KB004	1FRASER		SAVE WA	TERSHED PARAMETER	as to:		M 1-1FR	ASFR 2021-	-04-20.xlsx	SMPG SHE	10	1FRASER					_	
26	10	WLLW	08KD00F	1FRASER		JAVE WA		.510.	CLM PARA	M 2021-0	4-20.XLSX	CT LUIAISA	NBCF NTLY	11	1FRASER					_	
27	12	SMPG	08KC001	L 1FRASER					CLM PARA	M 1-1FR	ASER 2021-	-04-20.xlsx	NTLY NVDH	12	1FRASER					_	
28	13	SHEL	08KB001	L 1FRASER		RESTORE W	ATERSHED PARAMET	ERS FM:			_		NVDH VDST	13	1FRASER						
29	14	NBCF	08JA017	7 1FRASER					↑ PATH (b	lank if on	"CALIB\")		STUA VDST	14	1FRASER						
30	15	STEL	08JB002	1FRASER									VDST NECH	15	1FRASER						_
31	16	NTLY	08JB003	1FRASER		Posting	g clever, clever1, clev	er2,	Postin	g clever o	only to		NECH CHLA	16	1FRASER		N/-	dal			
32	17	<u>NVDH</u>	08JC001	L 1FRASER		and cl	lever3 to PROD serve	er:	PROD s	erver: \\a	nswer.		CHLA BSFG	17	1FRASER		IVIC	ael	com	101	
33	18	DRIF	08JD006	5 1FRASER		\\answ	er.bcgov\envwwv\	rtc∖,	bcgov	\envwww	ı∕\rfc		SHEL BSFG	18	1FRASER			into	face		
34	19	TSIL	08JE004	IFRASER		whick	h is mapped as R dri	ve	which	is mappe	d as R		BSFG SFGE	19	1FRASER			nie	act	-	
35	20	NECH	081C003				about 8 minutes)		drive (a	ibout 2 m	inutes)		NAZK WSRD	20	1ERASER	L					
- 50			(S MOD	ELING	\oplus								INALK WORIN	21	TENASEN		: 4	1		_	

33

100%

Ħ E 円

Ē

RIVER FORECAST CENTRE BUSINESS TRANSFORMATION PREMIER'S AWARD

J K L M N O P O B

5. Codes and user interfaces

Watershed parameter panel

ORGNIZATIONAL EXCELLENCE 2020

01-01 1.5

01-02

01-03 3.1

01-04 -0.1

01-05

01-06

01-07 -2.6

01-02 -1.9

01-09 -2.8

01-10 -0.3

01-11

01-12 3.8

01-13 2.6

01-14

01-15 3.4

01-16 -3.2

01-17 7.9

01-18 4.7

01-19 2.8

01-20 -1.2

01-21 -2.2

01-22

01-23 -10.7

01-25

01-26 -5.8

01-27

01-28 -5.2

47

0.2

3.9

-3.7

-4.8

-7.4 01-24

-5

-4

Hydrograph area

Y Z AA AB AC AD AE AF AG AH AL

AJ AK

AM AN 40 AP 40 AB. AS AT

ΔU ΔV. -ΔW AX.

6. Input data and data assimilation

RIVER FORECAST CENTRE

BUSINESS TRANSFORMATION

RGNIZATIONAL EXCELLENCE 2020

RIVER FORECAST CENTRE BUSINESS TRANSFORMATION

6. Input data and data assimilation

Global

Deterministic

Prediction System -

GDPS (dx= 25 km, dt

=3h, Time used= 63

to 240h)

Forecast climate data

Canadian Meteorological Centre's (CMC) Numerical Weather Prediction (NWP) -GRIB2 format Regional Deterministic
 Prediction System -RDPS (dx=10 km, dt=3h, Time=0 to 62h)

> 161 files to download (about 20 minutes)

> > Downscale to

Locations of 368 climate stations (about 20 minutes)

Map of CMC's10 forecasts of daily average T and daily P http://bcrfc.env.gov.bc.ca/freshet/FORECAST_CMC_MAP.pdf

6. Input data and data assimilation

Observed Hydrometric data

PREMIER'S AWARD ORGNIZATIONAL EXCELLENCE 2320

Water Survey of Canadian DataMart hydrometric data

> Hourly + Daily

	А	в	C PB	PC	PD		Α	BC	IK	IL	IM	IN	ю	IP	Real-Time Hydrometric Data Graph for MCGREGOR RIVER AT
1			08PA01	2 08MB012	10AA001	1			08NA002	08NA006	08NA011	08NB005	08NB017	08NB019	LOWER CANYON (08KB003) [BC]
25345			55 8.	28 38.6	i 📂	25345		55	31.4	7.67	5.4	44.2	_		O Charles Matter
25346	03-30	0	0 8.	39 38.7	65	25346	03-30	0 0	31.4		5.4	37.7			• • <u>Station Notice</u>
25347			5 8.	24 39.1	L	25347		5	31.4		5.37	44.2			The regular flow measurement program at this hydrometric gauge is compromised because the cableway is
25348			10 8.	13 39.1	L	25348		10	31.4	7.7	5.37	44.2			currently out of service. Please email ec.shnhydrologiquebc-nhshydrologicalbc.ec@canada.ca with any question or concerns
25349			15 8.	43 38.3	65	25349		15	31.4		5.37	37.7			
25350			20 8.	28 39		25350		20	31.4		5.37	44.2			All times are specified in Local S Obviously ing Time where and when it is
25351			25 8.	35 38.8	3	25351		25	31.4	7.62	5.37	44.2			observed.
25352			30 8.	28 39.2	2 65	25352		30	31.4	7.67	5.35	37.7			
25353			35 8.	32 38.7	7	25353		35	31.4		5.35	44.1			
25354			40 8.	24 39)	25354		40	31.4) <u> </u>				Station: 08KB003 V Data Type: Real-Time V Download? Apply
25355			45 8.	28 38.6	65	25355		45	31.3			ompl	etelv		
25356			50 8.	35 38.2	2	25356		50	31.4	7.79			. '		* Lerend
25357			55 8.	43 38.3	3	25357		55	31.3	7.64		miss	ing		+ Legend
25358		1	0 8.	28 38.6	i 65	25358		1 0	31.3	7 67	5.55	57.7	1		Water level (primary sensor) - Discharge (primary sensor Provisional derived) - Provisional
25359			5 8.	28 37.9)	25359		5	31.3		5.32	44			
25360			10 8	.2 37.6	5	25360		10	31.3	7.73	5.32	44			Water level (primary sensor) (m) Discharge (primary sensor derived) (m3
25361			15 8	.2 37.2	2 65	25361		15	31.3		5.32	37.7			
25362			20 8	.2 37.6	5	25362		20	31.3		5.32	43.9			
25363			25 8.	24 37	7	25363	1		ب ام ماب	7.76	5.32	43.9			1.00
25364			30 8.	24 38.2	. 64.9	25364	_ Iſ	reg	ulariy	7.59	5.32	37.7			
25365			35 8.	24 38.2	2	25365		mic	cinσ	7.73	5.32	43.9			2500
25366			40 E	.2 38.3	3	25366	1	11113	Sing		5.29	43.9			
25367			45 8.	17 38.4	64.9	25367		45	31.3		5.29	37.7			2.400
25368			50 8.	17 38.4	L .	25368		50	31.3		5.29	43.9			
25369			55 8.	24 37.9)	25369		55	31.3	7.62	5.29	43.9			2.00
25370		2	ک 0	.2 38.4	64.9	25370		2 0	31.3	7.62	5.29	37.7			
25371			5 8	.2 38.2	2	25371		5	31.3	7.73	5.29	43.8			2000
25372			10 8	ng 28	2	25372		10	31.3		5.29	43.8			
25373	D	iff	prent	time	64.9	25373		15	31.3		5.29	37.7			1.00
25374	U		erent	unic		25374		20	31.3	7,73	5.29	43.8			
25375			step			25375		25	31.3		5.29	43.8			1.500
25376					64.9	25376		30	31.3	7.56	5.29	37.7			
25377			35 8.	13 38.4	L L	25377		35	31.2	7.47	5.29	43.8			140
25378		-	40 E	.2 38.4	L .	25378		40	31.3		5.29	43.8] / / / / / / / / /
25379			45 8.	17 38.7	64.9	25379		45	31.3		5.29	37.7			r r r r r r r r r r
05000			- al a			00000			24.0	3.66	E 00	40.0			Date & Time in PST

6. Input data and data assimilation

In the model: Dily climate data are distributed to hourly data

RIVER FORECAST CENTRE 7. Model calibration – flexibility to adapt to climate changes

	A	В	C	D	E	F F	G	н	1
1	WATERSHED	DORE RIV		ACBRIDE (08KA001)		DORE	
2	AREA (km2)	407	(08KA00	1) - DAILY		WATERS	HED TYPE	Natural	
3	AVERAGE ELEVATION (m)	1600	8KA001)	- HOURLY					
4									
5	STORAGE CONSTANT	2.00	CALCULA	TED FROM	AREA A	ND FACT	OR: 0.2 - 1	15	
6	FACTOR TO STORAGE CONSTANT	1.20	CHANGE	SHAPE OF	HYDROG	GRAPH, G	REATER, F	LATTER	
7	HYDROGRAPH CONSTAN	1.00	CHANGE	PEAK OF	NDROGE	RAPH, GR	EATER, HI	GHER	
8	FAST FLOW (%)/PEAK SHIFT (1	0	1	1- I UN 6	GROUND	NATER M	ODEL	
9	BASE FLOW (m3/s)	0.5		0	INITIAL	GW STOR	AGE (mm)	
10	SOIL MOISTRUE DEFICIT (mm)	0.00		1000	MA) GW	STORAG	GE (mm)		
11	INFILTRATION RATE (mm/)	0.40		200	GW RELE	ASE THR	ESHOLD (I	m3/s)	
12	EVAPOTRANSPIRATION(mm/l)	0.05		0.15	RATE OF	RELEASI	NG (1/HO	UR)	
13	SNOWMETL RATE (mm/C/ł	0.360	0.050	0.300	MELL CO	EF CMD1	l, CMD2 (N	MAR/APR)	
14	SNOW METL/A RECESS POWER	0.75	0.200	05-21	D ATE OF	STEADY	SNOWME	LT	
15	NUMBER OF CLIMATE STATIONS	U	WEIGHT	EL (111)	dTX_c	dTN_C	dP_mm	P_Tactor	
16	2	MBP	0.6	1611	0.0	0.0	-4.0	0.80	
17		MBH	0.4	716	0.0	0.0	-5.0	0.70	
18									
19	<-GO TO MODEL FILE								
20	<-GO TO FIGURES SHEET		1	RA	INFALL P	T: 1-INTE	2-COAST	1	
21		NEW	OLD				ARGE DAT		
22	INITIAL SWE (mm)	1200	1200			I E DISCH			
23					dTX_C	dTN_C	dP_mm		
24	METHOD OF EXTENDING TO 10 DA	Y FORECAS	ST	1	0.0	0.0	0.0		
25	1 - STATIC (T&P AS LAST DAY)/2 - S	STATIC (T&	P AS SET)	1-THIS ST	'N ONLY	EVE		CAST	
26	3 - FLAT WITH INCREMENT AS SET			2-ALL SU	B BASINS	EAP FOR 1	THIS WATE		
27	4 - LINEAR WITH UNIFORM SLOPE			3-DOWST	FREAM				
28				4-ENTIRE	GROUP		1		
29	RIVER ROUTING METHOD	1	(1-CHAN	NEL, 2-LA	KE)	ADDITIC	NAL INFL	OWS FOR	LAKE
30		dX(Km)	dT(s)	dX/dT					
31		8	3600	2.222					
32	FLOW GAUGE ELEVATION (m)	750		1 - RE-LO	AD	F	RE-CALIBR		
33	DISTANCE FM WTSH CENTRE (Km)	16		INPUT	FILES	тн	IS WATER	SHED	/
34	SLOPE (S0)	0.052125		BLANK(D	EFAULT)				
35	MANNING ROUGHNESS (N	0.12		NOT RE-L	OAD INP	UT FILES			
36	RIVER WIDTH (m)	40							
37	TOTAL NUMBER OF dX	2		FORECA	AST BIAS-	CORRECT	FION (%):	0	
38	TOTAL NUMBER OF dT	720				Line	ear Hours	12	

PREMIER'S AWARD

RIVER FORECAST CENTRE

BUSINESS TRANSFORMATION

7. Model calibration – flexibility to adapt to climate changes

42

8. Producing forecasts – informative and easy to read

RIVER FORECAST CENTRE BUSINESS TRANSFORMATION

ORGNIZATIONAL EXCELLENCE 2020

-Q_OBS -Q_EST 40 35 30 25 20 15 10 5

04-21

04-11

BARRIERE RIVER AT THE MOUTH (08LB020) - HOURLY

Discharge (m³/s)

0

04-01

RIVER FORECAST CENTRE BUSINESS TRANSFORMATION

8. Producing forecasts – informative and easy to read

9. Model history – developing, expanding and upgrading

56

The <u>Channel Links Evolution Efficient Routing</u> (CLEVER) Model

	Planning researching and coding the	32			100
2013	first version of the CLEVER Model(M)	stn	2018	Model (High water year)	108 stn
					Juli
QO I A.	Test running the CLEVER Model	51	2019	Providing CSV files of hourly forecast	119
2014	(Moderate water year)	stn	2017	for users to download (Low water y)	stn
	Starting appretional working the	71	2222	Significant expanding modeling	266
2015	<u>CLEVER Model (Low water year)</u>	stn	2020	scope (Extensive flooding year)	stn
	and the second sec			1 Massivo ungrading including	
0016	Operational running the CLEVER	74		feature allowing multi-users to	
2010	Model (Very low water year)	stn	2021	run the model in parallel to	311
	N State State			2. First paper about the CLEVER	stn
2017	Significant increase of modeled	102		Model published in an	
	stations (Moderate water year)	stn		international peer reviewed	
				Journal (J. Hydro. Eng., ASCE)	

10. Post freshet review of model performance

statistics and flooding events

10. Post freshet review of model performance

statistics and flooding events

CLEVER Model after Freshet Review (AFR) 2017

Charles Luo, August 2017

After freshet review (AFR) reports as of 2017: CLEVER Model after Freshet Review (AFR) 2018 After Freshet Review (AFR) of Charles Luo, September 2018 **CLEVER Model Performance in 2020** Charles Luo, Ph.D., P.Eng. CLEVER Model after Freshet Review (AFR) 2019 **BC River Forecast Centre** March 2021 Charles Luo November 2019 1. Changes of modeling scope Statistics of model calibration and forecasts Model performance during flooding events 3. **Recommendations for model improvements** 12 watersheds 15 Model forecast 21 Forecast outputs 25 0031 30 Comparing forecast accuracy with last year's . M116) 38 4. Model performance in forecasting historical record-breaking flood in Chilcotin River Watershed 43 from July 6 to 15, 2019 Summary 15 Citing this document

Luo, C., 2021. After Freshet Review (AFR) of CLEVER Model Performance in 2020. Technical Report of BC River Forecast Centre, Victoria, BC

13

RIVER FORECAST CENTRE BUSINESS TRANSFORMATION

10. Post freshet review of model performance

statistics and flooding events

10. Post freshet review of model performance – statistics and flooding events

Review of Granby May 10, 2018 Flood (3:55 p.m. PST) (Observed Q peak = 524 m³/s)

10. Post freshet review of model performance

statistics and flooding events

11. Modeling uncertainties – understanding limitations

11. Modeling uncertainties – understanding limitations

Second category of modeling uncertainties coming from the model itself

12. Types of modeled stations

The only type of stations included in the model when developed and in early stage of operation (watersheds were split originally based on WSC stations)

- FLOW STN
 - WSC_ACTIVE
 - WSC_INACTIVE
 - NON_WSC
 - ESTIMATED

ROUTING

- 1. After April 2018 West Road River/Nazko River flood, the inactive WSC station NAZKO RIVER ABOVE MICHELLE CREEK (08KF001) was added because of flooding concerns.
- 2. After July 2019 Chilcotin River Flood, WSC eliminated the CHILCOTIN RIVER BELOW BIG CREEK (08MB005), which was kept in the model as an inactive station for better model calibration.
- PEACE RIVER AT HUDSON HOPE (07EF001) became inactive in 2019 and removed from the model in 2020. It was restored in the model as an inactive station in 2021 for better model calibration.
- 4. Because of flooding concerns, the SOMASS RIVER NEAR ALBERNI (INACTIVE STATION) (08HB017) was included when VI basins were included in the model as of 2020.

The only Non-WSC station is the LILLOOET RIVER FSR (08MG00A) (BC station ID: 08MG0001), an important station for Pemberton.

