Soil Survey of the PEMBERTON VALLEY British Columbia

RAB Bulletin 16

Province of British Columbia Ministry of Environment

. 9

3

RAB Bulletin 16

SOIL SURVEY OF THE PEMBERTON VALLEY, BRITISH COLUMBIA

Roxanna L. Beale Kuurne, P. Ag.

Victoria, B.C. Jan. 1980

Canadian Cataloguing in Publication Data

Kuurne, Roxanna L. Beale, 1950-Soil survey of the Pemberton Valley, British Columbia. 5

(RAB bulletin ; 16)

Bibliography: p. ISBN 0-7719-8292-5

÷.

 Soils - British Columbia - Pemberton Valley.
 Land use - British Columbia - Pemberton Valley.
 Title. II. Series: British Columbia. Ministry of Environment. Resource Analysis Branch. RAB bulletin; 16.

S599.1.B7K82 631.4'7'71141 C80-092025-2

ACKNOWLEDGEMENTS

The author would like to express her sincere appreciation to all those individuals and groups who contributed both directly and indirectly to the information included in this report. Thanks is extended to those individuals who were responsible for the mechanics of producing the final product, for their endless patience and perseverance. This includes personnel from the drafting, typing and laboratory sections of the Resource Analysis Branch. Special appreciation is extended to N.A. Gough (Ministry of Agriculture) and M.G. Driehuyzen (Ministry of Agriculture) for their contributions to the report and for their continuing comments and suggestions.

Thanks is also extended to the farmers and other landowners within the study area for their forebearance and patience in allowing us access to their lands, especially the Mount Currie Indian Band, specifically Mr. Ambrose Wallace, Chief Allan Stager, and Dr. Sharif Ahmid.

Individuals who assisted in preliminary mapping and field checking include Charles Littledale, Patrick Viccars, Philip Christie, Michael Doggart, Ruth Hardy, Mary Redmond, and Robert Hinkley.

The members of the editorial committee were H.A. Luttmerding (chairman), W.C. Yeomans, and R. Reid of the Resource Analysis Branch; A. Schori, E.C. Hughes, M.G. Driehuyzen, and N.A. Gough of the Ministry of Agriculture; Dr. D. Moon of Agriculture Canada and Dr. L. E. Lowe of the University of British Columbia. They reviewed the manuscript and provided helpful suggestions toward improving the quality of the final product.

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	111
TABLE OF CONTENTS	v
LIST OF FIGURES	xi
LIST OF MAPS	x٧
LIST OF PLATES	x٧
LIST OF TABLES	xvii
SUMMARY	xix
HOW TO USE THIS SOIL SURVEY REPORT	xxiii
1. INTRODUCTION	1
1.1 Objectives	1
1.2 Description of Study Area	1
1.3 History	3
	_
2. THE FORMATION, MORPHOLOGY AND CLASSIFICATION OF SOILS	
2.1 Soil Development	
2.2 Soil Profile	
2.3 Soil Classification in Canada	10
3. METHODOLOGY	13
3.1 Field Mapping	13
3.2 Soil Sampling	15
3.3 Laboratory	16
3.4 Land Use Interpretations	17
3.4.1 Agricultural Capability Ratings	17
3.4.2 Suitability for Engineering Uses	17
3.4.3 Physical Carrying Capacity for Outdoor Recreation	17
4. FACTORS AFFECTING SOIL FORMATION	19
4.1 Climate	19

,

					<u>Page</u>
	4.2	Physi	ograf	ohy and Drainage	20
	4.3	Hydro	logy		22
	4.4	Vegeta	atior	۰ ۱	24
	4.5	Soil I	Parer	nt Material	25
		4.5.1	Bec	Irock	25
		4.5.2	Unc	consolidated Geologic Deposits	28
			Α.	Anthropogenic deposits	28
			B.	Colluvial deposits	28
			с.	Fluvial deposits	29
			D.	Morainal deposits	30
			E.	Organic deposits	31
5.	SOIL	S OF TH	'E ST	UDY AREA	43
	5.1	Descri	ptio	n of Soil Series	43
		5.1.1	Soi	ls formed in Colluvial Materials	43
			A.	Lillooet River area	43
				Callaway series	43
				Clausen series	46
				Collister series	46
				Conroy series	46
				Cottingham series	47
			в.	Birkenhead River, Blackwater Creek, Gates River area	
				Chumley series	
				Cloutier series	48
				Cosulich series	48
				Cowell series	48
				Combow series	49
		5.1.2	Soil	s formed in Fluvial Materials	49
				Lillooet River area	49
				Farmer series	49
				Frontier series	49
				Gates Lake series	
					50

vi

Page Gilmore series 51 Grundy series 53 Naim Falls series 53 Nesuch series 54 Newberry series 55 Quamell series 57 Ronayne series 58 Renville series 60 Ranson series 61 Rutherford series 62 Sankey series 63 Scobie series 65 Shantz series 66 Sister series 67 Sangster series 68 Scullard series 69 Tenquille series 70 Valleau series 71 Viccars series 72 Verlinden series 73 Vickberg series 74 Walden series 75 Whitehead series 76 Wildfong series 77 Wallace series 78 Wolverine series 79 Wittal series 80 B. Birkenhead River, Blackwater Creek, Gates River area 81

Fougherg series

Franks series

Flichel series

Fotsch series

81

81

81

			Page
		Giguere series	82
		Guthrie series	83
		Naylor series	83
		Questt series	83
		Rivers series	84
		Regand series	84
		Rivett series	85
		Sinnes series	85
		Summerskill series	85
		Van Beem series	86
		Wheeler series	86
		Wuschke series	87
		Winters series	87
	5.1.3	Soils formed in Morainal Materials	87
		A. Lillooet River area	87
		Yantzie series	87
		B. Birkenhead River, Blackwater Creek, Gates River area	88
		Yvonne series	88
	5.1.4	Soils formed in Organic Materials	88
		A. Lillooet River area	88
		Zurbrugg series	88
		Zurcher series	90
		Zoltay series	91
		B. Birkenhead River, Blackwater Creek, Gates River area	92
		Zaruba series	92
	5.1.5	Miscellaneous Land Types	92
		Anthropogenic	92
		Rock land	92
5.2	Discus	sion of Relative Positions of Soil Series to each other in the	
	Land	scape	92
	5.2.1	Meager Creek to Wolverine Creek Section	94
	5.2.2	Wolverine Creek to Miller Creek Section	99

 $\overline{\gamma}$

~

,

				Page
		5.2.3	Miller Creek to Lillooet Lake Section	105
		5.2.4	Blackwater Creek Valley-Gates River Valley-Birkenhead River Valley	
			Section	112
		5.2.5	Green River Section	118
		5.2.6	Uplands Section	119
			A. near Pemberton	119
			B. near Mt. Currie village	119
6.	INTE	RPRETAT	IONS FOR SELECTED LAND USES	121
	6.1	Agricu	llture	121
		6.1.1	Agricultural Capability	121
			A. Climatic capability for agriculture	121
			B. Land capability for agriculture	125
		6.1.2	Chemical Characteristics of the Soils	138
			A. Soil reaction	138
			B. Organic carbon	141
			C. Nitrogen	142
			D. Phosphorus	144
			E. Cation exchange capacity	144
			F. Exchangeable cations	145
			G. Base saturation	1 4 8
			H. Sulphur	148
			I. Boron, copper, cobalt	149
		6.1.3	Soil Suitability for Crops	149
	6.2	Physic	al Properties of the Soils and Their Implications for Use	151
		6.2.1	Soil Texture and Drainage Classes	151
			A. Soil texture	151
			B. Soil drainage	163
		6.2.2	Hydrologic Properties	174
		6.2.3	Soil and Water Management	177
			A. Drainage	178
			B. Irrigation	179

.....

-

. .

	6.2.4 Suitability of Soils for Selected Engineering Uses	180
	A. Dwellings	184
	B. Septic tank absorption fields	185
	C. Sand and/or gravel sources	185
	D. Shallow excavations	186
6.3	Outdoor Recreational Carrying Capacity	186
6.4	Wildlife and Fisheries	190
6.5	Forest Site Class - Soil Relationships	191
	OF TERMS	
	OF TERMS	
GLOSSARY	OF TERMS	197
GLOSSARY APPENDICE Appendix	OF TERMS	197
GLOSSARY APPENDICE Appendix	OF TERMS ES 1: Factors for Metric Conversion	197
GLOSSARY APPENDICE Appendix	OF TERMS ES 1: Factors for Metric Conversion 2: Detailed morphological, chemical and physical descriptions of selected soil	197

x

-

-

LIST OF FIGURES

		Page
Figure 1:	Key map - index to map sheets	xxiv
Figure 2:	Project area location	2
Figure 3:	Generalized diagram of a soil profile	8
Figure 4:	Field accessibility map	14
Figure 5:	Mean daily temperature and precipitation, Pemberton Meadows (after Gilbert,	
	R., 1972)	20
Figure 6:	Drainage basins tributary to north Lillooet Lake. The location of stream	
	gauging and climate stations are indicated (after Gilbert, R., 1972, 1973)	21
Figure 7:	Average of mean daily discharge for Lillooet River (1923-1968), Green River	
	(1914-1951) and Birkenhead River (1946-1969), for years of nearly complete	
	record (after Gilbert, R., 1972, 1973)	23
Figure 8:	Generalized bedrock geology of basins tributary to north Lillooet Lake	
	summarized from Roddick and Hutchinson (1973), Mathews (unpublished), and	
	Woodsworth (1977) (modified after Gilbert, R., 1973)	26
Figure 9:	Terrain map, sheet 1	33
Figure 10:	Terrain map, sheet 2	35
Figure 11:	Terrain map, sheet 3	35
Figure 12:	Terrain map, sheet 4	. 37
Figure 13:	Terrain map, sheet 5	39
Figure 14:	Terrain map, sheet 6	39
Figure 15:	Terrain map, sheet 7	41
Figure 16:	Soil profile and abridged description of the Gates Lake series	51
Figure 17:	Soil profile and abridged description of the Gilmore series	52
Figure 18:	Soil profile and abridged description of the Nairn Falls series	. 54
Figure 19:	Soil profile and abridged description of the Nesuch series	55
Figure 20:	Soil profile and abridged description of the Newberry series	. 56
Figure 21:	Soil profile and abridged description of the Quamell series	57
Figure 22:	Soil profile and abridged description of the Ronayne series	59
Figure 23:	Soil profile and abridged description of the Renville series	. 60

		Page
Figure 24:	Soil profile and abridged description of the Ranson series	61
Figure 25:	Soil profile and abridged description of the Rutherford series	62
Figure 26:	Soil profile and abridged description of the Sankey series	64
Figure 27:	Soil profile and abridged description of the Scobie series	65
Figure 28:	Soil profile and abridged description of the Shantz series	66
Figure 29:	Soil profile and abridged description of the Sister series	67
Figure 30:	Soil profile and abridged description of the Sangster series	68
Figure 31:	Soil profile and abridged description of the Scullard series	69
Figure 32:	Soil profile and abridged description of the Tenquille series	70
Figure 33:	Soil profile and abridged description of the Valleau series	71
Figure 34:	Soil profile and abridged description of the Viccars series	72
Figure 35:	Soil profile and abridged description of the Verlinden series	73
Figure 36:	Soil profile and abridged description of the Vickberg series	74
Figure 37:	Soil profile and abridged description of the Walden series	75
Figure 38:	Soil profile and abridged description of the Whitehead series	76
Figure 39:	Soil profile and abridged description of the Wildfong series	77
Figure 40:	Soil profile and abridged description of the Wallace series	78
Figure 41:	Soil profile and abridged description of the Wolverine series	79
Figure 42:	Soil profile and abridged description of the Wittal series	80
Figure 43:	Soil profile and abridged description of the Zurbrugg series	89
Figure 44:	Soil profile and abridged description of the Zurcher series	90
Figure 45:	Soil profile and abridged description of the Zoltay series	91
Figure 46:	Approximate location of oblique (Figures 47, 50, 54) and cross-sectional	
	diagrams (Figures 48, 49, 51-53, 55-60)	93
Figure 47:	Oblique diagram of the Meager Creek to Wolverine Creek section of the	
	Lillooet River valley. Approximate locations of cross-sectional diagrams	
	AB, and CD are indicated	95
Figure 48:	Cross-sectional diagram AB, located northwest of North and South Creeks	96
Figure 49:	Cross-sectional diagram CD, located northwest of Railroad Creek	98
Figure 50:	Oblique diagram of the Wolverine to Miller Creek area. Approximate	
	location of cross-sectional diagrams EF, GH, and IJ are indicated	100

~

 \checkmark

Figure 51:	Cross-sectional diagram EF, located northwest of Ryan Creek and southeast	
	of Wolverine Creek extending across the Lillooet River valley	101
Figure 52:	Cross-sectional diagram GH, located between Miller and Ryan Creek junction	
	and extending across the Lillooet River valley	103
Figure 53:	Cross-sectional diagram IJ, located across the Lillooet River from the	
	Miller Creek junction	104
Figure 54:	Oblique diagram of the Miller Creek to Lillooet Lake area showing the	
	approximate locations of cross-sectional diagrams KL, MN, and OP	106
Figure 55:	Cross-sectional diagram KL, located northwest of Pemberton and extending	
	across the Lillooet River valley	107
Figure 56:	Cross-sectional diagram MN, located southeast of Mount Currie village and	
	extending across the Lillooet River valley	109
Figure 57:	Cross-sectional diagram OP, located west of Lillooet Lake and extending	
	across the Lillooet River valley	111
Figure 58:	Cross-sectional diagram QR, located between Blackwater Lake and Phelix	
	Creek extending across the Blackwater Creek valley	113
Figure 59:	Cross-sectional diagram ST, located between Eight Mile Creek and Spruce	
	Creek extending across the Gates River valley	115
Figure 60:	Cross-sectional diagram UV, located at Owl Creek and extending across the	
	Birkenhead River valley	117
Figure 61:	Provisional climatic capability for agriculture map of the study area	
	(after Williams, R., 1977)	124
Figure 62:	Land capability for agriculture map, sheet 1	129
Figure 63:	Land capability for agriculture map, sheet 2	131
Figure 64:	Land capability for agriculture map, sheet 3	131
Figure 65:	Land capability for agriculture map, sheet 4	133
Figure 66:	Land capability for agriculture map, sheet 5	135
Figure 67:	Land capability for agriculture map, sheet 6	135
Figure 68:	Land capability for agriculture map, sheet 7	137
Figure 69:	Soil texture map, sheet 1	153
Figure 70:	Soil texture map, sheet 2	155

÷

~

1

xiii

		<u>Page</u>
Figure 71:	Soil texture map, sheet 3	155
Figure 72:	Soil texture map, sheet 4	157
Figure 73:	Soil texture map, sheet 5	159
Figure 74:	Soil texture map, sheet 6	159
Figure 75:	Soil texture map, sheet 7	161
Figure 76:	Soil drainage map, sheet 1	165
Figure 77:	Soil drainage map, sheet 2	167
Figure 78:	Soil drainage map, sheet 3	167
Figure 79:	Soil drainage map, sheet 4	169
Figure 80:	Soil drainage map, sheet 5	171
Figure 81:	Soil drainage map, sheet 6	171
Figure 82:	Soil drainage map, sheet 7	173
Figure 83:	Soil textural triangle (Glossary of Terms)	199
Figure 84:	Approximate location of detailed soil sampling sites (Appendix 2)	228

~

÷

LIST OF MAPS

Мар	Sheet	1	Soils of the Pemberton Valley study area (between Meager Creek and
			North and South Creeks)
Мар	Sheet	2	Soils of the Pemberton Valley study area (between North and South
			Creeks and Gingerbread Creek)
Мар	Sheet	3	Soils of the Pemberton Valley study area (between Gingerbread Creek
			and Miller Creek)
Мар	Sheet	4	Soils of the Pemberton Valley study area (between Miller Creek and
			Lillooet Lake and including the Green River area)
Мар	Sheet	5	Soils of the Pemberton Valley study area (along the Birkenhead River
			between Dwl Creek and Gates Lake)
Мар	Sheet	6	Soils of the Pemberton Valley study area (along the Gates River between
			Gates Lake and Anderson Lake)
Мар	Sheet	7	Soils of the Pemberton Valley study area (along Birkenhead River canyon,
			Birkenhead Lake and Blackwater Creek)

LIST OF PLATES

Page

Plate	1:	Pictoral description of Figure 48, cross-sectional diagram AB	
Plate	2:	Pictoral description of Figure 49, cross-sectional diagram CD	
Plate	3:	Pictoral description of Figure 51, cross-sectional diagram EF 102	
Plate	4:	Pictoral description of Figure 53, cross-sectional diagram IJ (photo by	
		J.M. Ryder) 105	
Plate	5:	Pictoral description of Figure 55, cross-sectional diagram KL (photo by	
		J.M. Ryder) 108	
Plate	6:	Pictoral description of Figure 56, cross-sectional diagram MN 110	
Plate	7:	Pictoral description of Figure 57, cross-sectional diagram OP 112	
Plate	8:	Pictoral description of Figure 58, cross-sectional diagram QR (photo by	
		J.M. Ryder) 114	
Plate	9:	Pictoral description of Figure 59, cross-sectional diagram ST (photo by	
		J.M. Ryder) 116	
Plate	10:	Pictoral description of Figure 60, cross-sectional diagram UV 118	

LIST OF TABLES

...

÷

-

		Page
Table 1:	Definitions of soil layer and horizon terminology	9
Table 2:	List of laboratory analyses and references	16
Table 3:	Relationships of parent materials to soil development and soil series	
	identified	44
Table 4:	Summary of some climatic characteristics of selected locations in the	
	Pemberton Valley	121
Table 5:	Chemical characteristics of surface 25 cm of selected soils of the	
	Pemberton Valley	139
Table 6:	Comparative values of available water storage capacities, saturated	
	hydraulic conductivities, and bulk densities for selected soils of the	
	Pemberton Valley	175
Table 7:	Engineering properties of selected soils of the Pemberton Valley	181
Table 8:	Suitability of soils within the study area for selected engineering uses	182
Table 9:	Physical carrying capacity of soils in the study area to sustain use for	
	most types of outdoor recreation	187

SUMMARY

ĩ

÷.,

SUMMARY

The primary objective of the Pemberton Valley soil survey and report was to map at a scale of 1:20 000 and to describe, in detail, the soils and agricultural capability of the Lillooet River, Birkenhead River, Gates River, and Blackwater Creek valleys. Secondary objectives were to interpret the data for specified land uses.

Four major terrain types were identified in the study area. The primary type is composed predominantly of Lillooet River flood plain deposits which grade from gravels and sands near Meager Creek through sands and sandy loams to silt loams between Pemberton and Lillooet Lake. Where major tributaries enter the main valley, gravelly and sometimes bouldery fluvial fans of significant size have been deposited. Organic accumulations occur along the margins of the valley floor. A second terrain type, found in the Green River area and in the Birkenhead River, Poole Creek, Gates River valleys, is composed of bouldery to very bouldery, gravelly fluvial and colluvial fan deposits. These valleys also contain some bouldery, gravelly flood plain deposits and minor organic deposits as well as two large landslide deposits. The Blackwater Creek and Birkenhead Lake areas are predominantly composed of large colluvial fans which have formed by repeated avalanche activity. There are also minor morainal deposits and some large, bouldery, and gravelly fluvial fans associated with Phelix and Sockeye creeks. A fourth major terrain type is found in the Birkenhead River canyon area. This area is characterized by steep bedrock outcrops and associated talus slopes. On the upper slopes the materials are primarily morainal.

The soils exhibit characteristics which reflect the effects of climate and soil water regime as determined by relief and vegetation, which have been active since deposition. Crosssectional and oblique diagrams illustrate the relative positions of the various soils in the landscape. Detailed morphological, chemical and physical data for some of the more important soil series are presented in the appendices. The upland soils of the Birkenhead River, Gates River, and Blackwater Creek valleys are predominantly well drained Orthic Eutric Brunisols. In the Gates Lake to Anderson Lake area many of the soils are Orthic Eutric Brunisol:calcareous phase due to the high calcium carbonate levels. Active avalanche areas and active talus accumulation areas tend to be well drained Orthic or Cumulic Regosols. Soils of the flood plains are mainly imperfectly drained Gleyed Regosols, or poorly to very poorly drained Rego or Rego Humic Gleysols with lesser amounts of poorly to very poorly drained Organic soils.

xix

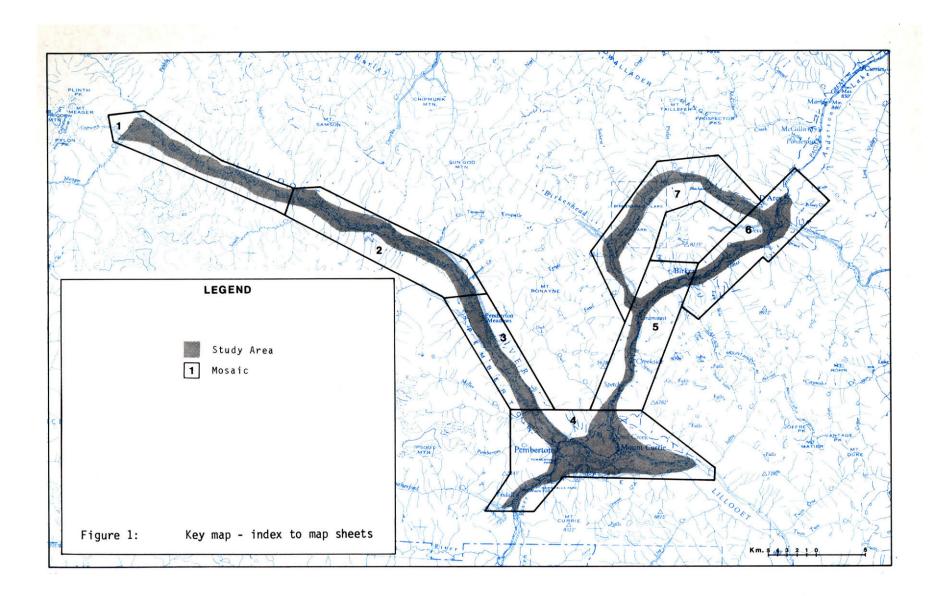
The soils of the Green River valley and the uplands near Pemberton are generally well drained Orthic Dystric Brunisols, except on the active talus slopes which are Orthic Regosols. Bedrock outcrops (non-soil areas) are also common.

The soils of the Lillooet River valley are predominantly poorly to very poorly drained Rego Gleysols:cumulic phase and Rego Gleysols and imperfectly drained Gleyed Regosols. There are also minor but significant areas of Orthic Regosols, Rego Gleysols:peaty phase, and Terric Fibrisols. In this particular section of the study area substantial changes in soil characteristics have been and are occurring as a result of the major diking, drainage and river training program initiated in 1946. As a result of river straightening and lowering of the level of Lillooet Lake, soil drainage has improved when compared to reports of Faulknor (1951) and Day (1946).

Maps derived from the soil maps include those showing the location and extent of the various land capability for agriculture ratings, soil textural classes, and soil drainage classes. The land capability for agriculture maps indicate that the best agricultural lands occur in the Lillooet River valley and are predominantly Classes 2, 3, or 4 with lesser areas of Classes 1, 5, 6, or 7. Conversely, in the Green River, Birkenhead River, Blackwater Creek, Gates River valleys and on the uplands, the lands are predominantly Classes 5, 6, or 7 with few areas of Classes 2, 3, or 4.

Interpretations of the soils data for selected engineering uses (settlement suitability) and outdoor recreational carrying capacity were compiled. These indicate that Yvonne series and Yantzie series soils on slopes of less than 9% are the most suitable for these uses. The other upland soils are limited by one or more factors including excessive soil perviousness, excessive slopes, stoniness, rockiness, shallowness to bedrock and mass movement hazard. On the other hand, soils in the valley bottoms are most often limited by shallow depths to the water table, potential flooding hazards, poor drainage, unsuitable soil textures and potential for ground water contamination.

хΧ


Other interpretations can potentially be developed using the soils information in conjunction with other resource information. For example, improved recreational carrying capacity interpretations can be developed when recreation features, wildlife, vegetation and climate data collection is completed. Forest capability ratings can be derived with additional forest plot measurement and climatic data. Wildlife capability maps can be developed by combining the soils data with wildlife and vegetation inventory information.

HOW TO USE THIS Soil survey report

₹

HOW TO USE THIS SOIL SURVEY REPORT

- I. Locate area of interest on index to map sheets (Fig. 1).
- 2. Note the number of the map sheet and turn to that sheet.
- 3. Locate your specific area of interest on the map sheet.
- 4. List the mapping symbols found in your area, and find the corresponding name in the map legend.
- 5. Turn to the "Table of Contents" which lists the names of each soil series and the page where that series is described.
- 6. See the "List of Tables" or the "Appendices" for additional data on a specific soil.

1

τ.

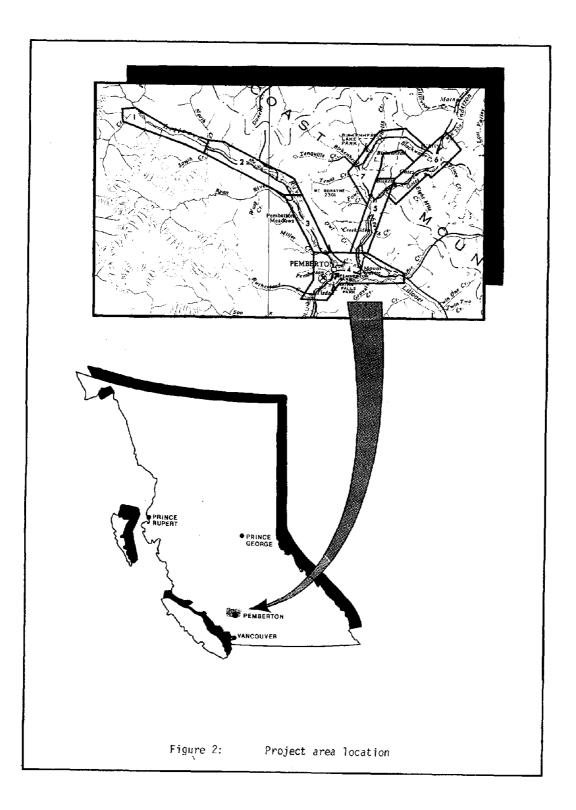
chapter 1

INTRODUCTION

1 INTRODUCTION

The Resource Analysis Branch of the Ministry of Environment undertook during 1976-77 a detailed soil survey of the Pemberton Valley (Lillooet River Valley) at the request of the Ministry of Agriculture. Historically, development pressure has been toward agricultural use of the land in the valley bottom. The geographical isolation of this valley from other agricultural areas has enabled it to become the primary virus-free seed potato growing area within British Columbia. The Pemberton Valley and its tributary valleys also maintain highly productive first growth forests which are presently being harvested. Wildlife, fisheries and recreational values of the Pemberton Valley and its environs are also significant resources. Agricultural use of the valley has developed to such a point that, in order to improve productivity and maintain or increase economic returns to the farmer, further information about the physical environment is required.

1.1 Objectives


Objectives of the soil survey are:

- 1. To provide a detailed (1:20 000 scale) soil map of the Pemberton Valley.
- 2. To refine and redefine the existing land capability for agriculture ratings of the Pemberton Valley, from a map scale of 1:50 000 to a map scale of 1:20 000.
 - To develop interpretations of the capability and/or suitability of the soils for selected uses.
- 4. To provide soils information for uses other than agriculture and to identify further resource information which (if used in conjunction with the soils information) will complement the soil survey information.

1.2 Description of Study Area

The Pemberton Valley is located in the southwestern corner of British Columbia. It lies approximately 160 km* northeast of Vancouver, approximately 100 km northeast of Squamish and approximately 100 km* southwest of Lillooet (Fig. 2). The study area extends west and north from the north end of Lillooet Lake along the Lillooet River valley to the junction with Meager Creek, which is approximately 80 km. Along the Birkenhead River it extends from the north end of Lillooet Lake

*metric units are used throughout this report, a conversion table is presented in Appendix 1.

westward and northward to Birkenhead Lake then swings northeast along Gates River as far as Anderson Lake and includes the Blackwater Creek valley from Birkenhead Lake to Gates River. Also included are the upland areas adjacent to Pemberton and Mt. Currie. The Pemberton (Lillooet River)Valley is approximately 3.2 km wide at the widest point. The Birkenhead River area from the Mt. Currie village to Gates Lake is approximately 24 km long and 0.4 km wide at its widest point. The Green River section is approximately 8 km from its junction with the Lillooet River to its junction with Rutherford Creek and is 0.8 km wide at is widest point. In total the study area covers approximately 20 000 ha.

1.3 History

The settlement of the Pemberton Valley has proceeded in stages as the result of major transportation developments connecting the valley to other parts of the province. This is discussed in detail by Decker, Fougberg, and Ronayne, 1977.

The first inhabitants of the valley were native Indian people who belong to a branch of the Interior Salish Tribe. Hudson's Bay Company traders, in 1827, were the first known white men to enter the valley and may have introduced the first cultivated potatoes. By 1859, gold rush traffic was passing through the Pemberton Valley by way of Harrison, Lillooet and Anderson Lakes on their way to the Klondike, and fresh vegetables were in high demand. As a result, Chief Justice Begbie gave seasonal permits for the use of land for growing vegetables. Following this came the preemptive use of lands up the valley for farming. By 1863, twelve farmers were present as noted by Lillooet's Anglican priest. With the completion of the Cariboo Wagon Road through Fraser Canyon in 1863, most of the settlers and farmers began moving on to the Cariboo and other areas. In the early 1900's there were few farmers, although there were 68 landowners registered on the tax rolls. In 1907 the farming was limited primarily to beef cattle because of the large amount of clearing needed to bring the land into production (although farmers were experimenting with growing peas, wheat, clover, oats, peas, turnips, and potatoes as well as some cabbages, plums and currants). Prior to the coming of the railroad, most of the farm produce was grown for local consumption.

A second stage of settlement was initiated with the completion of the B.C. Electric Railroad from Squamish to Lillooet in 1914. The coming of the railroad resulted in an increase in the acreages of wheat, oats and peas, as well as an increase in dairying. Dairying was an important

source of income for the farmers for some years but, eventually, farmers turned to potato growing as the main source of livelihood. A major problem of the valley's livestock industry was the loss of 50% of the newborn calves, 80% of the foals and 95% of young pigs. Years of observation by farmer Jack Ronayne resulted, in 1917, in the discovery that iodine deficiency was the major cause of these losses. Later it was determined that selenium deficiency also exists within the valley. In 1922 production of relatively disease-free Netted Gem seed potatoes began. The success of the diseasefree produce was attributed to the comparative isolation of the valley from other parts of the province. Production of Early Rose (also relatively disease-free) seed potatoes followed in 1926. In 1924 the Pemberton Valley Farmer's Institute was formed. The aims of the institute were:

- 1. "To promote conditions of rural life so that settlement may be permanent and prosperous;
- 2. To promote the theory and practice of agriculture and other educational methods;
- To stimulate interest by exhibitions, prizes, and other means; and To arrange on behalf of its members for the purchase, distribution or sale of commodities. (Decker, Fougberg, Ronayne, 1977)." 3. 4.

In 1933 the first Illustration Station was established on the E. Blakeway farm under the supervision of R. M. Hall from the Federal Experimental Farm at Aggasiz. In the 30's the sale of oats, wheat, turnips, carrots, potatoes and beef were restricted primarily to the local market. However, at the same time, the Ronaynes, Deckers and Taylors were producing prize-winning potatoes, field peas and turnips. By 1936, the marketing of Pemberton turnips and commerical potatoes was under the control of the B.C. Coast Marketing Board. Then, in 1941, the remberton and District Board of Trade was formed and became active in marketing farm crops.

In 1940, a major flood throughout the valley incited the citizens to action. The Pemberton Drainage and Reclamation Committee was formed by the Board of Trade and supported by the Farmer's Institute. A brief was presented to the Post-War Rehabilitation Council which called for diking and straightening the Lillooet River and its tributaries of Ryan and Miller Creeks and the lowering of Lillooet Lake. In 1946, the federal government agreed to carry out the proposed reclamation project under the Prairie Farm Rehabilitation Program, which ironically, had been developed to deal with drought conditions. In 1947, the Pemberton and District Commission was officially formed and, in 1948, a Tri-Partite Agreement was signed with the federal government agreeing to carry out the construction of the project, the provincial government to provide access roads and rights-of-way, and local government to carry out general maintenance. The reclamation and diking project was completed in 1954. During this time potato production was gaining in momentum and in 1949 a Seed Potato Control Area had been formed restricting plantings to locally grown seed. Also, during this time, dairy operators began converting to beef production. Turnips were grown for a limited market. Hay was grown for a good local market but available labour was limited. Carrots were grown for local sale and some grains were grown as hay for farm consumption.

With completion of a passable road to Pemberton from Squamish (now called Highway 99) in 1964, the Pemberton Valley entered its present era. In 1965 seed potato prices reached a record high for that era and Pemberton was chosen as one testing ground for the virus-free seed potatoes which had been developed by Agriculture Canada at their University of British Columbia Research Station. In 1966 and 1967 test plots were planted in the valley and today the majority of farmers grow virus-free seed potatoes as their primary crop. Finally, the era of development resulting from completion of the highway connection to Vancouver leaves Decker, Fougberg, and Ronayne (1977) to ponder with fond sadness:

"And what of the future? The seed potatoe (sic) business has brought prosperity to the farms; the logging industry offered jobs and a solid income, particularly to the young men; employment opportunities had increased in the village in cafes, stores, banks, offices, and forestry. The road to Vancouver was now all blacktop and being improved year by year bringing both goods and tourists to the valley. A radio transmitter in the village had provided local reception; and one shaky T.V. channel brought in news, police shows, and commercials to amuse and aggravate the population. Pemberton was now part of the lower mainland. Its citizens bought their groceries in Squamish or Vancouver and had every modern convenience. And yet, with all these advantages of more industry, more of the older residents look back on the old days with affection. The inconveniences forgotten they remember the closeness of an isolated community. Tenquille Lake in its splendid pre-tourist virgin beauty; the family picnics by the Birkenhead, the summer trips to D'Arcy when a dozen families would gather by the lake; the impromptu swimming parties at Salmon Slough or One Mile Lake, or skating parties in winter whenever there was a patch of ice on a field. They remember too, the instant help in time of trouble; the chores done, the children cared for, any neighbour's car available as an ambulance to the station; and the train would always wait. They forgot the hard work of churning and remember the good taste of summer butter; they forget the milking and remember the childrens havrides."

Some of that closeness still remains and it is hoped, will always continue, for Squamish is still 100 km away and a winter's snowstorm can make those 100 km seem a very long way. Looking toward the future it seems that pressures for development will continue. The need for information on the physical environment, specifically soils, is pressing as the need for rational long-range regional planning and short-term site-specific problem solving becomes increasingly evident.

chapter 2

THE FORMATION, MORPHOLOGY AND CLASSIFICATION OF SOILS

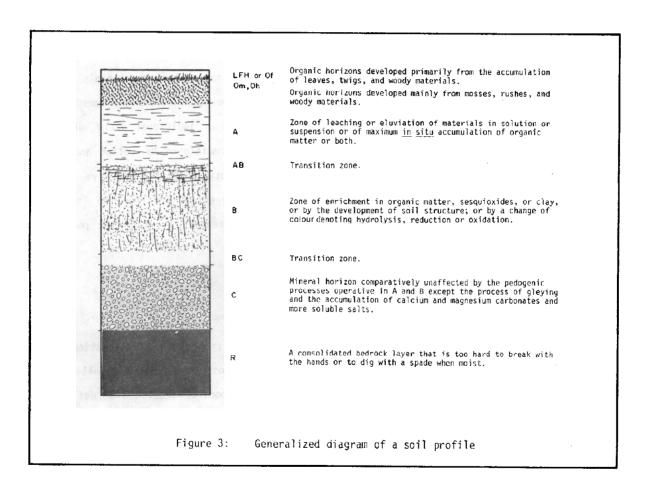
ŝ

2 THE FORMATION, MORPHOLOGY AND CLASSIFICATION OF SOILS

Soil has many meanings to many people depending on their inclination, training and experience. To a planner soil is a natural resource critical for sustenance of a certain human population. To an engineer it is unconsolidated material which may be manipulated for construction purposes. To a forester or an agriculturist soil is a medium for plant growth. To a farmer soil is his livelihood, his "life blood". To a pedologist soil is all of these things and much more.

2.1 Soil Development

Soil is a naturally occurring, dynamic, three-dimensional body at the earth's surface which has been formed by nature and has recorded its own history expressed in recognizeable morphological, physical, and chemical characteristics. Pedologists have defined soil in general terms as the naturally-occurring, unconsolidated, mineral or organic material at the earth's surface which is capable of supporting plant growth. Soils are a continuum across the landscape grading one into another but having highly variable properties. The properties of individual soils vary with depth and are the product of climatic factors and organisms, as conditioned by relief and water regime, acting through time on geologic materials (soil parent materials). These five factors (climate, organisms, relief, time, and parent materials) are interdependent and thus the intensity of expression of one or all determines the rate, direction and intensity at which the pedogenic processes proceed.


2.2 Soil Profile

A soil profile is produced by additions to, losses from, and translocations and transformations within the soil. A soil profile is a vertical cross-section through all of the distinguishable horizons or layers of the soil to the depth of the control section (for definition see Glossary of Terms).

A soil horizon is a layer of mineral or organic soil material approximately parallel to the earth's surface, with characteristics which have been affected by the processes of soil formation. A horizon differs from adjacent soil materials or other horizons in features such as colour,

structure, texture, consistence, chemical and biological properties. A generalized diagram in Figure 3 shows the relationship of horizons within a soil profile. All horizons may not necessarily be present in any one soil profile and horizons may also be subdivided as required. Table 1 lists the definitions of those horizons and layers identified in the soils of the Pemberton Valley. A more complete list of horizons and definitions can be found in The System of Soil Classification for Canada (1974, 1978).

Soil horizons develop in a soil profile as the result of pedogenic processes proceeding in soils at a rate and intensity determined by the soil forming factors mentioned earlier. Since these

Mineral Horizons and layers

Mineral horizons are those that contain 17% or less organic carbon (about 30% organic matter) by weight.

- A a mineral horizon formed at or near the surface, in the zone of leaching or eluviation of materials in solution or suspension or of maximum in <u>situ</u> accumulation of organic matter or both.
- B a mineral horizon characterized by enrichment in organic matter, sesquioxides, or clay, or by the development of soil structure; or by a change of colour denoting hydrolysis, reduction or oxidation.
- C a mineral horizon comparatively unaffected by the pedogenic processes operative in A and B, (C), excepting (i) the process of gleying, (Cg), and (ii) the accumulation of calcium and magnesium carbonates (Cca), and more soluble salts (CS, Csa). Marl and diatomaceous earth are considered to be C horizons.
- R a consolidated bedrock layer that is too hard to break with the hands (>3 on Mohs scale) or to dig with a spade when moist, and that does not meet the requirements of a C horizon. The boundary between the R layer and any overlying unconsolidated material is called a lithic contact.

Lowercase Suffixes

- b a buried soil horizon.
- g a horizon characterized by gray colours, or prominent mottling, or both, indicative of permanent of periodic intense reduction. Chromas of the matrix are generally 1 or less. It is used with A and e (Aeg), with B alone (Bg), with B and f (Bfg, Bgf), with B, h, and f (Bhfg), with B and t (Btg), with C alone (Cg), with C and k (Ckg), and several others. In some reddish parent materials, matrix colours of reddish hues and high chromas may persist despite long periods of reduction. In these soils, horizons are designated as g if there is gray mottling or if there is marked bleaching on ped faces or along cracks.
- h a horizon enriched with organic matter. It is used with A alone (Ah); or with A and e (Ahe); or with B alone (Bh); or with B and f (Bhf). Ah - a horizon enriched with organic matter that either has a colour value at least one unit lower than the underlying horizon or contains 0.5% more organic carbon than the IC, or both. It contains less than 17% organic carbon by weight.
- j a modifier of suffixes e, f, g, n, and t to denote an expression of, but failure to meet, the specified limits of the suffix it modifies. It must be placed to the right and adjacent to the suffix it modifies. For example Bfgj means a Bf horizon with weak expression of gleying; Bfjgj means a B horizon with weak expression of both 'f' and 'g' features.

- m a horizon slightly altered by hydrolysis, oxidation, or solution or all three, to give a change in colour or structure, or both. This suffix can be used as Bm, Bmgj, Bmk, and Bms.
- p a horizon disturbed by man's activities, such as cultivation, logging, habitation, etc. It is used with A and D.

Organic Horizons

Organic horizons are found in Organic soils, and commonly at the surface of mineral soils. They may occur at any depth beneath the surface in buried soils, or overlying geological deposits. They contain more than 17% organic carbon (approximately 30% organic matter) by weight. Two groups of these horizons are recognized, 0 horizons and L, F and H horizons.

- 0 an organic horizon developed mainly from mosses, rushes, and/or woody materials. It is divided into the following subhorizons:
- Of an O horizon cosisting dominantly of well-preserved fibres that are readily identifiable as to botanical origin, and is called a fibric horizon.
- Om an O horizon at a stage of decomposition intermediate between fibric and humic materials. The material is partly altered both physically and biochemically. It does not meet the requirements of either a humic or a fibric horizon, and is called a mesic horison.
- Oh an O horizon at an advanced stage of decomposition. It has the lowest amount of fibre, the highest bulk density, and the lowest saturated water-holding capacity of the O horizons. It is very stable and changes very little physically or chemically with time unless it is drained. This is called a humic horizon.
- L, F and H These are organic horizons developed primarily from the accumulation of leaves, twigs, and woody materials with or without a minor component of mosses. Usually they are not saturated with water for prolonged periods.
- L an organic horizon characterized by an accumulation of organic matter, derived mainly from leaves, twigs and woody materials, in which the original structures are easily discernible.
- F an organic horizon characterized by an accumulation of partly decomposed organic matter derived mainly from leaves, twigs and/or woody materials. Some of the original structures are difficult to recognize. The material may be partly comminuted by soil fauna, as in moder, or it may be a partly decomposed mat permeated by fungal hyphae, as in mor.
- H an organic horizon characterized by an accumualtion of decomposed organic matter in which the original structures are indiscernible. This material differs from the F horizon by its greater humification due chiefly to the action of organisms. It is frequently intermixed with mineral grains, expecially near the junction with a mineral layer.

* After the Canadian System of Soil Classification, 1978.

factors of soil formation vary widely across the landscape it follows that the resultant soils and their properties also vary widely across the landscape. Because soils occur at the surface of the earth as a continuum having highly variable properties, it is necessary to define a basic unit of soil to be described, sampled, analysed and classified. This basic unit, called a pedon, is the smallest three-dimensional unit which can be considered a soil. The lateral dimensions of the pedon are 1 m^2 , if the ordered variation in genetic horizons can be sampled within that distance. The vertical dimensions of the pedon extend from the surface of the earth to a minimum of 10 cm and at a maximum to the depth of the control section.

2.3 Soil Classification in Canada

The System of Soil Classification for Canada is hierarchial and is based on the characteristics of the pedon. There are five taxonomic levels which are the Soil Order at the highest or most general level proceeding with increasing complexity through Soil Great Group, Soil Subgroup and Soil Family to Soil Series at the lowest or most specific level.

There are nine Orders defined in the Canadian classification system, and these are Brunisolic Order, Chernozemic Order, Cryosolic Order, Gleysolic Order, Luvisolic Order, Organic Order, Podzolic Order, Regosolic Order and Solonetzic Order. The soils of the Pemberton Valley study area are mainly within the Gleysolic and Regosolic Orders; soils of the Brunisolic and Organic Order occur but are less common. Soils of the Brunisolic Order have sufficient development to exclude them from the Regosolic Order, but they lack the degree or kind of horizon development specified for soils of other Orders. The central concept of the Brunisolic Order is that of soils formed under forest vegetation having brownish coloured Bm horizons. Gleysolic soils have features indicative of periodic or prolonged saturation with water and reducing conditions. In areas of subhumid climate Gleysolic soils commonly occur in shallow depressions and on level lowlands that are saturated with water for long periods of time. In more humid areas they also occur on slopes and undulating terrain. Soils of the Organic Order are composed largely of organic materials. They include most of the soils commonly known as peat, muck or bog soils. Most Organic soils are saturated with water for prolonged periods. They occur widely in poorly and very poorly drained depressions and level areas in regions of subhumid to perhumid climate, and are derived from the vegetation that grows or has grown in such sites. Regosolic soils have no or weakly developed soil horizons. The lack of development may be due to youthfulness of the soil as in recent alluvium, or

instability of the material as in colluvium on slopes subject to mass wasting. Regosolic soils vary from rapidly to imperfectly drained and occur under a wide range of vegetation types and climates. Definitions of the other Soil Orders previously mentioned but not discussed can be found in "The Canadian System of Soil Classification", Agriculture Canada, 1978.

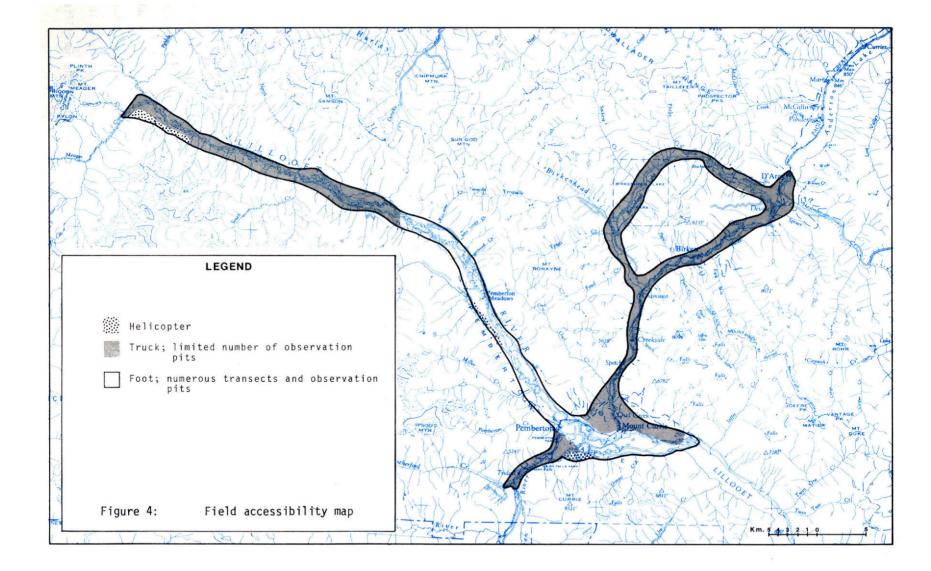
The soils of the study area were classified at the series or specific level of taxonomy. The soil series is based on the differentiating criteria of the soil order plus the soil great group, soil subgroup, and the soil family as well as detailed features of the pedon. The detailed features of the pedon utilized in differentiation of the soil series include similar kinds and arrangements of horizons whose colour, texture, structure, consistence, thickness, reaction, and composition fall within a narrow range of variability. Soil series is a taxonomic unit to which a name or number is assigned and which is specific to that soil as defined. Names are generally derived from geographical place names within the soil survey region.

chapter 3

METHODOLOGY

ĩ

3 METHODOLOGY


3.1 Field Mapping

Firstly, the most recent (1973) black and white 20 chain aerial photographs were obtained. These photographs were examined stereoscopically and preliminary map units outlined on them. The map units were then checked extensively by surveyors on foot traverses across fields, digging and describing approximately 1 m deep observation pits. In some places access to areas surveyed was by truck or helicopter with limited foot transects. Figure 4 gives a general indication of the accessibility of the area to field observation. When detailed field checking was completed, the final legend was compiled, soil boundary lines were finalized, symbols were assigned to map units and the maps then submitted for drafting. In areas where field checking was limited by accessibility, the composition of some units was extrapolated by aerial photograph interpretation using information derived from similar adjacent units.

The terrain units (soil parent materials) identified within the study area are classified and defined according to the "Terrain Classification System" (ELUC Secretariat, Resource Analysis Branch, 1976).

The soils identified within the study area are classified according to "The Canadian System of Soil Classification" Agriculture Canada, 1978. The textural class groupings utilized are those defined for the soil family in the "System of Soil Classification for Canada" Agriculture Canada, 1974. The soils are classified at the series level of soil taxonomy. Therefore, the soils described in the report and the soil map legend are taxonomic units. The soils legend groups the soils on the basis of parent material, soil development, soil texture and soil drainage.

A soil mapping unit which bears the name of a taxonomic unit, as is the case in this survey, consists of the defined taxonomic unit plus small inclusions of other soils (generally less than 15%) which are included because of the limitations imposed by the scale of the mapping and the number of points that could be examined. Thus, any single soil name stands for a specially defined taxonomic unit, but that same name, applied to a mapping unit, stands for that defined taxonomic unit plus a small proportion of other soils, that cannot be shown because of cartographic limitations. A variant of some taxonomic units was used as a mapping unit where a soil was identified as

different from another but was similar in most characteristics. These variants were reserved for soils which had limited acreage and for which it was impractical to define new series.

When plotting soil boundaries on a map, the pattern of some taxonomic units may be too intricate to be shown accurately and clearly as separate map units and therefore are shown as one mapping unit. This mapping unit, called a soil complex, is defined in terms of the taxonomic units making it up, their proportions, and their pattern. The complex consists of the names of the occuring soil series in decreasing order of dominance, joined by hyphens.

Miscellaneous land types are used as mapping units to indicate those areas which contain no or very little soil, such as rock land areas or urban and other man-modified areas where the original soil characteristics have been so altered as to be unrecognizeable.

3.2 Soil Sampling

A representative soil profile was described and sampled in order to characterize the majority of the mapped soil series. Each soil profile was sampled to at least 100 cm depth for selected chemical analysis. Some soil layers or horizons, which were less than 5 cm thick and discontinuous, were described but not sampled. The surface 50 cm were also sampled by horizon or soil layer for available water storage capacity (AWSC) and, occasionally, for particle size analysis. For AWSC determinations, horizons of similar texture were composited in order to reduce the number of samples. Bulk density samples were taken from surface horizons and at a depth of 1 m or greater. Engineering samples were taken from a depth of 1 m or greater. Soil saturated hydraulic conductivity determinations were conducted <u>in situ</u>, in those soils where the water table was at less than 1.8 m depth, using the auger hole method (van Beers, 1963).

In addition to the selected detailed soil profile descriptions and analyses included in this report (Appendix 2) all morphological soil descriptions and analyses are available from the B.C. Soil Data File by contacting:

Director

Resource Analysis Branch Ministry of Environment Parliament Buildings Victoria, B.C. V8V 1X4

Include in your request a geographical description of the area of interest, i.e. latitude and longitude or National Topographic mapsheet (NTS) number such as 92J/7. Additional useful information to be included in the request would be the name of the soil series for which information is required.

3.3 Laboratory

Laboratory analyses of the soil samples were conducted in the Resource Analysis Branch laboratory, at Kelowna, B.C., under the direction of V.E. Osborne. The specific methods used are presented in Table 2.

Analyses	References
Available sulphur	Johnson, C.M., and Nishita, H., 1970
	Johnson, C.M. and Ulrich, A., 1959
Available phosphorus	John, M.K., 1963, 1970
Boron	Grewelling, T. and Peech, M., 1960
Carbon	Carbon Analysis by Leco Analyzer, 1969
Cation Exchange Capacity	McKeague, J.A., ed., 1976
Exchangeable Cations	McKeague, J.A., ed., 1976
рН	McKeague, J.A., ed., 1976
Pyrophosphate iron and aluminum	McKeague, J.A., ed., 1976
Sieve analysis	McKeague, J.A., ed., 1976
Copper, cobalt	Black, C.A., et al. 1965
Particle-size analysis, pipette method	Black, C.A., et al., 1965
Bulk density	Black, C.A., et al, 1965
Kjeldahl nitrogen	Atkinson, H.J., et al, 1958; Bremner, J.M.,
	1960
Atterberg limits	Lambe, T.W., 1951
Water holding capacity	Richards, L.A., ed, 1954

Table 2: List of laboratory analyses and references

3.4 Land Use Interpretations

3.4.1 Agricultural Capability Ratings

Land capability for agriculture ratings were determined following the Canada Land Inventory (1965) and British Columbia Land Inventory (1973) guidelines for determining the capability of land to sustain agriculture. Climatic capability for agriculture ratings (Williams, 1977) were used in conjunction with the soils information, to derive the land capability ratings. The climatic capability ratings follow the guidelines outlined in the "Climatic Capability Classification for Agriculture in British Columbia", Resource Analysis Branch (1978).

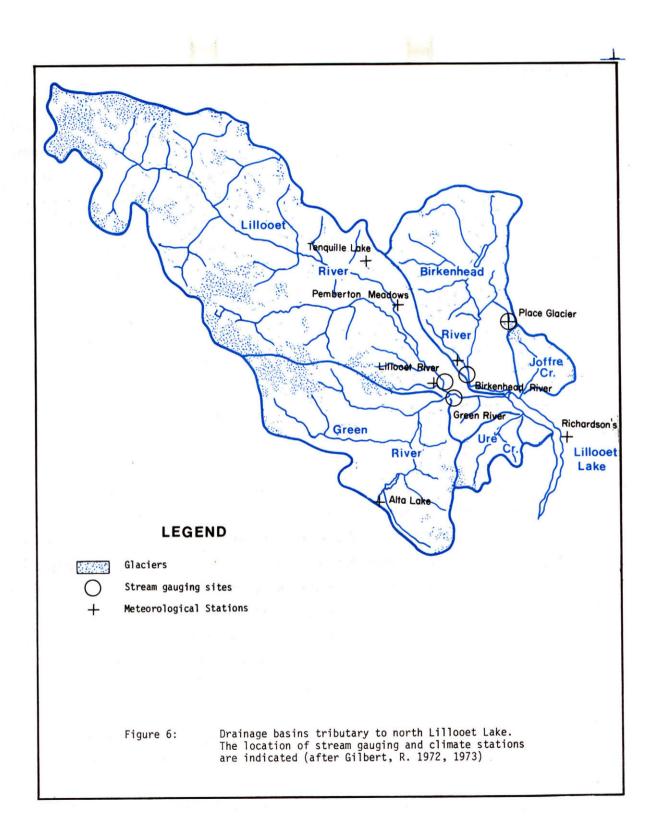
3.4.2 Suitability for Engineering Uses

Interpretations to assess the suitability of the soils of the Pemberton Valley for selected urban development factors were made following a modified version (Resource Analysis Branch, 1978) of the U.S. Department of Agriculture (1971) "Guide for Engineering Interpretations of Soils". A discussion of, and the specific guidelines used are appended in Appendix 3.

3.4.3 Physical Carrying Capacity for Outdoor Recreation

Interpretations assessing the physical carrying capacity of the Pemberton area soils for outdoor recreation were made following the guidelines outlined in the publication "Recreation Capability Inventory: (1) Canada Land Inventory; (2) Resource Analysis Unit" (ELUC Secretariat, Resource Analysis Branch, 1976).

chapter 4


FACTORS AFFECTING Soil formation

4 FACTORS AFFECTING SOIL FORMATION

Soil forms as a result of the interaction of five major factors: climate, plant and animal life, parent materials, relief and time. Therefore, the characteristics of the soil at any place are determined by the physical and mineralogical composition of the original geological material, the climate under which the soil material has accumulated and existed, the plant and animal life that has inhabited it (within and on the soil), the relief or topography and moisture relationships resulting from the topography, and the length of time these forces have been in action.

4.1 Climate

The climate of the Pemberton area is within the zone of transition from coastal to interior as it is somewhat modified by elevation, distance from the sea and the influence of being surrounded by high mountains. The recorded annual mean temperature at Pemberton Meadows is 7.2°C (Atmospheric Environment Service, 1975a) with a mean daily midsummer temperature of 17.2°C and an extreme maximum of 37.8°C in 51 years of record. The average freeze-free period at Pemberton Meadows is 150 days (Hemmerick and Kendall, 1972), from April 29 to September 29. The longest period without frost is 189 days and the shortest is 61 days. Most of the 1024 cm mean total precipitation (Atmospheric Environment Services, 1975b) occurs from October 1 to April 30, with only 187 mm falling from May to September. Snowfall varies greatly from year to year and location to location. The mean annual snowfall at Pemberton Meadows is 282.4 cm with the greatest amount falling in a 24 hour period being 101.6 cm. The maximum recorded snowfall is 508 cm with 210 cm the most found on the ground at any one time. An example of the wide range of temperature and precipitation values which have been recorded at Alta Lake and Pemberton Meadows over 30 years is given in Figure 5 (after Gilbert, 1972).

4.3 Hydrology

The hydrologic regime of a river is influenced primarily by the morphology of the river, the watershed characteristics, including the presence or absence of glacier ice and/or snow fields, the soils, land uses in the watershed, and the climate of the area. The study area is located to a large extent on the flood plains of the Lillooet, Birkenhead and Gates rivers and the soils and uses of this land are directly affected by the hydrologic regimes of these rivers. The headwaters of the Lillooet River occur in the glacier ice and snow fields of the Coast Mountains whereas the Green and Birkenhead rivers rise in annual snow fields. The regional climate of the area exerts a strong influence on the hydrologic regime of the major streams as these rivers react rapidly to heavy rain storms and warm temperatures in the spring and summer. Warm rains can cause accelerated melting of the glacier ice and snow and thus maintain the spring runoff for extended periods. Heavy, early fall rains may cause extremely high discharges, especially following heavy, wet snowfall. A heavy rainfall on fresh snow appears to have been a causative factor in the 1948 flood of the Pemberton valley.

Daily stream discharges were monitored on the Lillooet River (1923-1968), Green River (1914-1951) and Birkenhead River (1946-1969). The mean values for these years of recording are presented in Figure 7 (after Slaymaker and Gilbert, 1972, Gilbert 1973). The location of the stream gauging and climate stations within the study area are indicated on the drainage basin map in Figure 6. The hydrographs indicate the influence that the large ice and snow fields of the watersheds have on flow characteristics of these rivers. They extend the spring runoff peak into early September. A secondary peak due to rain events occurs in early fall (October-November) on the Lillooet River, but this secondary peak is very small or almost non-existant in the hydrographs for the Green and Birkenhead Rivers whose headwaters do not originate in permanent ice and snow fields.

Flow velocities of rivers are affected by the morphology of the valleys. The headwater streams, Meager, Capricorn, Pebble, North and South creeks as well as the Lillooet River itself enter the Lillooet River valley from steep side valleys carrying a heavy load of sediment. As they enter the upper valley the gradient is reduced to approximately 150 m in about 48 km. From below Railroad Creek, to Lillooet Lake the gradient is further reduced to approximately 75 m in 48 km. Consequently, the coarser particles, the gravels, are deposited in a wide channel between Meager and

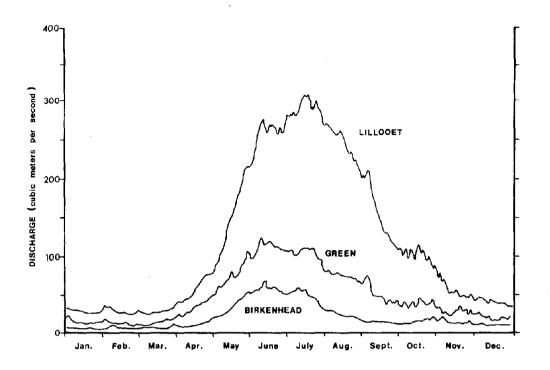


Figure 7: Average of mean daily discharge for Lillooet River (1923-1968), Green River (1914-1951) and Birkenhead River (1946-1969), for years of nearly complete record (after Gilbert, R., 1972, 1973)

Railroad Creek while below Railroad Creek the lower gradient gives rise to a narrow, meandering stream channel where the finer particles, the silts and clays, are deposited and organic materials are accumulating in depressions.

The Birkenhead and Green River flood plains are similar to that of the upper Lillooet flood plain in having very gravelly channels. These high velocity streams located within steep gradient channels change rapidly to lower gradient channels and the subsequent lower velocity flows result in the deposition of coarse gravel and boulder size particles within their flood plains. The finer textured particles are deposited as the Birkenhead River enters the lower gradient Lillooet River valley although these materials are significantly more sandy than those deposited by the Lillooet River. The hydrology of streams affects and is effected by the land uses which are present within the watershed. For example, logging of watershed slopes and increased amounts of road surface may have contributed to increased peak flows and sediment transport in the Lillooet River and tributary streams during the past 23 years (Slaymaker and Gilbert, 1972). The development of land within the flood plains for urban and industrial purposes is limited by the high flood hazard, unless special precautions are taken.

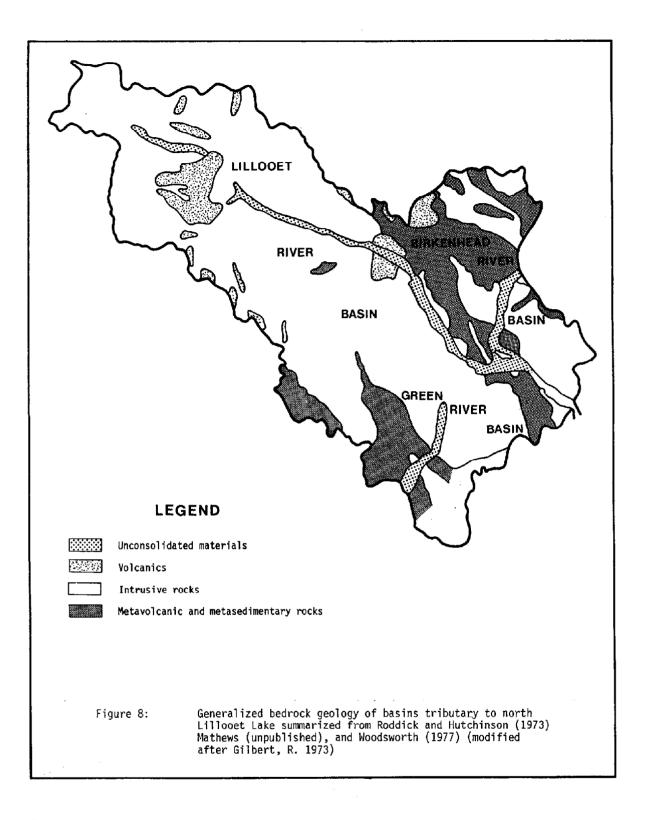
4.4 Vegetation

Krajina (1969-1970) describes the Pemberton Valley and the south aspects of the mountains from Ryan Creek to Lillooet Lake as well as the Birkenhead River, Gates River and Blackwater Creek valleys as part of the Interior Douglas-fir biogeoclimatic zone. This biogeoclimatic zone is characterized by Rocky Mountain Douglas-fir, ponderosa pine, western white pine, grand fir, lodgepole pine, western larch, white spruce, and western red cedar, frequently accompanied by trembling aspen, black cottonwood, Rocky Mountain maple, and common paper birch (common names after Taylor and MacBryde, 1977). Dry, hot summers and cold winters of the interior climate are characteristic of this zone. In the Pemberton Valley the wetter subzone of the Interior Douglas-fir zone predominates. This wetter subzone is characterized by lodgepole pine, western white pine, alpine fir, white spruce, Engelmann spruce, western larch, western red cedar and grand fir. Travelling north along the Birkenhead - Gates River valleys toward Anderson Lake, the vegetation zone trends towards the drier subzone of the Interior Douglas-fir zone. The drier subzone in this area is characterized mainly by ponderosa pine and Rocky Mountain Douglas-fir.

The Pemberton Valley north from Ryan Creek and the north aspects of the valley south of Ryan Creek are described by Krajina (1969-1970) as part of the Coastal Western Hemlock biogeoclimatic zone. This biogeoclimatic zone is the wettest zone in British Columbia and is characterized by mild winters and cool summers. The section of the Lillooet River valley which is located within this biogeoclimatic zone appears to be predominantly within the drier subzone which is characterized by the presence of coast Douglas-fir, western hemlock, western red cedar, grand fir, Sitka spruce, western white pine, and lodgepole pine.

In the Pemberton Valley the climatic climaxes of each of the biogeoclimatic zones are seldom found due to the prevailing high water table on the Lillooet River flood plain. An edaphic climax vegetation of western red cedar or black cottonwood, and some red alder, common paper birch, western white pine, Rocky Mountain maple, and willows is predominant. The larger trees often occur in a narrow band on the natural levees of the Lillooet River where the lower water table permits good root growth. Where the water table is favourable, mature western red cedar and black cottonwood become quite large, as is the case in the upper Lillooet River valley above Railroad Creek. Willow, because of its tolerance of wet soils, is found on the lower fringes of the levees. Tree growth is limited where the water table occurs near or above the soil surface, and sedge and other marsh vegetation predominates. In depressional areas where open water exists, lilies and common cattails are common.

The native vegetation of the main Pemberton Valley from Lillooet Lake to Railroad Creek has been largely cleared and the land cultivated or allowed to regenerate to successional species such as black cottonwood, red alder, common paper birch, and willows with some western red cedar.


Above Railroad Creek large portions of the valley bottom have been logged of western red cedar, coast Douglas-fir and western hemlock but have not been put under cultivation. Regeneration is mainly black cottonwood where not replanted to coniferous species.

4.5 Soil Parent Material

Parent material is the geological material from which a soil forms. In the Pemberton Valley, the parent materials generally consist of Pleistocene or Recent age unconsolidated fluvial and glacial deposits. These unconsolidated materials are either derived from or have been influenced by the local (within the watershed) bedrock.

4.5.1 Bedrock

The bedrock types found within the study area have been described in detail by Roddick and Hutchison (1973). Figure 8 indicates the general distribution of the main types. The main bedrock in the Pemberton Valley is intrusive in the form of quartz diorite. The upper elevations on the north side of the valley consist mainly of volcanics, commonly andesite breccia, tuff and flows, and greenstone. Minor inclusions of metavolcanics, such as rhyolite breccia and flows, and metasedimen-

taries, such as slate, argillite, limestone and conglomerate also occur. A localized pocket of volcanic andesite flows and breccia with some basalt and minor dacite, occurs west of Wolverine Creek. In the vicinity of North and South Creeks intrusions of granodiorite are encountered which grade into quartz diorite up-valley towards Mt. Meager.

Bedrock types found along the Birkenhead River Valley are generally similar to those found in the Pemberton Valley. From Spetch to near Gates Lake intrusives of medium to coarse grained granodiorite are encountered. In the vicinity of Gates Lake, Gates River and Blackwater Creek, metasedimentaries, such as argillite, limestone, tuff and conglomerate which are distinctly calcareous occur. These have a distinct influence on the characteristics of the unconsolidated materials and soils of the area. In this area there are also some outcrops of intrusive quartz diorite, particularly near the north end of Birkenhead Lake, and on the east side of Gates River between Gates Lake and Devine.

In general, the bedrock types of the study area can be separated into two groups, acidic and calcareous. These groupings are reflected in the derived unconsolidated materials and subsequent soil development. The bedrock of the Pemberton Valley is predominantly acidic, with only minor calcareous types. The bedrock of the Birkenhead River, Blackwater Creek and Gates River area are predominantly calcareous with minor proportions of acidic types.

The nature of these bedrock types strongly influences the mineralogy and chemical nature of the soils in the study area, such that the Pemberton Valley soils are acidic, while those in the Birkenhead, Gates, and Blackwater valleys are mainly calcareous in the subsoil.

For the purposes of this report bedrock is defined according to the "Terrain Classification Scheme", (ELUC Secretariat, Resource Analysis Branch, 1976) as "outcrops and rock covered by a thin mantle (less than 10 cm thick) of unconsolidated materials." Thus, all bedrock types occur in one mapping category on the terrain map.

Steep and/or hummocky bedrock outcrops occur on the uplands near Pemberton, adjacent to Mt. Currie village, and along the valley walls of the Birkenhead and Gates River valleys. Small, hummocky outcrops occur in the main Lillooet River valley, approximately half-way between Pemberton and Mt. Currie village on the north side of the valley.

4.5.2 Unconsolidated Geologic Deposits

Five types of unconsolidated geologic deposits or soil parent material have been identified in the study area. The distribution and extent of these materials is illustrated on the terrain maps (Figures 9 - 15).

A. Anthropogenic deposits

"Man-made or man-modified materials; including those associated with mineral exploitation and waste disposal, and excluding archaeological sites. These materials have either been constructed by man or are geological material which have been so modified by man that their initial physical properties, including topography, cannot be recognized" (ELUC Secretariat, 1976).

Within the Pemberton study area the anthropogenic areas consist of urban areas, including the villages of Pemberton and Mt. Currie; landfill areas; and other man-modified areas such as a gravel pit near Mt. Currie village and salmon spawning channels. These deposits comprise a relatively minor component of the study area.

B. Colluvial deposits

"Products of mass-wastage; materials that have reached their present position by direct, gravity-induced movement. The character of the colluvial deposits depend upon first, the nature of the material from which it was derived and secondly, the specific mass wastage process whereby it was moved" (ELUC Secretariat, 1976).

Colluvium is derived both from bedrock and unconsolidated materials. Colluvial landforms in the Lillooet River valley consist of avalanche debris tracks and fans which are generally gravelly and sandy and mostly actively forming. Also present are small discrete areas of rubbly and/or blocky talus fans and aprons locally derived from bedrock. Similar landforms occur in the Gates River and Blackwater Creek valleys, however, here the fans tend to be larger and somewhat finer textured with less gravel. In the Birkenhead River valley and on the uplands near Pemberton and Mt. Currie villages the colluvial deposits are largely derived from bedrock and occur as talus fans and aprons as well as veneers and blankets. One large landslide composed of extremely large rock blocks derived from bedrock is located north of Owl Creek near Spetch. Colluvial deposits in the Green River valley are dominated by a large landslide deposit south of Nairn Falls known locally as Suicide Hill, which is primarily composed of gravels and boulders in a matrix of fines derived from unconsolidated materials.

C. Fluvial deposits

"Materials transported and deposited by streams and rivers" (ELUC Secretariat, 1976).

Fluvial deposits are the most extensive sediments in the study area and occupy the floors of the Lillooet, Green, Birkenhead, and Gates river and Blackwater creek valleys. The fluvial landforms are primarily flood plains, with a significant number of large and small fans and a minor extent of terraces. The soils formed in many of these materials, particularly on the flood plains, show evidence of frequent, periodic flooding in the form of buried organic layers and layers of strongly contrasting textures.

The fluvial sediments deposited by the Lillooet River show a distinctive gradation in texture from gravelly at the head of the valley to increasingly silty at Lillooet Lake. The influence of tributary streams is evident where they enter the main valley by the presence of gravelly fan and sandy flood plain deposits at these points. Fluvial materials within the upper Lillooet River valley are primarily gravelly, with some sands in the braided channels. These grade to sands overlying gravels and sands in the vicinity of Railroad Creek. The sands become deeper (>1 m) and gradually are interspersed with silts between Railroad and Miller Creeks. The deposits are mainly silty from approximately Miller Creek to Lillooet Lake with the exception of a large sandy area near Pemberton which was deposited during the 1948 flood. Near Lillooet Lake, the fluvial materials include a sandy delta which is rapidly building into Lillooet Lake. The speed of this delta accretion is primarily the result of increased velocities and volumes of flow in the Lillooet Lake as documented by Slaymaker and Gilbert (1972 and Gilbert, 1973).

Other fluvial landforms occurring within the Lillooet River valley are fans formed where tributary streams join the main valley. These streams generally originate in steep side valleys and the resultant decrease in water velocity on entering the nearly level floor of the Lillooet River valley results in the deposition of their coarser particle load. The fans of the larger streams such as North, South and Ryan creeks are bouldery and gravelly while those of smaller streams such as Railroad, Wolverine, Miller and One Mile creeks tend to be gravelly. The fluvial deposits in the main valley, where Ryan Creek and the Lillooet River share the flood plain, are complex deposits of interbedded sands and silts with some gravels at depth.

Fluvial deposits in the Green River valley are bouldery and gravelly fluvial fans. These occur at the junction of Rutherford Creek and Green River and where the Green River enters the Lillooet River valley below Nairn Falls.

The fluvial deposits of the Birkenhead River valley are bouldery and gravelly and occur as either fan or flood plain deposits. Fan deposits occur primarily near Birkenhead Lake where the river enters that valley, where the Birkenhead River leaves its canyon, and at the confluence of Owl Creek and the Birkenhead River. The flood plain deposits of the Birkenhead River tend to be gravelly, eventually becoming sandy after joining the main Lillooet River valley.

Blackwater Creek and Gates River fluvial deposits are primarily sand, with some minor silty flood plain deposits. However, large fluvial fans enter the Gates River valley between Blackwater Creek and Anderson Lake. At Blackwater Creek there exists a large, gravelly delta which is exposed in a road cut. Nearby, a bouldery and gravelly fluvial fan originating from Haylmore Creek enters the valley and extends nearly to Anderson Lake.

D. Morainal deposits

"The material transported beneath, beside, on, within, and in front of a glacier; deposited directly from the glacier and not modified by any intermediate agent. Morainal material generally consists of well-compacted material that is non-stratified and contains a heterogeneous mixture of particle sizes, often in a matrix of sand, silt and clay" (ELUC Secretariat, 1976).

The major areas of morainal deposits in the study area are on the uplands near Pemberton, on the uplands of Mt. Currie Indian Reserve, and on the walls of the Birkenhead River, Gates River and Blackwater Creek valleys. They are primarily gravelly with some boulders in a matrix of predominantly sand. Between Birkenhead Lake and D'Arcy, pockets of moderately to strongly calcareous compact till occur, apparently related to the local bedrock which is composed of argillite, limestone, tuff, and conglomerate bedrock (Roddick and Hutchison, 1973).

E. Organic deposits

"Materials resulting from vegetative growth, decay and accumulation in and around closed basins or on gentle slopes, where the rate of accumulation exceeds that of decay. Organic deposits contain at least 30% organic matter, by weight, and are greater than 40 cm deep in sedge peats or greater than 60 cm deep in bog peats" (ELUC Secretariat, 1976).

Organic deposits occur throughout the study area in wet depressions and in seepage sites on the valley bottoms. Some occur in areas where seepage water from the valley walls is present and the underlying mineral material is coarse textured. Examples are: part of the large organic deposit on the north side of the Lillooet River west of North Creek, the organic deposits between Wolverine and Railroad Creeks, and the more shallow deposits northwest of Ryan Creek. Others, such as those near Pemberton and on the Mt. Currie Indian Reserve near the Old Town, are associated with very poorly drained fine textured fluvial deposits. This is also the case for the organic deposits in the Gates River and Blackwater Creek valleys.

The organic deposits in the entire study area are generally quite shallow (< 1 m) but occasionally they are deeper as are those south of Miller Creek, and west of Wolverine Creek.

Terrain Maps Legend for Figures 9 - 15:

GENETIC MATERIALS

lette		
symbo	r name 1 (process status*)
A	anthropogenic (A) man-made or modified materials includ- ing those associated with mineral ex- ploitation and waste disposal.
c	colluvial (A)	products of mass wastage; includes rubbly bedrock-derived material and material derived from unconsolidated Quaternary sediments; includes earth- flow, mudflow and landslide deposits and talus material. - generally consists of massive to moderately well-stratified sediments with a great range of particle sizes.
F	fluvial (I)	material transported and deposited by streams and rivers; alluvial materials, - generally consists of moderately to well-bedded and moderately to well- sorted gravels and/or silt.
м	morainal (I)	material deposited directly by glaciers; till. - generally consists of compact, non- sorted and non-stratified material that contains a wide range of particle sizes and a matrix of silt or clay.
0	organic (A)	material resulting from the accumu- lation and decay of vegetative matter. - generally consists of peat, unstrati- fied and locally containing minor amounts of marl and inorganic detritus.
OF	organic (fen) (A)	
R	bedrock (I)	outcrops and rock covered by less than 10 cm of unconsolidated material.
011/		DESCRIPTORS
QUA		DESCRIPTORS
		DESCRIPTORS
letter symbol		description - used where possible to supply additional information about units of organic material. (See OB, OF and OS above.)
letter symbol	name	description

EXPLANATION OF LETTER NOTATION

A combination of letters is used to designate each map unit. The relative position of letters within the symbol indicates the characteristic that they represent.

Units consisting of two or more types of terrain are designated by two or more groups of letters separated by dots and slashes:-

e.g.gFt/dCf (See Composite Units below)

Material underlying the surface unit is shown by a symbol that is written beneath the surface unit symbol and separated from it by a horizontal line:-

e.g. <u>sEv</u> gFt

TEXTURE

letter symbol	name	particle size (mm)	description
Specific Cl	astic Terms		
b	bouldery	> 256	rounded or subrounded particles
k	cobbly	64-256	rounded or subrounded particles
s	sandy	.062-2	rounded or angular particles
\$	silty	.0039062	rounded or angular particles
Common Clas	stic Terms		
a	blocky	> 256	angular and subangular particles
r	rubbly	.062-256	angular and subangular particles, may include interstitial sand
g	gravelly	> 2	rounded and subrounded particles
f	fines	< .062	a mixture of silt and clay size particles, may contain a minor fraction of fine sand
Specific Or	rganic Terms		
f	fibric		the least decomposed of all organic materials; there is a large amount of well-preserved fibre that is readily identifiable as to botanical orgin; fibres retain their character upon rubbing
m	mesic		organic material in an intermediate stage of decomposition; intermediate amounts of fibre are present that can be identified as to their botanical origin

the general textural descriptions under the heading Genetic Materials (below).

(2) Where two textural terms are used together, they are written in order of increasing importance. e.g. \$\$ is silty sand.

SURFACE EXPRESSIONS

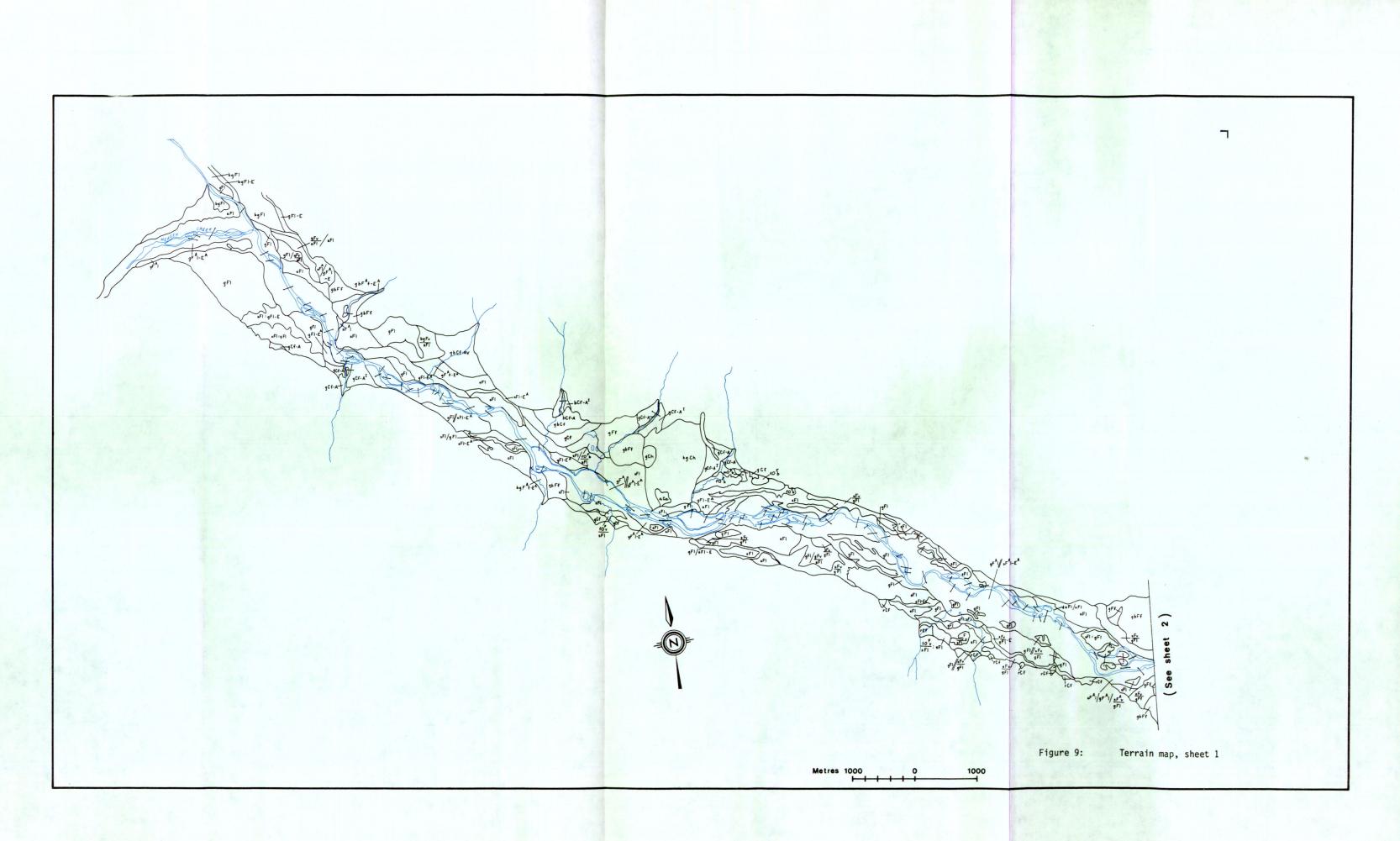
letter symbol	name	description
a	apron	a relatively gentle slope at the foot of a steeper slope, and formed by materials derived from the steeper slope
b	blanket	a mantle of unconsolidated material which has no constructional form of its own, but derives its general surface expression from the topography of the unit which it overlies; it masks minor topographic irregularities in the underlying unit and is more than 1 m thick. - if the underlying unit consists of uncon- solidated materials, it is shown in the
		unit symbol; if no underlying unit is shown, it may be assumed to be bedrock.
f h	fan hummocky	a surface that is the sector of a cone. steep-sided hillocks and hollows that are rounded or irregular in plan; slopes of 15 to 350 predominate on unconsolidated materials, and slopes of 15 to 90 ⁰ predom- inate on bedrock; local relief is greater
1	level	than 1 m. a flat or gently inclined (less than 5°) surface with uniform slope and local relief of less than 1 m.
s	steep	steeply inclined erosional slopes (scarps) with gradients commonly greater than 35° on unconsolidated materials and greater than 35° on bedrock.
t	terrace	scarp face and the horizontal or gently inclined surface (tread) above it; usually applied to both the scarp and the flat tread - to the whole feature of the landscape
۷	veneer	a mantle of unconsolidated material which has no constructional form of its own, but derives its surface expression from the topography of the underlying unit; it reflects minor irregularities of the underlying surface, is generally between 10 cm and 1 m in thickness, and outcrops of the underlying unit are common. - if the underlying material is unconsoli- dated, it is included in the unit symbol; if no underlying unit is indicated, it is assumed to be bedrock.

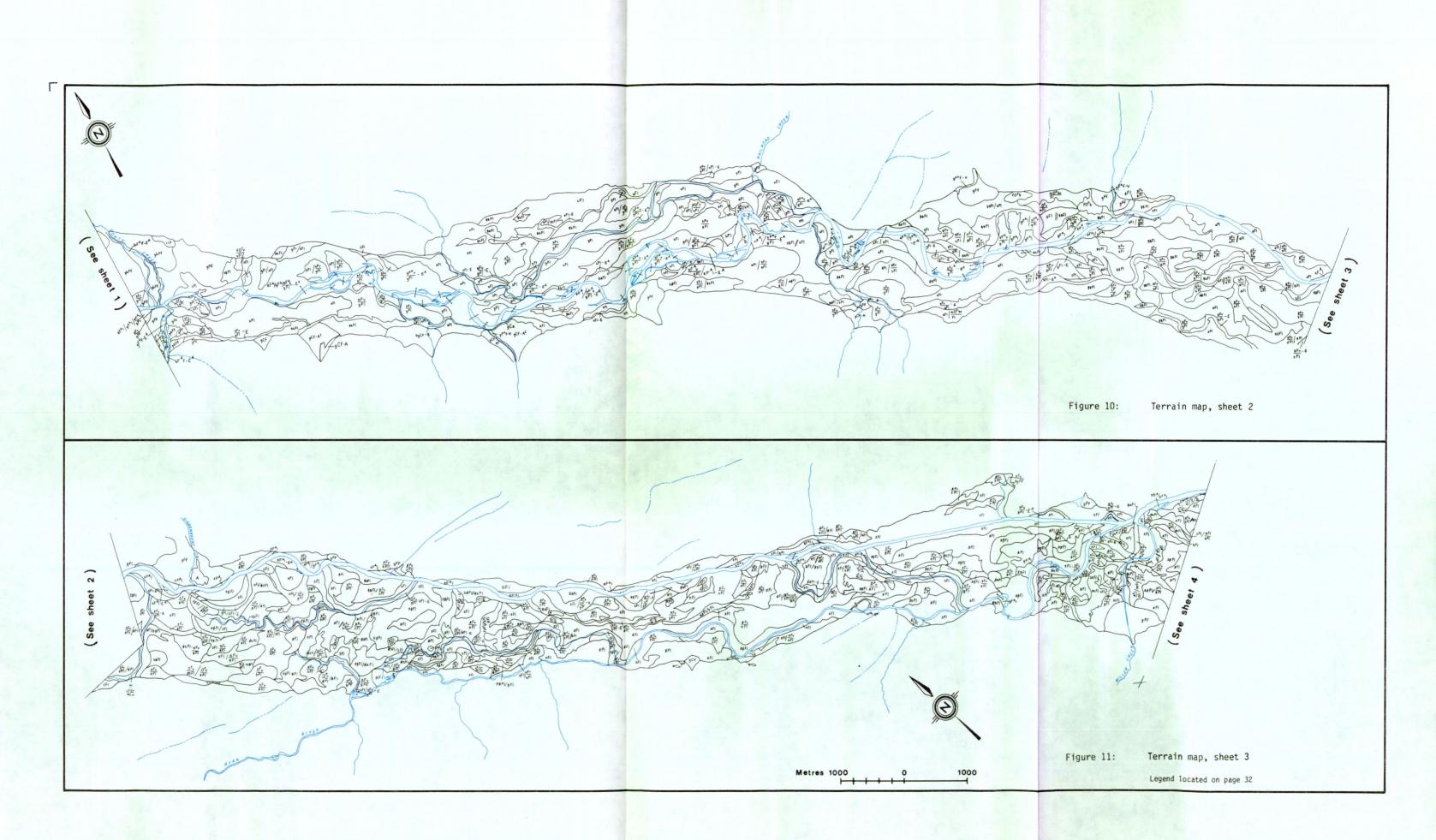
*See QUALIFYING DESCRIPTORS - for definition of PROCESS STATUS

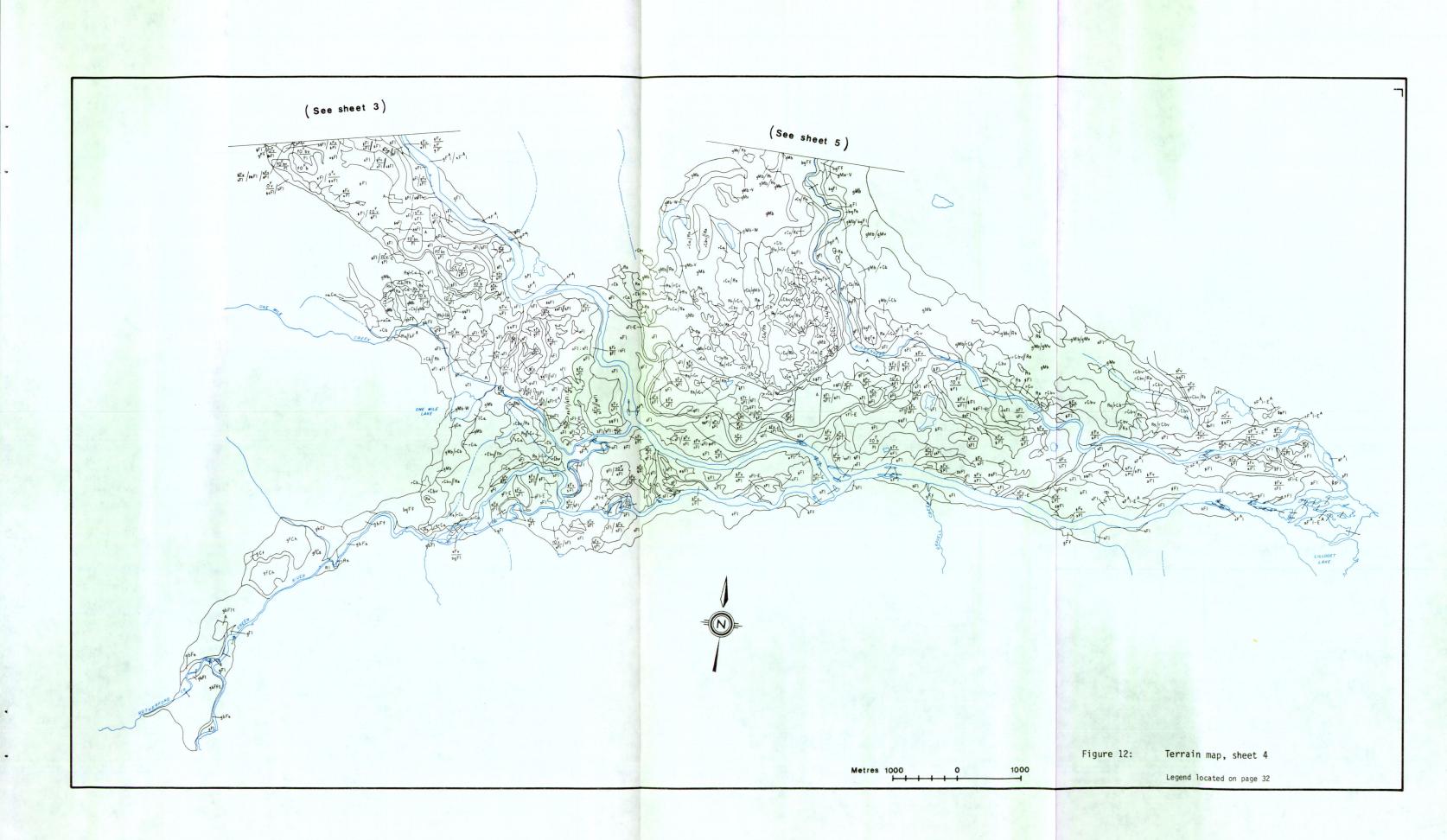
MODIFYING PROCESSES letter name

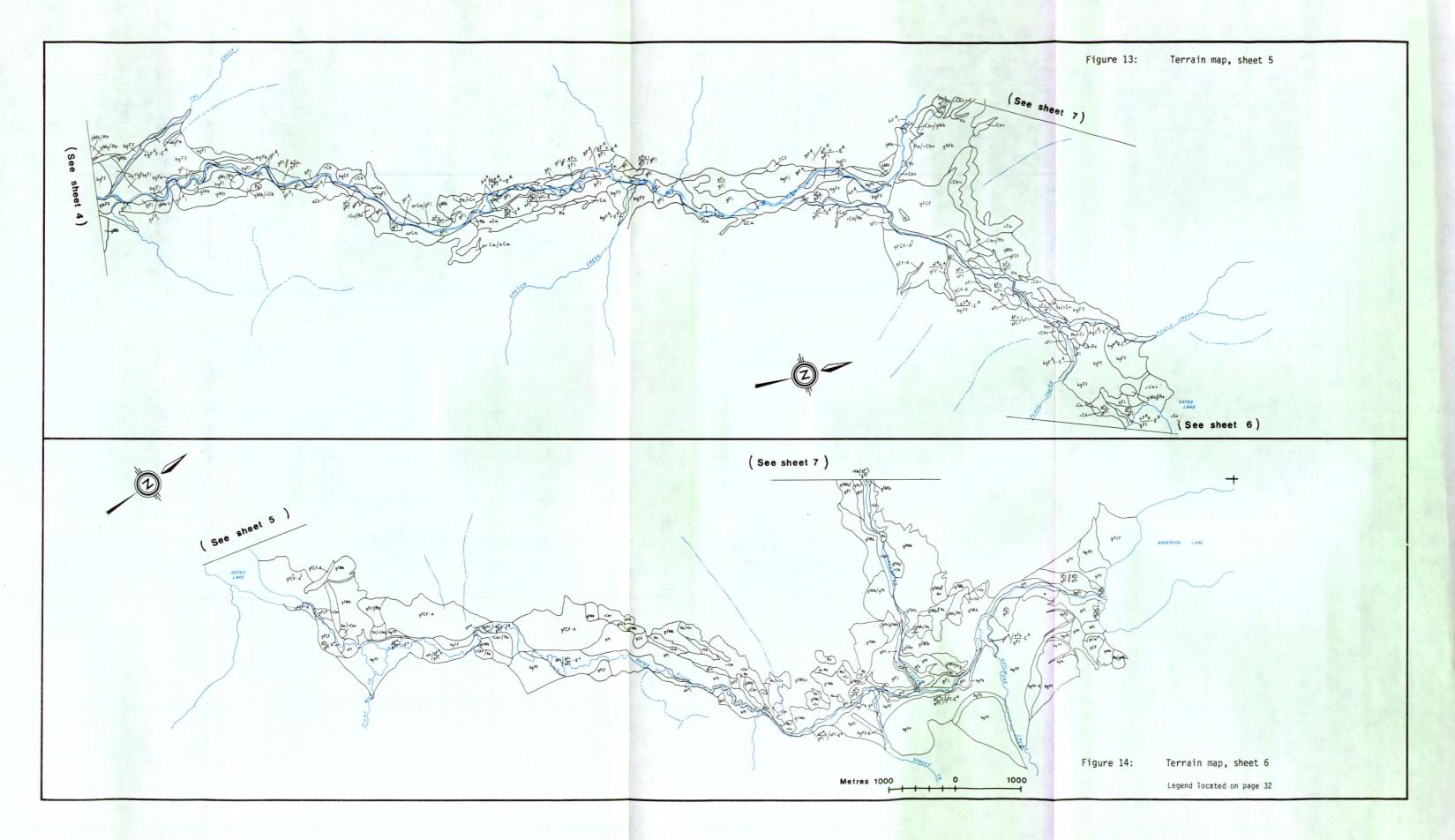
symbol	(process status*)	description
A	Avalanched (A)	the modification of slopes by frequent avalanche acitivity. Avalanches are rapid downslope movements of snow, ice, and other incorporated debris, commonly associated with areas of high relief and moderate to heavy snowfall.
E	Channelled (I)	the modification of surfaces by a channel or channels; applied to fluvial plains, terraces, and fans; abandoned channels on fluvial deposits
v	Gullied (A)	the modification of surfaces by fluvial erosion, resulting in the development of parallel and sub- parallel, steep sided and narrow ravines in both consolidated and un- consolidated materials.
W	Washed (I)	Modification of a deposit or feature by wave action in a body of standing water, resulting in lag deposits, beaches of lag materials and wave- cut platforms.

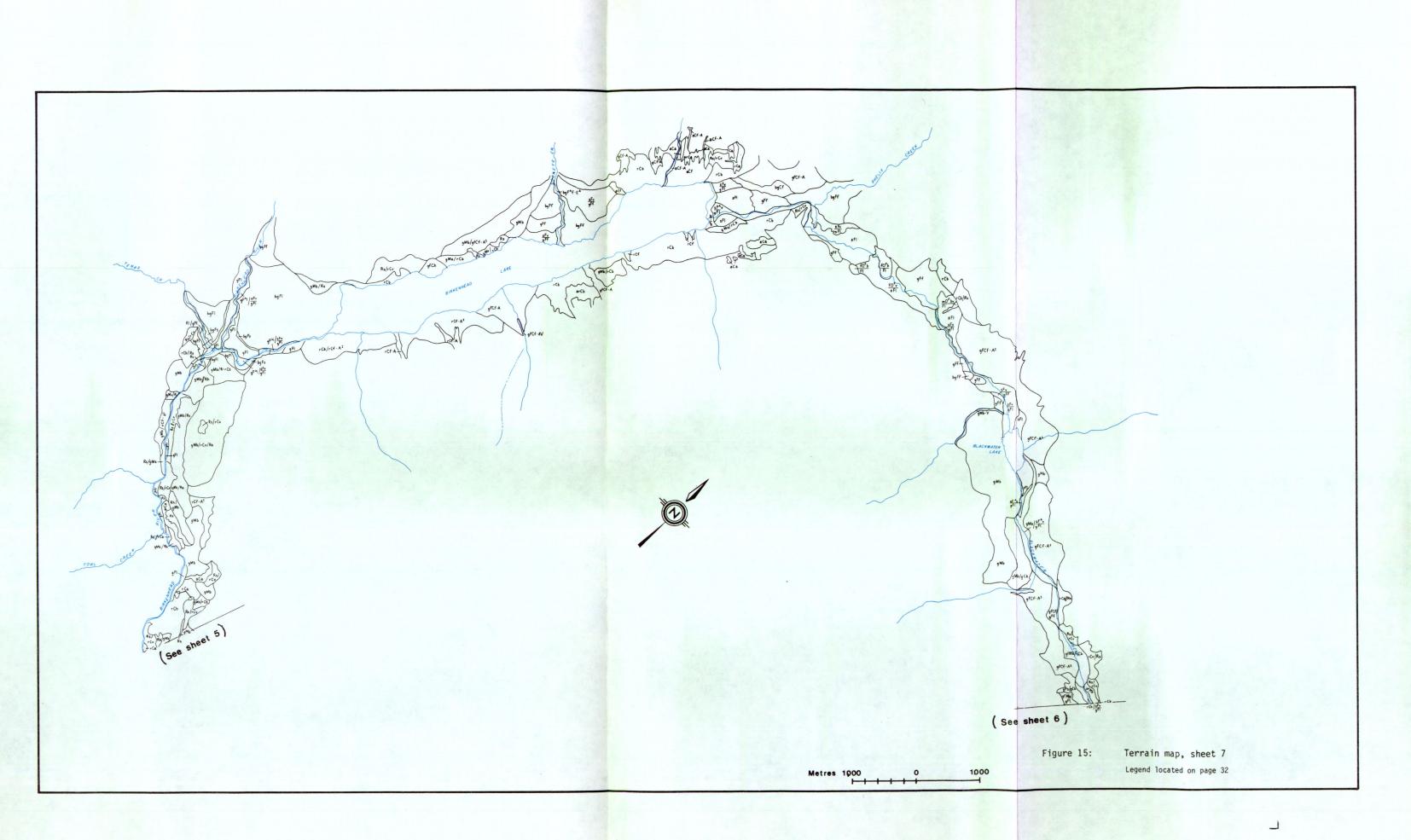
COMPOSITE UNITS


Composite units are employed where two or three types of terrain are intermixed or occupy such small areas that they cannot be designated as separate units at the scale of mapping. Symbols (defined below) are used to indicate the relative amounts of each terrain type, and the components are always written in decreasing order of importance. the components on either side of this symbol are approximately equal / the component in front of the symbol is more extensive than the one that follows // the component in front of the symbol is considerably more extensive than the one that follows


e.g.	MD//R	Mb is considerably more extensive than R
	Mb//R:Cv	Mb is considerably more extensive than R; R and Cv are of roughly equal extent
	Mb/R//Cv	R is less extensive than Mb; Cv is considerably less than R


1:20 000 mapping available from: The Librarian Resource Analysis Branch Ministry of Environment Parliament Buildings Victoria, B.C. V8V 1X4


Reference:


"Terrain Classification System", (RAB 1976)

chapter 5

SOILS OF THE STUDY AREA

5 SOILS OF THE STUDY AREA

As previously discussed, soils are the product of climate acting through vegetation and animal life as conditioned by relief or topography and subsequent moisture relationships on geologic materials over time. Table 3 indicates the relationship between bedrock, unconsolidated geologic deposits (soil parent materials), soil profile development (soil classification) and the identified soil series.

5.1 Description of Soil Series

The characteristics of the named soil series in Table 3 are described individually in the section following. In this section each soil is described as to selected morphological, chemical, and physical attributes. Representative detailed soil profile descriptions and attendant analyses of the more common soil series of the study area are located in Appendix 2. Those soils which are described in the appendix are asterisked. Detailed descriptions of the less common soil series are available from the B.C. Soil Data File referenced earlier.

The soil series descriptions in this section are grouped according to soil parent material and relative geographical location within the study area. The terminology used is defined either in the "System of Soil Classification for Canada", (1978), the CANSIS "Manual for Describing Soils in the Field", (1975), or in the "Glossary of Terms."

5.1.1 Soils formed in Colluvial Materials

A. Lillooet River area

Callaway series (CA)

The Callaway series are formed generally in actively accumulating, intrusive bedrock derived, colluvial deposits in the Lillooet River valley. Callaway soils are acid, rapidly drained, rapidly pervious, and moderately stony, angular, very gravelly sand; angular, very gravelly loamy sand; or angular, very gravelly sandy loam throughout the control section. These soils are found primarily on very strong to very steep slopes (for slope class definition see Glossary of Terms). They are classified as Orthic Regosol and have little or no horizon development with only a trace of organic litter formed primarily from moss vegetation covering the surface.

Ta	h1	A	3	•
1 4	~ .		~	٠

Relationships of parent materials to soil development and soil series identified

	-		,				·	SOIL DE	EVELOPMENT						
PARENT MATERIALS*	Bedrock	Orthic Regosol	Gleyed Regosol	Orthic Dystric Brunisol	Eluviated Dystric Brunisol	Gleyed Melanic Brunisol	Orthic Eutric Brunisol	Rego Gleysol	Rego Gleysol: cumulic phase	Rego Gleysol: peaty phase	Rego Humic Gleysol	Rego Humic Gleysol: cumulic phase	Terric Fibrisol	Terric Mesic Fibrisol	Terric Mesisol: cumulo phase
Rubbly, sandy colluvial apron and fan deposits	acidic calcareous	Callaway Chumley				<u>_</u>									
Cobbly, rubbly, sandy colluvial (landslide and mudflow) fan deposits	acidic			Clausen											
Slocky, rubbly, sandy colluvial apron, blanket and fan deposits	acidic calcareous	Cloutier Combow													
Rubbly, sandy colluvial veneer deposits							Collister								
ƙubbly, sandy colluvial blanket deposits	acidic calcareous			Conroy			Cosulich								
Rubbly, sandy colluvial avalanche track and fan deposits	acidic calcareous			Cottingham			Cowell								
Gravelly, sandy fluvial fan deposits	acidic	Farmer													
Cobbly, gravelly, sandy fan deposits	calcareous						Fougberg								
Twenty to 50 cm of sandy fluvial veneer overlying bouldery and/or gravelly fluvial fan deposits	calcareous				1		Franks								
Bouldery, gravelly, sandy fluvial fan deposits	acidic calcareous	Frontier					Flichel								
Twenty to 50 cm of sandy fluvial veneer overlying gravelly morainal or fluvial deposits which have been reworked by wave action of adjacent lakes							Fotsch								
Sandy flood plain deposits	acidic	Gates Lake	Wolverine					Ranson Scobie							
Gravelly, sandy, flood plain deposits	acidic calcareous	Gilmore Giguere	Whitehead Wuschke												
Bouldery, gravelly, sandy fluvial terrace deposits	acidic calcareous			Grundy			Guthrie								

t

.

*Terms used are those defined in the "Terrain Classification System", R.A.B., 1976.

.

Table 3 cont'd:

nt'd: Relationships of parent materials to soil development and soil series identified

.

								SOIL DI	VELOPMENT						
PARENT MATERIALS*	Bedrock	Drthic Regosol	Gleyed Regosol	Orthic Dystric Brunisol	Eluviated Dystric Brunisol	Gleyed Melanic Brunisol	Orthic Eutric Brunisol	Rego Gleysol	Rego Gleysol: cumulic phase	Rego Gleysol: peaty phase	Rego Humic Gleysol	Rego Humic Gleysol: cumulic phase	Terric Fibrisol	Terric Mesic Fibrisol	Terric Mesisol: cumulo phase
Fifteen to 40 cm of organic material overlying silty flood plain deposits	acidic calcareous									Nairn Falls Naylor					
Fifteen to 40 cm of organic material overlying sandy flood plain deposits	acidic									Nesuch					
Fifteen to 40 cm of organic material overlying sandy, silty flood plain deposits	acidic									Newberry					
Silty flood plain deposits	acidic				i i	Tenguille	•	Rutherford Sankey			Quamel 1	Valicau Vickterg			
	calcareous							Regand			Questt	Van Been			
Twenty to 50 cm of sandy fluvial veneer overlying gravelly, sandy flood plain deposits	acidic calcareous		Walden Wheeler					Ronayne Rivers							
Sandy, silty flood plain deposits	acidic							Renville Sister				Viccars			
Silty, sandy flood plain deposits	acidic		Wildfong					Sangster							
Twenty to 50 cm of sandy fluvial veneer overlying silty flood plain deposits	acidic		Witta]					Shantz				Verlinden			
Twenty to 50 cm of silty fluvial veneer overlying sandy flood plain deposits	acidic calcareous		Wallace Winters					Scullard Summerskill							
Gravelly, sandy morainal blanket and veneer deposits	acidic calcareous				Yantzie		Yvonne								
Sixty to 160 cm of poorly decomposed organic material overlying mineral material	acidic													Zurbrugg	
Sixty to 160 cm of poorly decomposed organic material with layers of mineral material interbedded	acidic calcareous												Zurcher Zaruba		
Forty to 160 cm of moder- ately decomposed organic material with layers of mineral material inter- bedded	acidic									;					Zoltay

*Terms used are those defined in the "Terrain Classification System", R.A.B., 1976.

Clausen series (CC)

Clausen series occur mainly on landslides and mudflow fans derived from unconsolidated, acidic surficial geologic materials in the Green and Birkenhead river valleys. The soil textures are angular cobbly, gravelly sandy loam or angular cobbly, gravelly loamy sand. Clausen series occurs on gentle to very steep slopes. They are well drained, very to exceedingly stony and moderately pervious. The Clausen soils are generally acid and are classified as Orthic Dystric Brunisol. A few isolated pockets in the Gates River area occur which are calcareous to the surface. These have been included in the Clausen series as Clausen:calcareous variant (CA:cv), due to the extremely limited acreage of this variant and its close morphological similarity to the modal Clausen soil. The Clausen soils are characterized by thin (<4 cm) LFH horizons underlain by thin (<5 cm) black mineral surface horizons. These overlie dark yellowish brown mineral horizons which grade to gray at about 25 cm depth. Roots are found to the depth of the control section. Clausen series usually supports a Douglas-fir forest which commonly has an understory of red alder, common paper birch, willow, wild rose, common Saskatoon, Oregon boxwood, and some grasses.

Collister series (CE)

Collister series have formed in shallow (<1 m) colluvial veneer deposits derived from intrusive bedrock throughout the study area. These soils range from gravelly sand to gravelly sandy loam in texture. They are well to rapidly drained, moderately to rapidly pervious, very to exceedingly stony, and occur on a range of slopes from gentle to steep. Collister series soils are generally acid although small inclusions of calcareous soils may occur in areas of locally calcareous bedrock. These soils are mostly Orthic Dystric Brunisols, but Orthic Eutric Brunisols may occur as inclusions within mapping units and are calcareous within 50 cm of the surface. The Collister soils generally have an LFH horizon of 10 cm thickness or greater overlying a thin (<2 cm) light gray surface mineral horizon. This in turn overlies a yellowish brown mineral horizon that grades to gray at about 35 cm depth or may reach bedrock within 50 cm. Roots are encountered to the depth of the profile. Collister series is commonly associated with Douglas-fir forest and the associated species, trembling aspen, lodgepole pine, kinnickinnik, western twinberry and some grasses.

Conroy series (CF)

Conroy series have formed in blankets (>1 m) of colluvial deposits which are derived from, overlie and conform, generally, to the shape of the underlying acidic bedrock. These soils are well drained, moderately pervious, very to exceedingly stony, and angular gravelly sandy loam to angular gravelly fine sandy loam. The soils occur on slopes ranging from gentle to steep throughout the study area. Conroy series soils are acid and classified as Orthic Dystric Brunisol. They commonly have about 10 cm of LFH horizon overlying dark yellowish brown mineral soil that grades to gray at approximately 35 cm depth. Roots occur throughout the soil profile. The Conroy series is associated with Douglas-fir forest including the associated vegetation of trembling aspen, lodgepole pine, western twinberry, kinnickinnik, and some grasses.

Cottingham series (CH)

The Cottingham series have formed in the colluvial deposits of avalanche tracks and fans derived from acidic unconsolidated material in the upper Lillooet River valley generally at the foot of steep slopes, on north and west aspects. These soils are angular gravelly sand and angular gravelly loamy sand with minor inclusions of angular gravelly sandy loam and angular gravelly fine sandy loam. They are acid, well drained, moderately to rapidly pervious, moderately to very stony, and occur on moderate to steep slopes. Cottingham series soils are classified as Orthic Dystric Brunisol. However, on the active portions of the avalanche tracks, inclusions of Orthic or Cumulic Regosol occur. Soils of the Cottingham series have little (<5 cm) or no LFH horizon development but have a yellowish brown mineral horizon which grades to gray at about 35 cm depth. Roots are encountered throughout the soil profile. The vegetation associated with this series is commonly red alder, bog glandular birch, willow, and mosses. A variant of the series is mapped which is very bouldery and is called Cottingham:bouldery variant (CH:by).

B. Birkenhead River, Blackwater Creek, Gates River area

Chumley series (CB)

Soils of the Chumley series are classified as Orthic Regosols and occur on actively forming colluvial fan and apron deposits derived from the local calcareous metasedimentary bedrock. They are angular very gravelly sandy loam or angular very gravelly loamy sand. The soils are rapidly drained, rapidly pervious, moderately stony, slightly to moderately calcareous in the soil parent material and occur on very strong to very steep slopes. Chumley soils exhibit little or no horizon development. Little or no vegetation is present with the exception of some mosses and lichens found on the surface of stones.

Cloutier series (CD)

Cloutier series soils occur commonly in actively forming colluvial rock fall deposits derived from acidic intrusive bedrock, primarily in the Birkenhead River valley, but also occasionally in the upper Lillooet River valley. The soils are composed of very large angular blocks of rock, with a matrix of very gravelly sand or very gravelly loamy sand. They are rapidly drained, rapidly pervious, extremely stony and occur on gentle or very strong to steep slopes. The soils of the Cloutier series are acid throughout and are classified as Orthic Regosol. There is little or no horizon development and the only vegetation associated are mosses and lichens found on the rock surfaces.

Cosulich series (CG)

Cosulich series soils have formed in relatively shallow, usually <2 m thick, colluvial deposits which overlie and are derived from calcareous metasedimentary bedrock. The soils are very to excessively stony, angular gravelly sand or angular gravelly loamy sand with minor inclusions of angular gravelly sandy loam. They are slightly to moderately calcareous in the soil parent material, well drained, and moderately to rapidly pervious. The soils of the Cosulich series are classified as Orthic Eutric Brunisol generally having an LFH horizon >5 cm thick overlying reddish brown mineral soil which grades to gray at about 40 cm depth. Tree roots occur throughout the solum of the soil. Vegetation commonly associated with the Cosulich series includes Rocky Mountain Douglas-fir, western white pine, white spruce, common paper birch, red alder, willow, western thimble berry, Oregon boxwood, pipsissewa, and some grasses.

Cowell series (CI)

Cowell series soils have developed in the colluvial deposits of avalanche tracks and fans derived from metasedimentary bedrock in the Birkenhead River, Blackwater Creek, and Gates River valleys. The soils are moderately stony, angular gravelly sand, angular gravelly loamy sand and occasionally, angular gravelly sandy loam. The Cowell series occurs on strong to steep slopes. They are slightly to moderately calcareous in the soil parent material, well drained, and moderately pervious. They are classified as Orthic Eutric Brunisol although the active portions of the avalanche tracks may also contain inclusions of Orthic or Cumulic Regosols. Cowell soil profiles have LFH horizons of 6 cm or more in thickness which are underlain by reddish brown mineral soil grading to gray at about 25 cm depth. Roots occur throughout the solum of the soil. Red alder, bog glandular birch, willow and mosses are the vegetation commonly associated with the Cowell series.

Combow series (CW)

Soils of the Combow series have formed and are forming in active colluvial deposits derived from calcareous metavolcanic and metasedimentary bedrock in the Birkenhead River and Birkenhead Lake valleys. The Combow series soils are composed of large, angular rock blocks which have an angular gravelly sand, angular gravelly loamy sand and occasionally, angular gravelly sandy loam textured matrix. They are slightly to moderately calcareous throughout the soil profile, well to rapidly drained, rapidly pervious, extremely stony, and occur on very strong to steep slopes. Combow series soils are classified as Orthic Regosol, showing little or no soil profile development. They have sparse vegetative cover predominantly in the form of mosses and lichens on the rock surfaces.

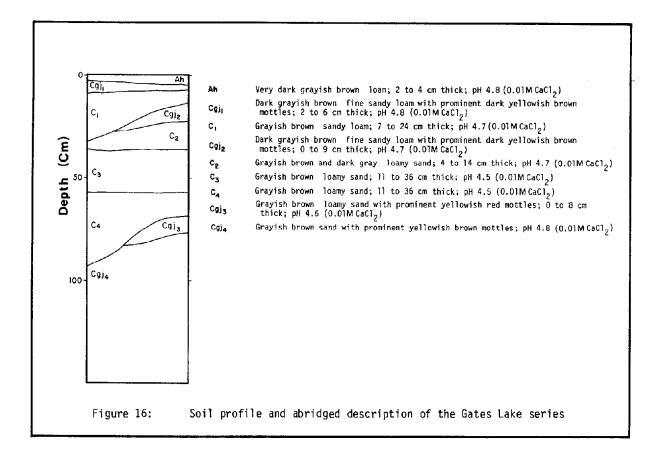
5.1.2 Soils formed in Fluvial Materials

A. Lillooet River area

Farmer series (FA)

Farmer series soils have formed in the fluvial fan deposits of Miller and Wolverine creeks and other small tributaries to the Lillooet River. The soils, where the streams have not been channelized, are prone to periodic flooding. Soils of the Farmer series are moderately stony, gravelly sand or gravelly loamy sand with occasional lenses of sandy loam or fine sandy loam occurring in the soil profile. They are well drained, moderately pervious, acid Orthic Regosol which occur on very gentle to gentle slopes (for slope definition see Glossary of Terms). Tree roots are encountered throughout the profile. Where Farmer soils are vegetated they support western red cedar, western hemlock, coast Douglas-fir and some red alder, common paper birch and Rocky Mountain maple.

Frontier series (FR)

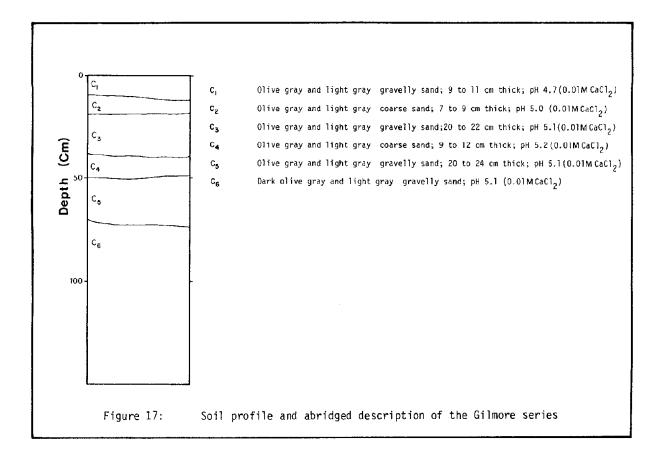

Frontier soils have formed in bouldery, gravelly fluvial fan deposits of large streams, such as North and Rutherford creeks, which are tributary to the Lillooet and Green Rivers. They are characteristically bouldery and extremely stony, very gravelly sand, very gravelly loamy sand or less commonly, very gravelly sandy loam. The soils are acid throughout, well drained, moderately to

rapidly pervious, Orthic Regosols occurring on very gentle to moderate slopes. Portions of these soils are subject to periodic flooding, particularly those areas immediately adjacent to the present stream channels. Occasionally soils occur which are similar to Frontier but have thick (>25 cm) lenses of sand between 50 and 100 cm depth. These variants have been mapped as Frontier:coarse at depth (FR:cd). Tree roots are encountered throughout the soil profile. The vegetation associated with Frontier soils is predominantly black cottonwood with western red cedar, coast Douglas-fir, lodgepole pine, willow, horsetails and ferns.

Gates Lake series (GA)*

Gates Lake series soils occur on sandy fluvial deposits within the present-day channel of the Lillooet River as well as in some areas which have been severed from the normal river channel by diking and channelization. Soils of this series which are situated outside of the dikes are prone to periodic flooding and fluctuating ground water tables which are determined by seasonal river levels. The Gates Lake series is nonstony, sandy loam or fine sandy loam, usually grading to sand at depth. A thin (<5 cm) layer of loam or silt loam is commonly present on the surface. It is acid, well to moderately well drained, moderately pervious, and occurs on level to very gentle slopes. Soils of the Gates Lake series exhibit little or no soil profile development and are classified as Orthic Regosol. Variants occur which have gravelly sand or gravelly loamy sand occurring between 50 and 100 cm depth and are mapped as Gates Lake:gravelly at depth (GA:gd). Thin, discontinuous lenses of silt loam may be encountered in some profiles. There is sparse vegetative cover associated with Gates Lake soils, especially where they occur outside of the dikes. Within the dikes they are commonly vegetated by black cottonwood, western red cedar, red alder, willows, and horsetails. A few tree roots are encountered throughout the depth of the soil profile.

A diagram and brief description of a representative Gates Lake series soil profile, which was sampled, is presented in Figure 16.

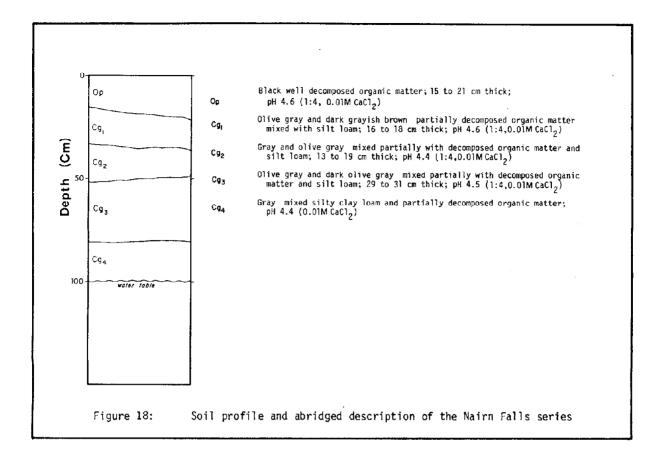


Gilmore series (GI)

Gilmore series soils are generally developed on gravelly fluvial deposits within the present day or recently abandoned channels of the Lillooet River and some of its larger tributaries such as Meager Creek. Soils of the Gilmore series are prone to periodic flooding and fluctuating ground water tables as determined by river levels and are subject to active river channelling as the river migrates back and forth across its flood plain. The Gilmore series soils are moderately stony, gravelly sand or gravelly sandy loam.often with lenses of loamy sand or sandy loam encountered within the soil profile. They are acid, well to moderately well drained, moderately to

rapidly pervious, occur on level to very gentle slopes and are classified as Orthic Regosol. Some tree roots occur throughout the soil profile. In a few areas these soils have sand lenses (>25 cm thick) occurring at varying depths below 50 cm or contain substantial amounts of boulders within the soil profile. These have been mapped as Gilmore:coarse at depth (GI:cd) or Gilmore: bouldery (GI:bv) variants respectively. Gilmore soils are generally sparsely vegetated having occasional shrubby coast Douglas-fir, lodgepole pine, black cottonwood, willow and some horsetails.

A diagram and brief description of a representative Gilmore series soil profile, which was sampled, is presented in Figure 17.

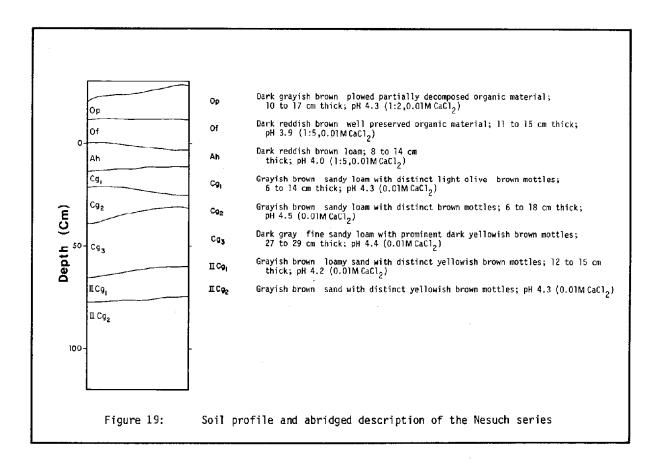

Grundy series (GR)

Grundy series soils have formed on bouldery, gravelly, fluvial terraces in the Green River valley, and in the Lillooet River valley near its junction with Meager Creek. The Grundy series soils are exceedingly stony, bouldery gravelly sand or bouldery gravelly loamy sand with occasional inclusions of bouldery gravelly sandy loam. The soils are well to rapidly drained, rapidly to moderately pervious, and acid throughout. They occur on nearly level to very gentle slopes with strong to steep slopes along the terrace escarpments. Soils of the Grundy series are classified as Orthic Dystric Brunisol. They commonly have a thin (<5 cm) LFH horizon which overlies reddish brown horizon that grades to gray at about 30 cm depth. Tree roots occur throughout the depth of the soil profile. Vegetation associated with the Grundy series is predominantly lodgepole pine with minor coast Douglas-fir, kinnickinnik, and some grasses.

Nairn Falls series (NA)

Nairn Falls soils occupy limited area and have formed on the silty fluvial deposits of the Lillooet River flood plain which are capped by shallow organic material. The Nairn Falls series is composed of 15 to 40 cm (if moderately decomposed) or up to 60 cm (if poorly decomposed) of organic material overlying nonstony silt loam or silty clay loam, occasionally with bands of loam or silt as a result of periodic flooding. These soils are acid throughout, poorly to very poorly drained due to seasonally high ground water tables, and moderately to slowly pervious. They occur on level to nearly level slopes and in slightly depressional areas. The Nairn Falls series is classified as a Rego Gleysol:peaty phase. In a few cultivated areas some Rego Humic Gleysols are included where the organic matter has decomposed or underlying mineral material has been incorporated to the point where the surface horizon no longer is organic. Roots are encountered to about 35 cm depth. Where the Nairn Falls series has not been cultivated the native vegetation is composed primarily of willow, sedge, and some grasses.

A diagram and brief description of a sampled Nairn Falls series soil profile is presented in Figure 18.

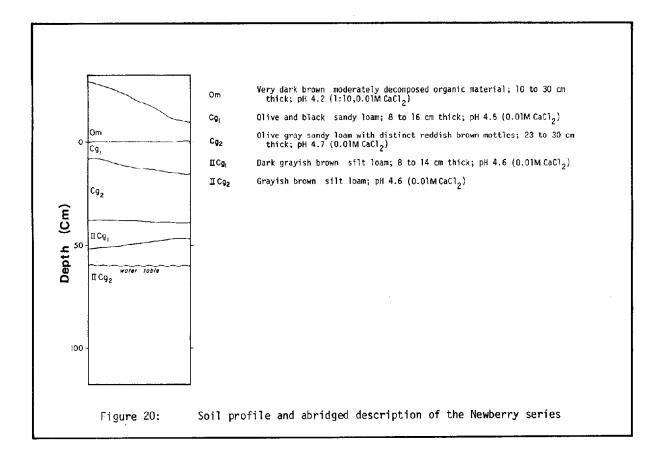


Nesuch series (NE)

Nesuch series soils have developed in shallow organic materials overlying sandy fluvial deposits on the Lillooet River flood plain. Soils of the Nesuch series are composed of a surface organic layer, 15 to 40 cm in thickness (if moderately decomposed) or 15 to 60 cm in thickness (if poorly decomposed) which overlies nonstony sandy loam commonly grading to loamy sand or sand below 50 cm depth. These soils are moderately to rapidly pervious, poorly to very poorly drained due to seasonally high ground water tables, and acid throughout. They occur on level to nearly level slopes in slightly depressional areas. Roots are encountered to about 85 cm depth. They are classified as Rego Humic Gleysol:peaty phase. Nesuch series occur in association with Zurbrugg

series and/or Ranson series in some areas. In areas where the Nesuch series has not been cultivated it is commonly vegetated with Douglas' spirea, willow, shrubby black cottonwood and sedge.

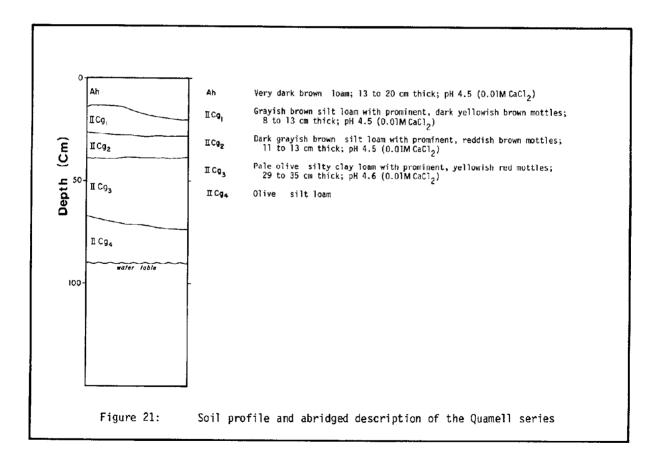
Figure 19, is a diagram and brief description of a typical sampled Nesuch series soil profile.



Newberry series (NW)*

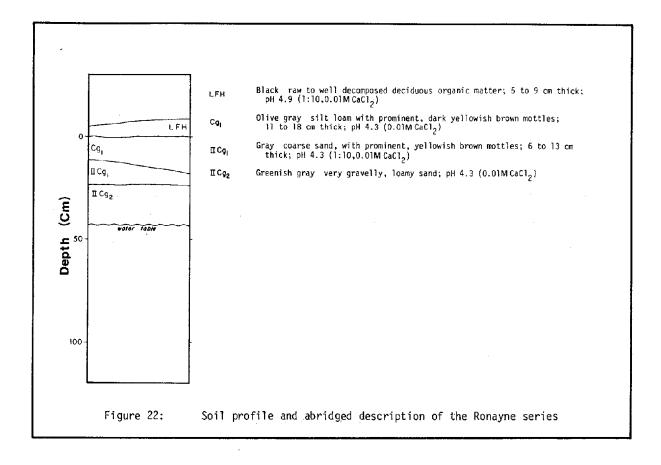
Newberry series soils have formed in shallow organic deposits overlying stratified silty and sandy fluvial deposits on the Lillooet River flood plain. The Newberry series is composed of surface organic materials of 15 to 40 cm in thickness (if moderately decomposed) or 15 to 60 cm thickness (if poorly decomposed) which overlie alternating layers of nonstony sandy loam and silty clay loam. The alternating layers are at least 5 cm thick and continuous across the soil profile.

The soils are acid throughout, moderately to slowly pervious, poorly to very poorly drained due to seasonally high ground water tables, and occur on level to nearly level slopes. Roots are encountered to about 35 cm depth. Newberry soils are classified as Rego Gleysol:peaty phase. They grade into Zurcher series (Terric Fibrisol) or Rutherford series (Rego Gleysol) in some areas. Native vegetation associated with Newberry series includes primarily hardhack with willow, shrub black cottonwood and sedge.


A diagram and brief description of a representative Newberry series soil profile, which was sampled, is presented in Figure 20.

Quamell series (QM)

Quamell series soils have formed on silty flood plain deposits of the Lillooet River, mainly near Pemberton. The Quamell series soils are nonstony silt loam or silty clay loam throughout the control section. They are slowly pervious, poorly to very poorly drained due to seasonally high ground water tables, acid throughout, and occur on level slopes in depressional landscape positions. Roots commonly are encountered to about 65 cm depth. Surface ponding of water occurs on the Quamell series following heavy rainfall or snowmelt. The Quamell soils are classified as Rego Humic Gleysol and are limited in extent. Vegetation associated with these soils is primarily sedge, reed, rush, and willow.


A diagram and brief description of a typical Quamell series soil profile, which was sampled, is presented in Figure 21.

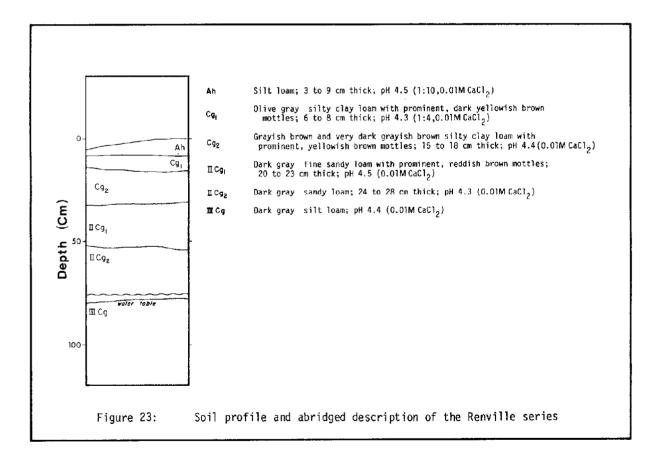
Ronayne series (RA)

Ronayne series soils have formed in stream channels which are within the presently active flood plain and are periodically inundated. They also occur in stream channels truncated by diking and channelization, but which are seasonally inundated by underground seepage from the Lillooet River. These soils have formed in veneers (<1 m) of sandy fluvial deposits overlying gravelly fluvial deposits. Ronayne series soils consist of 20 to 50 cm of nonstony sand or loamy sand with occasional thin surface layers of silt or silt loam, that overlie moderately stony, gravelly and very gravelly sand or gravelly and very gravelly sandy loam. The soils are acid throughout, rapidly pervious, and very poorly drained as the result of high ground water levels which are dependent on the levels of water in the Lillooet River. Roots occur to about 25 cm depth. Ronayne series occurs in channels which are level to nearly level on the bed, but have moderate to strong slopes on the sides. The Ronayne series soils are classified as Rego Gleysol. They are sparsely vegetated, commonly by willow, shrub black cottonwood, and sedge.

Figure 22 is a brief description and diagram of a representative Ronayne series soil profile, which was sampled.

.

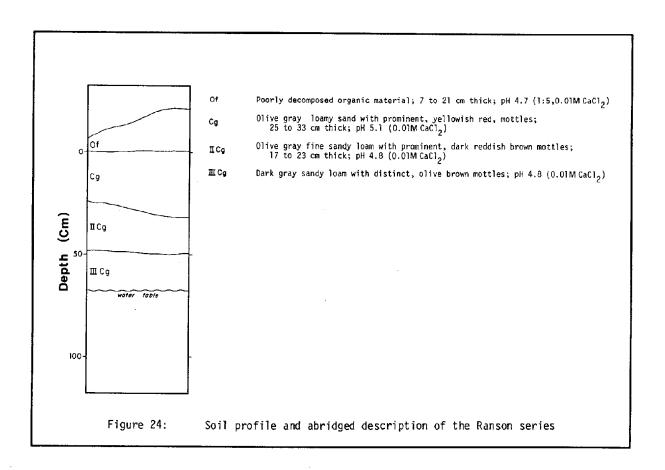
 \sim


59

,

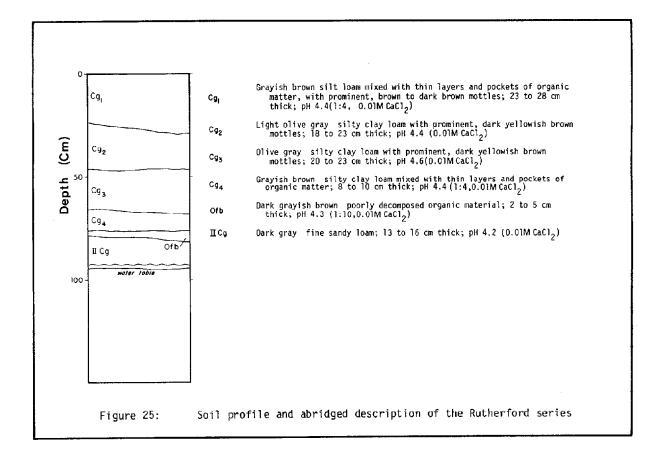
Renville series (RE)

Renville series soils have formed in veneers (<1 m) of silty fluvial deposits overlying sandy fluvial deposits on the Lillooet River flood plain. They are composed of 20 to 50 cm of nonstony silt loam or silty clay loam overlying nonstony sand to sandy loam which in turn may again be underlain at depth by nonstony silt loam or silty clay loam strata. These acid soils are slowly to moderately pervious (surface ponding occurs occasionally following heavy rainfall or during snowmelt), very poorly drained due primarily to seasonally high ground water levels and occur on level to nearly level slopes in depressional landscape positions. Soils of the Renville series are classified as Rego Gleysol and are often found associated with the poorly drained Scullard series. Common native vegetation in uncultivated areas includes willow, Douglas' spirea and sedge.


A diagram and brief soil profile description of a sampled Renville series soil is presented in Figure 23.

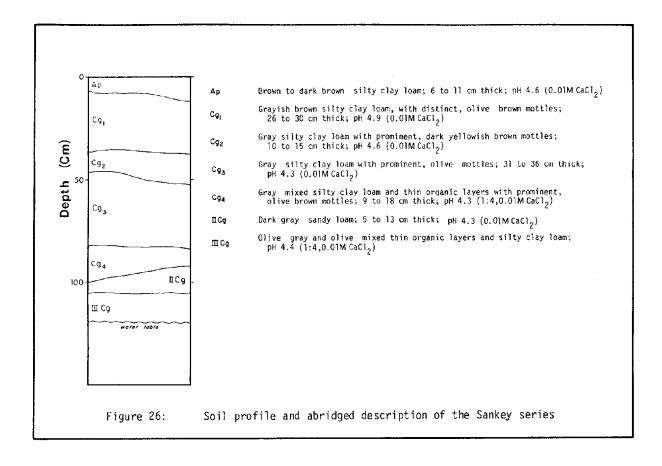
Ranson series (RN)

Ranson series soils have developed on sandy flood plain deposits of the Lillooet River. These soils are composed of nonstony loamy sand or sandy loam frequently with a capping of shallow (<20 cm) organic material and are periodically inundated by standing water. Ranson series soils are acid throughout, moderately to rapidly pervious, very poorly drained due to a seasonally high ground water table, and occur on level slopes in depressional areas. They are classified as Rego Gleysol and are often found in close association with the poorly drained Scobie series which is similar in morphology. Ranson series soils are associated with black cottonwood, red alder, willow, rose, common cattail, American skunk cabbage, fern, sedge and grass vegetation.


Figure 24 presents a diagram and brief soil profile description of a sampled Ranson series soil.

Rutherford series (RU)*

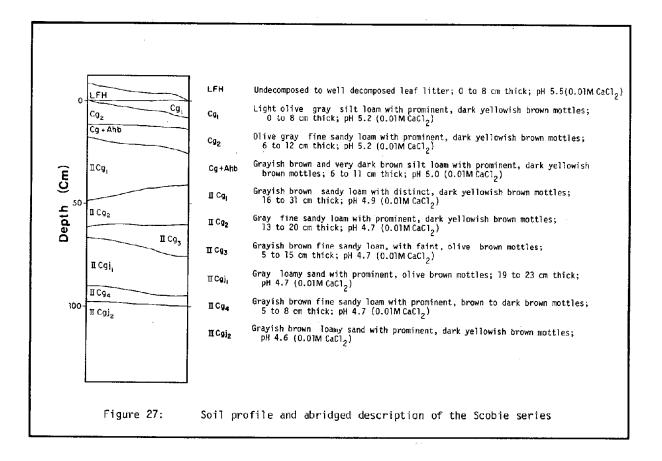
Rutherford series soils have formed in silty flood plain deposits of the Lillooet River. Soils of the Rutherford series are composed of nonstony silt loam or silty clay loam. They are acid throughout, very poorly drained due to high ground water levels and slowly pervious, resulting in ponding on the surface following heavy rainfall or during snowmelt. They occur on level to nearly level slopes in depressional landscape positions. Roots are encountered to about 65 cm depth. Rutherford soils are classified as Rego Gleysol. Sankey soils which occur in poorly drained sites slightly upslope from Rutherford soils are often mapped in complexes with Rutherford soils. A soil variant occurs which is loamy sand or sandy loam between 50 and 100 cm depth and is mapped as Rutherford:coarse at depth (RU:cd). Most of the Rutherford soils are cultivated, but native vegetation commonly associated with this series is composed of willow, red alder, and sedge.


A diagram and brief description of a representative Rutherford series soil profile, which was sampled, is presented in Figure 25.

Sankey series (SA)*

Sankey soils have formed on silty fluvial deposits within the Lillooet River flood plain and are among the most commonly occurring soils in the Lillooet River valley. Texturally they consist of nonstony silty clay loam or silt loam. Thin bands of sandy loam and/or organic material or organic enriched layers occur in some profiles. These layers are generally less than 5 cm thick and discontinuous and are a result of periodic past flooding. Sankey soils are acid throughout, slowly pervious with resultant surface ponding occurring following heavy rainfall or during snowmelt, and are poorly drained due to seasonally high ground water levels. They occur on level to nearly level slopes. The depth of rooting is about 85 cm. They are classified as Rego Gleysol although minor inclusions of Orthic Gleysol are present in some map units. Two soil variants of limited area also occur. Sankey:coarse at depth (SA:cd) has loamy sand or sandy loam between 50 and 100 cm depth while Sankey:anthropogenic (SA:an) consists of areas significantly altered by man's activities. The Sankey series is similar to the Rutherford series but is somewhat better drained (poorly vs very poorly). They are often mapped together as a soil complex. Sankey soils are commonly cultivated. Uncleared areas have a vegetative cover consisting of black cottonwood, western red cedar, red alder, hazelnut and some grasses.

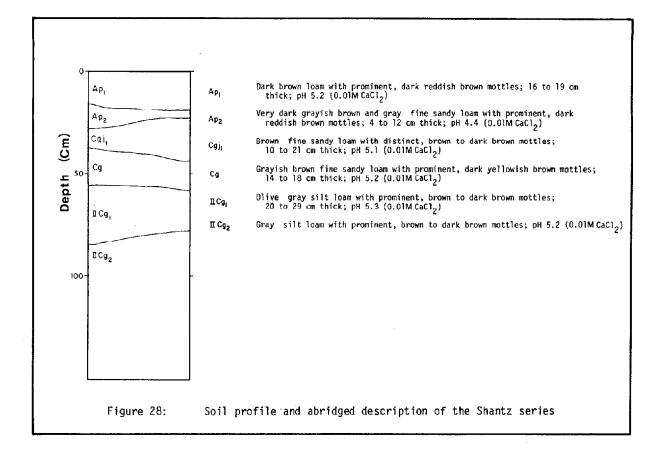
Figure 26 is a representative diagram and brief description of a Sankey series soil profile, which was sampled.



....

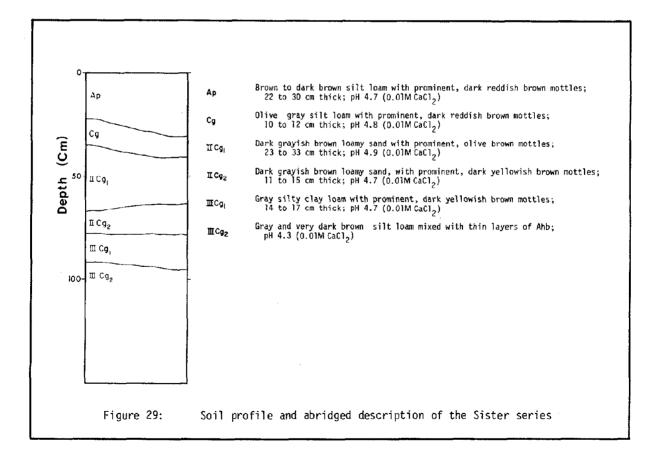
Scobie series (SC)*

Soils of the Scobie series have formed in sandy flood plain deposits of the Lillooet River. These soils are composed of nonstony fine sandy loam or sandy loam, often having a thin surface layer of silt loam. They are acid throughout, moderately to rapidly pervious, poorly drained due to seasonally high ground water levels, and occur on level to nearly level slopes. The rooting depth is about 100 cm. Soils of the Scobie series are classified as Rego Gleysol and often occur in association with the very poorly drained Ranson soils. Soil variants occur which are either silt loam to silty clay loam textured between 50 and 100 cm depth, or are gravelly loamy sand or gravelly sandy loam between 50 and 100 cm depth. These variants are mapped as SC:md (Scobie: medium at depth) and SC:gd (Scobie:gravelley at depth), respectively. Where not cultivated, the Scobie series supports black cottonwood, western red cedar, common paper birch and willow.


A diagram and brief description of a sampled Scobie series soil profile is presented in Figure 27.

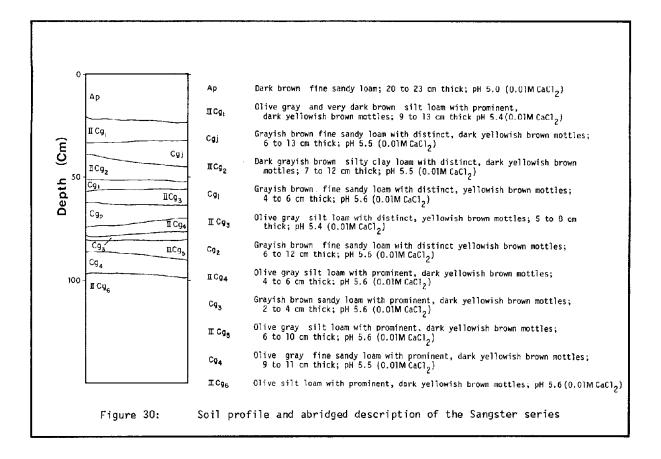
Shantz series (SH)

Shantz series soils have formed in veneers (< 1 m) of sandy fluvial deposits overlying silty fluvial deposits on the flood plain of the Lillooet River. These soils are nonstony composed of 20 to 50 cm of fine sandy loam or sandy loam overlying silt loam or silty clay loam. They are acid throughout, slowly to moderately pervious, resulting in occasional surface ponding following heavy rainfall or snowmelt, and poorly drained due to seasonally high groundwater levels. They occur on level to nearly level slopes. Tree roots are found to the depth of the soil profile. Soils of the Shantz series are classified as Rego Gleysol and occur extensively throughout the Lillooet River valley. The Shantz series commonly supports black cottonwood, western red cedar, common paper birch, red alder, willow and some grasses.


A diagram and brief description of a sampled Shantz series soil profile is presented in Figure 28.

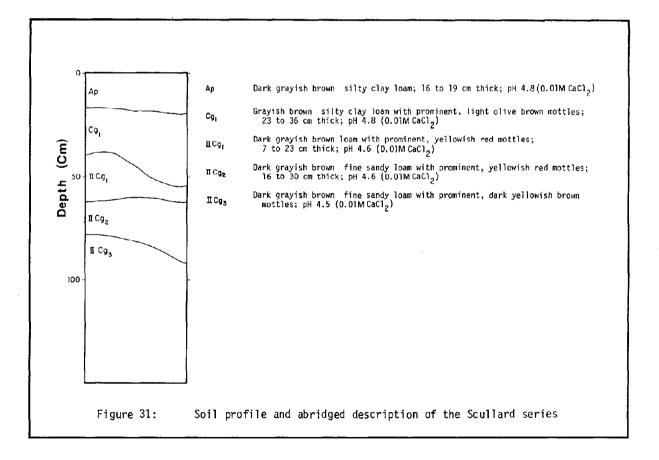
Sister series (SI)*

Sister series soils have developed in stratified sandy and silty fluvial deposits on the Lillooet River flood plain. Sister series soils are composed of alternating layers of nonstony loam to silty clay loam and nonstony sand to sandy loam, with 20 to 35 cm of loam to silty clay loam at the surface. The alternating layers are at least 5 cm thick and continuous. These soils are acid throughout, moderately to slowly pervious, poorly drained due to seasonally high ground water tables, and occur on level to nearly level slopes. The maximum depth of rooting is about 65 cm. Soils of the Sister series are classified as Rego Gleysol. They occur extensively in the Lillooet River valley, particularly where tributary streams join the main valley. Native vegetation associated with the Sister series commonly includes black cottonwood, western red cedar, common paper birch, red alder, willow and some grasses.


Figure 29 is a diagram and brief description of a representative Sister series soil profile, which was sampled.

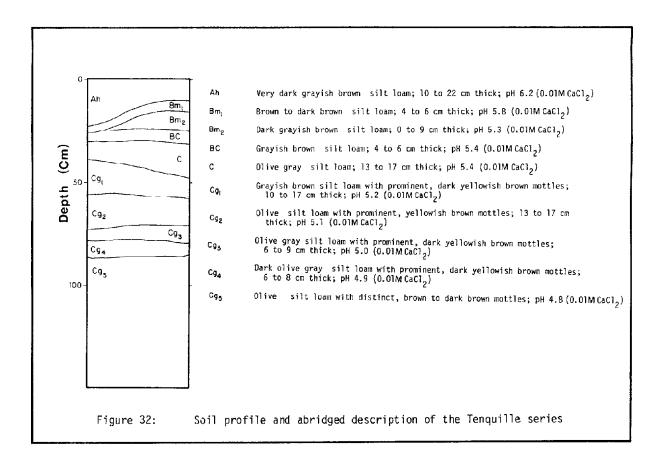
Sangster series (SN)*

Soils of the Sangster series have formed from interbedded silty and sandy flood plain deposits of the Lillooet River. Sangster series soils are nonstony and composed of alternating layers of fine sandy loam or sandy loam and loam to silty clay loam, with 20 to 35 cm of fine sandy loam or sandy loam at the surface. The layers are at least 5 cm thick and continuous. These acid soils are moderately to slowly pervious, poorly drained due to seasonally high ground water tables, and occur on level to nearly level slopes. Roots occur to about 100 cm depth. Soils of the Sangster series are classified as Rego Gleysol. They are similar to the Sister series, but with sandy rather than silty textures occurring at the surface. Where not cultivated the vegetation includes black cottonwood, western red cedar, common paper birch, red alder, willow and some grasses.


A diagram and brief description of a sampled Sangster series soil profile is presented in Figure 30.

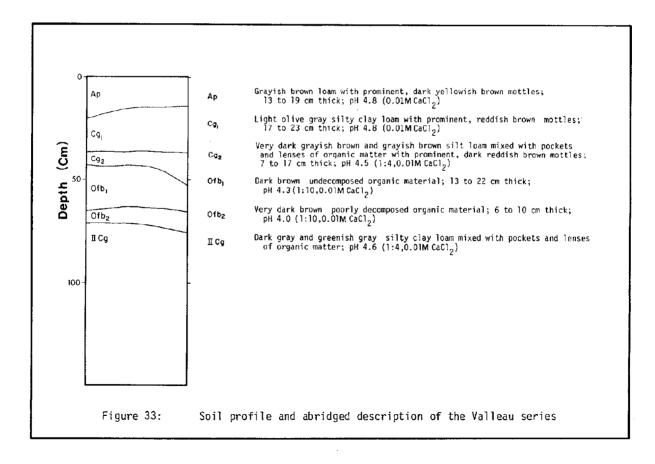
Scullard series (SU)*

Scullard series soils have formed in veneers (<1 m) of silty fluvial deposits overlying sandy fluvial deposits on the Lillooet River flood plain. The Scullard series soils are nonstony and composed of 20 to 50 cm of silt loam or silty clay loam overlying fine sandy loam or sandy loam. They are acid throughout, slowly to moderately pervious (often resulting in surface ponding following heavy rainfall and/or snowmelt), poorly drained due to seasonally high ground water tables, and occur on level to nearly level slopes. The depth of rooting is about 115 cm. Scullard soils are classified as Rego Gleysol. A soil variant occurs in limited areas where the underlying strata are gravelly rather than sandy. It is mapped as Scullard:gravelly at depth (SU:gd). The Scullard series commonly is vegetated by black cottonwood, western red cedar, common paper birch, red alder, willow, and grasses.


A diagram and brief description of a representative Scullard series soil profile, which was sampled, is presented in Figure 31.

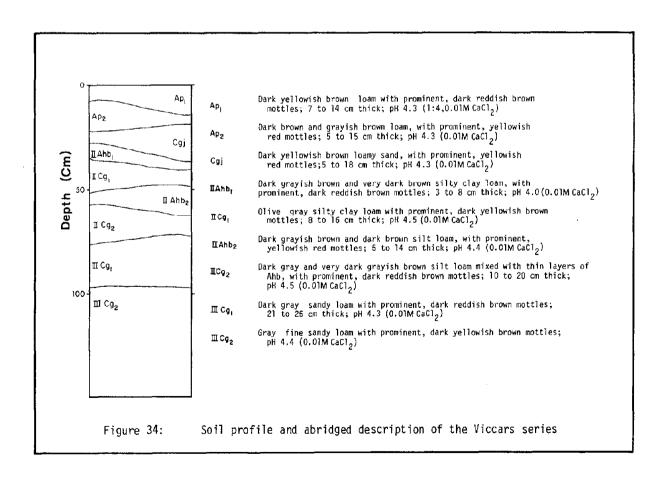
Tenquille series (TN)

Tenquille series soils have formed on silty flood plain deposits of the Lillooet River. Soils of the Tenquille series are nonstony silt loam or silty clay loam. They are acid throughout but greater than pH 5.5 in the surface 25 cm, moderately to slowly pervious, imperfectly drained due to fluctuating ground water tables, and occur on level to nearly level topography. Tree roots are encountered to at least 100 cm depth. These soils are classified as Gleyed Melanic Brunisol and occur only in a very small area near the village of Pemberton. Typical natural vegetation is black cottonwood, western red cedar, willow, and some grasses.


Figure 32 is a brief description and diagram of a typical Tenquille series soil profile.

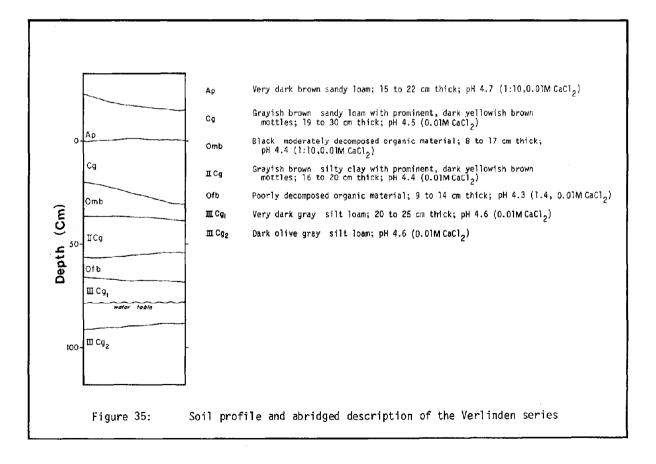
Valleau series (VA)*

Valleau soils have formed from interbedded silty fluvial deposits and organic deposits on the flood plain of the Lillooet River. Valleau series soils are nonstony silty loam or silty clay loam with organic or organic enriched layers interbedded. The alternating layers, are at least 5 cm thick and continuous and there is usually 20 to 35 cm of silt loam or silty clay loam at the soil surface. These acid soils are slowly pervious often resulting in surface ponding following heavy rainfall or snowmelt, poorly drained due to seasonally high water tables and slow permeability, and occur on level to nearly level slopes. Roots are encountered to at least 100 cm depth and often logs and other woody debris are found in the subsoil. Valleau series soils are classified as Rego Gleysol:cumulic phase. Vegetation commonly associated with this series is predominantly willow, shrub black cottonwood, sedge and some grasses.


In Figure 33 a brief description and diagram of a representative Valleau series soil profile, which was sampled, is presented.

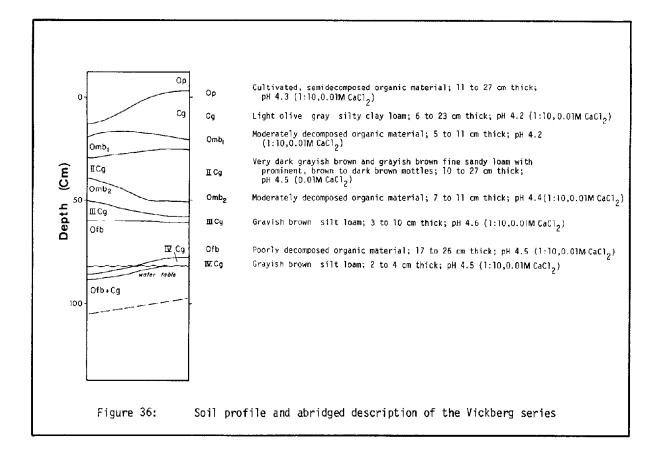
Viccars series (VC)

Viccars series soils have formed from sandy and silty fluvial deposits interbedded with organic accumulations on the Lillooet River flood plain. The Viccars series soils consist of alternating strata, at least 5 cm thick and continuous of nonstony loam to silty clay loam, nonstony loamy sand, sandy loam or fine sandy loam and organic or organic enriched layers. The surface 20 to 35 cm is usually loam to silty clay loam. Roots are found to a depth of about 40 cm and wood debris is often found throughout the soil profile. Viccars series soils are acid throughout the soil profile, moderately to slowly pervious, poorly drained due to seasonally high ground water levels, and occur on level to nearly level slopes in slightly depressional landscape positions. These soils are classified as Rego Gleysol:cumulic phase. Viccars:coarse at surface variant (VC:cs) occurs in a few minor areas where the surface textures are sandy rather than silty. Viccars soils commonly support willow, black cottonwood shrub, sedge and some grass vegetation.


Figure 34 is a brief description and diagram of a representative Viccars series soil profile, which has been sampled.

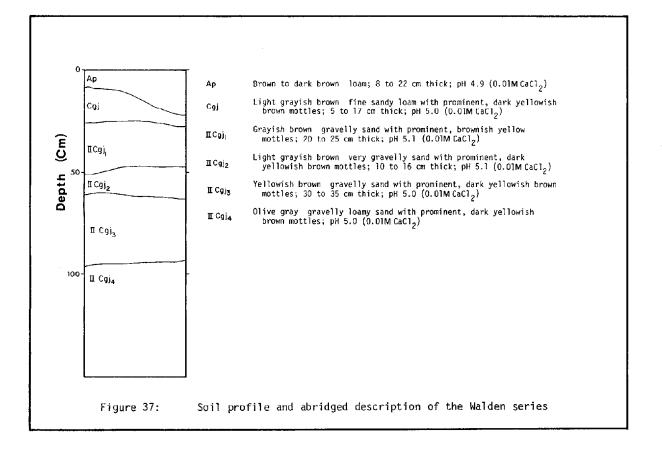
Verlinden series (VE)

Verlinden series soils have formed on the Lillooet River flood plain in sandy fluvial veneers (< 1 m) overlying silty fluvial deposits and are interbedded with organic or organic enriched layers. The soils are nonstony and composed of 20 to 50 cm of loamy sand or sandy loam overlying silt loam or silty clay loam in which layers of organic or organic enriched materials are interbedded. The organic layers are at least 5 cm thick and continuous. The Verlinden series soils are acid throughout, moderately to slowly pervious, poorly drained due to seasonally high ground water tables, and occur on level to nearly level slopes. Roots are found to about 45 cm and woody debris occurs frequently throughout the soil profile. This series is classified as a Rego Humic Gleysol:cumulic phase. The native vegetation associated with this series includes willow, red alder, shrubby black cottonwood, sedge, and some grasses.


A diagram and brief description of a representative Verlinden series soil profile, which was sampled, is presented in Figure 35.

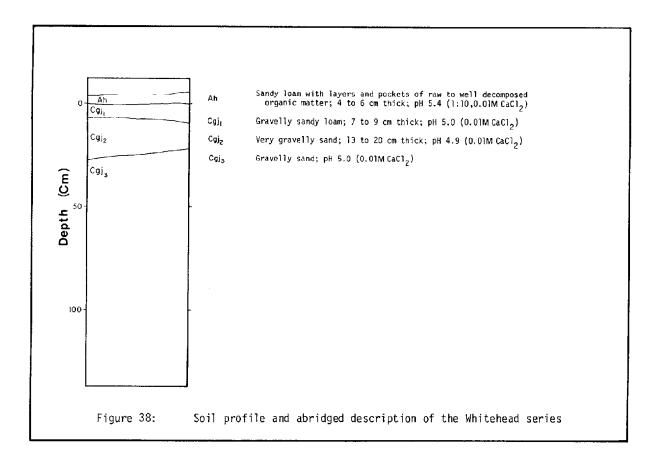
Vickberg series (VI)

Soils of the Vickberg series have formed in silty fluvial deposits interbedded with organic accumulations on the flood plain of the Lillooet River. The soils are composed of nonstony silt loam or silty clay loam interbedded with organic or organic enriched strata. The surface 20 to 35 cm are usually silt loam or silty clay loam sometimes having a thin organic capping. The interbedded organic layers are at least 5 cm thick and continuous. Vickberg series soils are acid throughout, slowly pervious resulting in surface ponding following heavy rainfall and/or snowmelt, very poorly drained due to high ground water tables and slow permeability, and occur on level to nearly level slopes in depressional areas. These soils are classified as Rego Gleysol:cumulic phase. The Vickberg series is similar to Valleau series but is very poorly drained and is usually located adjacent to local, small water bodies. The natural vegetation commonly associated with the Vickberg series includes willow, common cattail and sedge.


Figure 36 is a brief description and diagram of a typical Vickberg series soils profile, which was sampled.

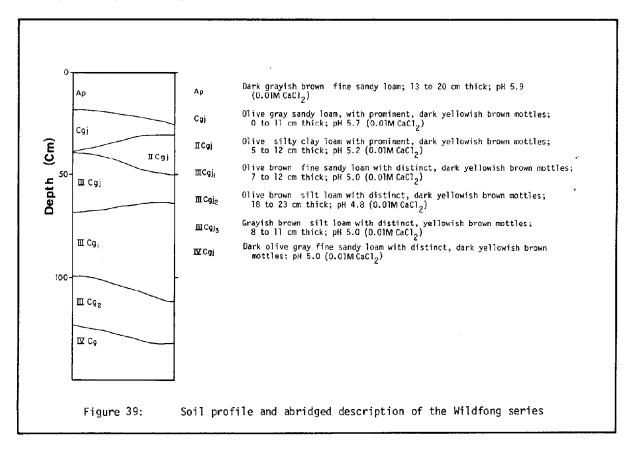
Walden series (WD)

Walden series soils have formed in veneers (< 1 m) of sandy fluvial deposits overlying gravelly fluvial deposits on the Lillooet River flood plain. Soils of the Walden series soils are composed of 20 to 50 cm of nonstony loan or fine sandy loam overlying moderately stony gravelly to very gravelly sand or gravelly loamy sand. They are acid, rapidly to moderately pervious, and imperfectly drained due to fluctuating ground water tables which may be at the surface during freshet in some years. These soils occur on nearly level to very gentle slopes. The Walden series soils are classified as Gleyed Regosol. Black cottonwood, western red cedar and some coast Douglasfir are vegetative species commonly associated with the Walden series. Tree roots are encountered to a depth of at least 65 cm in the profile.


Following in Figure 37 is a diagram and brief discussion of a representative soil profile of the Walden series.

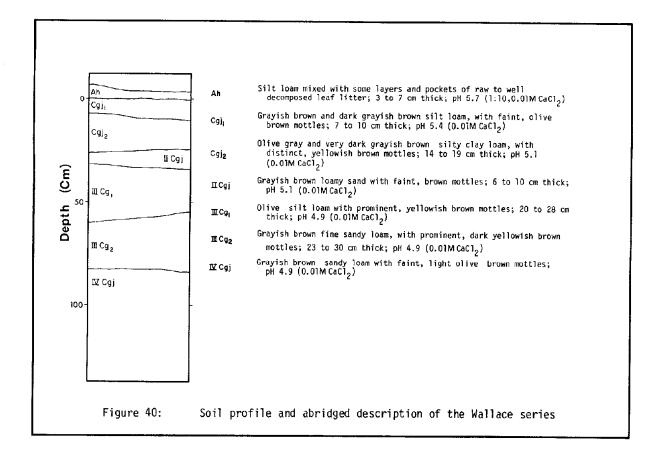
Whitehead series (WH)

Whitehead series soils have formed in gravelly fluvial deposits on the Lillooet River flood plain. Soils of the Whitehead series are moderately stony gravelly to very gravelly sand or gravelly loamy sand. They are acid, rapidly pervious, imperfectly drained due to fluctuating ground water levels, and occur on level to nearly level slopes. Soils of the Whitehead series are classified as Gleyed Regosol. The very poorly drained Ronayne soils are sometimes minor inclusions in areas of Whitehead soils and are found in depressions and/or channels. Natural vegetation associated with the Whitehead series often includes black cottonwood, western white pine, western red cedar, willow and various moisture tolerant shrubs. Roots occur to a depth of 70 cm in the profile.


Figure 38 is a diagram and brief description of a typical Whitehead series soil profile which was sampled.

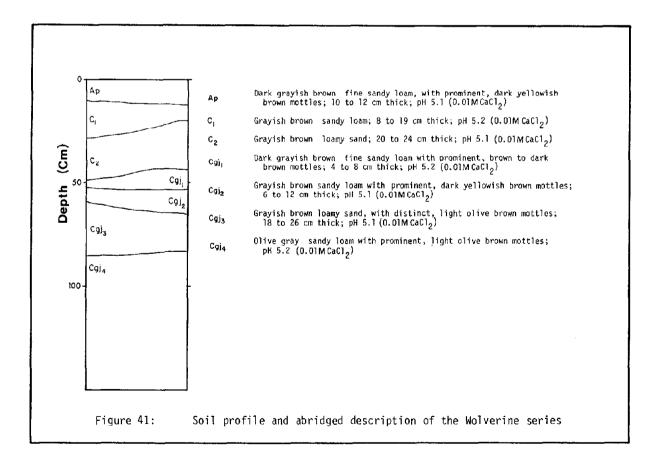
Wildfong series (WI)*

Soils of the Wildfong series have formed in interbedded silty and sandy fluvial flood plain deposits. They are nonstony and composed of alternating layers of silt loam or silty clay loam and sand to sandy loam. The surface 20 to 35 cm is usually sand to sandy loam. The alternating layers are at least 5 cm thick and continuous. Wildfong soils are acid, moderately pervious, imperfectly drained due to fluctuating ground water levels, and occur on level to very gentle topography. They are classified as Gleyed Regosol. Soil variants occupying minor areas are Wildfong:medium at surface (WI:ms) which has silt loam or silty clay loam at the surface and Wildfong series is similar to the Sangster series except that it is imperfectly rather than poorly drained. Tree roots are encountered to a depth of at least 115 cm in the soil profile. Some of the vegetative species which occur in association with the Wildfong series are black cottonwood, western red cedar, red alder, Rocky Mountain maple, devil's club, common red osier dogwood and thimbleberry.


A diagram and brief description of a representative Wildfong series soil profile, which was sampled, is given in Figure 39.

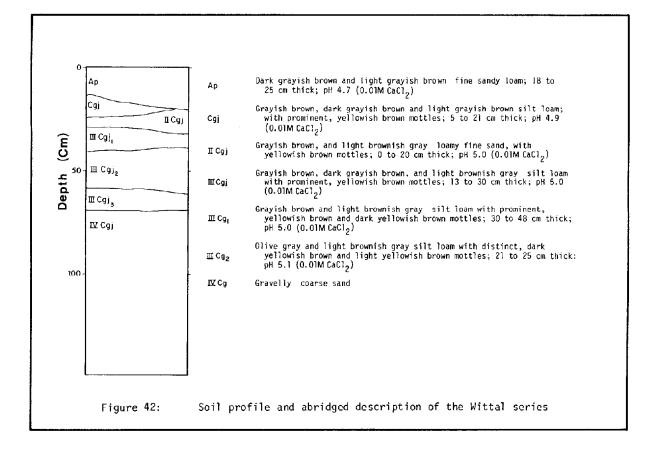
Wallace series (WL)

Wallace series soils have formed in silty fluvial veneers (<1 m) overlying sandy fluvial deposits on the Lillooet River flood plain. The soils are nonstony and consist of 20 to 50 cm of silt loam or silty clay loam overlying loamy sand or sandy loam. The Wallace soils are acid, slowly to moderately pervious, imperfectly drained due to fluctuating ground water levels, and occur on level to very gentle slopes. They are classified as Gleyed Regosol. The soil variant Wallace: gravelly at depth (WL:gd) occurs in minor areas where gravelly material occurs between 50 and 100 cm depth. Vegetation is commonly western red cedar, black cottonwood, red alder, willow, western thimbleberry and false solomon's seal. Rooting depth generally extends to the depth of the soil profile.


Figure 40 is a brief description and diagram of a typical Wallace series soil profile, which was sampled.

Wolverine series (WO)*

Wolverine series soils have formed in sandy fluvial deposits on the Lillooet River flood plain, usually on the levees adjacent to the Lillooet River. They are composed of nonstony loamy sand or sandy loam with occasional bands of fine sandy loam. These soils are acid, moderately to rapidly pervious, imperfectly drained due to fluctuating ground water levels, and occur on level to very gentle slopes. They are classified as Gleyed Regosol. Minor areas of soil variants occur which have silt loam or silty clay loam between 50 and 100 cm depth; gravelly or very gravelly sand or gravelly sandy loam between 50 and 100 cm; or are moderately well drained and trending toward Brunisolic soil development. These variants are mapped as Wolverine:medium at depth (W0:md), Wolverine:gravelly at depth (W0:gd) and Wolverine:drainage (W0:dv) variants, respectively. Some of the vegetation associated with the Wolverine series includes western red cedar, coast Douglas-fir, black cottonwood, Sitka spruce, red alder, willow, some grasses and some mosses. Tree roots occur to a depth of at least 60 cm in the soil profile.


Figure 41 is a diagram and brief description of a sampled Wolverine series soil profile.

<u>Wittal series</u> (WT)

Wittal series soils are limited in areal extent and have formed in veneers (< 1 m) of sandy fluvial deposits overlying silty fluvial deposits within the flood plain of the Lillooet River. These soils are composed of 20 to 50 cm of nonstony sandy loam or fine sandy loam overlying nonstony silt loam or silty clay loam and occasionally, sandy loam reoccurs at depth. The Wittal series is acid, moderately pervious, imperfectly drained due to fluctuating ground water levels, and occurs on level to very gentle slopes. They are classified as Gleyed Regosol. Vegetation commonly associated with the Wittal series includes western red cedar, black cottonwood, Rocky Mountain maple, salmonberry, thimbleberry, willow, grasses and herbs. Tree roots are encountered throughout the depth of the soil profile.

A diagram and brief description of a sampled Wittal series soil profile is given in Figure 42.

B. Birkenhead River, Blackwater Creek, Gates River area

Fougherg series (FB)

Fougherg series soils have formed in the fluvial fan deposits of tributaries to Birkenhead River, Blackwater Creek and Gates River. The soil parent materials are derived from calcareous bedrock or unconsolidated materials. Soils of the Fougherg series are exceedingly stony, cobbly, very gravelly sand to very gravelly sandy loam. They are slightly to moderately calcareous in the parent material, rapidly to moderately pervious, well drained, and occur on very gentle to gentle slopes. Tree roots are encountered throughout the depth of the soil profile. Fougherg series soils are classified as Orthic Eutric Brunisol. They often have a thin, leached, surface horizon (<5 cm thick) followed by a strong brown layer 15 to 30 cm thick which grades to yellowish brown parent material at 55 to 60 cm depth. Vegetation commonly associated with this series is predominantly Rocky Mountain Douglas-fir with lodgepole pine, western red cedar, common paper birch, some black cottonwood, roses, herbs and grasses.

Franks series (FC)

Franks series soils have formed in the veneers (< 1 m thick) of sandy fluvial deposits overlying bouldery and/or gravelly fluvial fan deposits in the Birkenhead River, Blackwater Creek and Gates River valleys. The soils are composed of 20 to 50 cm of nonstony sand to sandy loam overlying exceedingly to excessively stony, bouldery and/or gravelly sand to gravelly sandy loam. They are well drained, and slightly to moderately calcareous in the parent material. They are moderately to rapidly pervious, and occur on very gentle to gentle slopes. Tree roots are encountered to the depth of the soil profile. Soils of the Franks series are classified as Orthic Eutric Brunisol and have a thin (<5 cm thick) leached 'horizon overlying 10 to 15 cm of brown sandy loam which grades to yellowish brown parent material at 55 to 60 cm depth. Often buried organic or organic enriched layers, usually <5 cm thick, are encountered indicating periodic flooding. Vegetation associated with this series includes Rocky Mountain Douglas-fir, western hemlock, western red cedar, common paper birch, red alder, herbs, and grasses.

Flichel series (FL)

Soils of the Flichel series have formed on bouldery, gravelly fluvial fan deposits in the Birkenhead River, Blackwater Creek, and Gates River valleys. They are exceedingly to excessively stony, bouldery, very gravelly sand to very gravelly sandy loam. They are slightly to moderately calcareous in the soil parent material, rapidly to moderately pervious, well to rapidly drained, and

occur on very gentle to moderate slopes. Generally, tree roots are encountered throughout the soil profile. Flichel series soils are classified as Orthic Eutric Brunisol. Included in Flichel series map units are some Orthic Regosol soils associated with the active portions of the fluvial fans. Flichel soils commonly have a thin (<5 cm), leached surface horizon overlying a brown horizon 10-15 cm thick which grades to the yellowish brown parent material at 55 to 60 cm depth. The vegetation generally associated with Flichel soils includes Rocky Mountain Douglas-fir, western red cedar, common paper birch, red alder, some black cottonwood, herbs and grasses.

Fotsch series (FO)

Fotsch series soils have formed in beach deposits adjacent to Birkenhead Lake, One Mile Lake and other small lakes. These soils are composed of 20 to 50 cm of nonstony to moderately stony sand to sandy loam overlying exceedingly to excessively stony bouldery and/or gravelly sand to gravelly sandy loam. They are neutral to moderately calcareous in the soil parent material, moderately to rapidly pervious, well drained, and occur on very gentle to moderate slopes. Few tree roots are encountered to the depth of the soil profile. The Fotsch series soils are classified as Orthic Eutric Brunisol. In areas where the beaches are actively forming some Orthic Regosol profiles are included. In local areas where some of the bedrock is acid, Orthic Dystric Brunisols may also be present. Fotsch soils have a thin (<5 cm thick), discontinuous, leached surface layer overlying a yellowish brown horizon 15 to 30 cm thick which grades to the brown soil parent material at 45 to 50 cm depth. Where these soils are vegetated they support Rocky Mountain Douglas-fir, common paper birch, red alder, roses, herbs and some grasses.

Giguere series (GG)

Giguere series soils occur primarily on the gravelly fluvial flood plain deposits of the Birkenhead and Gates rivers. They are moderately to exceedingly stony gravelly sand to gravelly sandy loam, slightly to moderately calcareous throughout, rapidly pervious, well to moderately well drained, and occur on level to very gentle slopes. The Giguere series soils are prone to periodic flooding due to being located immediately adjacent to the river. They are classified as Orthic Regosol and are similar in morphology to Gilmore series soils, but differ in that the Gilmore soils are acid. Very few roots are encountered in the soil profile. Giguere soils are usually nonvegetated but where vegetation has established, it commonly consists of shrubby black cottonwood, red alder, and willows.

Guthrie series (GU)

Guthrie series soils have formed on bouldery and gravelly terraced fluvial deposits within the Birkenhead River, Blackwater Creek, and Gates River valleys. They are exceedingly to excessively stony and bouldery, gravelly sand to gravelly sandy loam, slightly to moderately calcareous in the parent material, moderately to rapidly pervious and well to rapidly drained. They occur on level to very gentle slopes with moderate to steep slopes on the terrace edges. They are classified as Orthic Eutric Brunisol. Tree roots occur throughout the soil profile. Guthrie soils are similar in morphology to the Grundy series soils but differ chemically, being calcareous rather than acid. The Guthrie soils generally have a thin (<5 cm thick) litter layer overlying a yellowish brown horizon 25 to 30 cm thick which grades to the brown parent material at 45 to 50 cm depth. The vegetation associated with Guthrie soils is predominantly Rocky Mountain Douglas-fir with lodgepole pine, kinnickinnik, soopolallie, mosses and grasses.

Naylor series (NB)

Soils of the Naylor series have developed in shallow organic deposits overlying silty fluvial deposits on the Birkenhead River and Blackwater Creek flood plains. These soils are similar in morphology to the Nairn Falls series soils, however, they are calcareous rather than acid. Naylor soils consist of an organic layer, 15 to 40 cm thick if moderately decomposed, or 15 to 60 cm thick if poorly decomposed, overlying nonstony silt loam or silty clay loam. They are slightly to moderately calcareous in the mineral material, slowly pervious, poorly to very poorly drained due to seasonally high ground water tables, and occur on level to nearly level slopes in depressional landscape positions. Naylor series soils are classified as Rego Gleysol:peaty phase. The water table often is within 40 cm of the soil surface and may be at the surface during high runoff periods. The majority of tree roots are found in the surface organic material. Vegetation associated with Naylor soils includes willows, American skunk cabbage, horsetail, some western red cedar and some Sitka spruce.

Questt series (QU)

Questt series soils have developed in silty fluvial deposits on the flood plains of Birkenhead River, Blackwater Creek, and Gates River. The soils are nonstony silt loam or silty clay loam, slightly to moderately calcareous in the parent material, slowly pervious and very poorly drained due to seasonally high ground water tables and slow permeability. They occur on level to nearly level slopes in depressional areas. Soils of the Questt series are classified as Rego Humic

Gleysol. They may be inundated periodically by ponded waters. Questt soils have a dark brown or black surface horizon 25 to 30 cm thick underlain by the brown soil parent material at 25 to 50 cm depth. These soils are similar in morphology to the Quamell series but are calcareous. The water table is often within 85 cm of the surface and can occur at the surface during high runoff periods. Roots are encountered to about 55 cm depth. Vegetation found on these soils includes western red cedar, sedges and common horsetail.

Rivers series (RB)

Rivers series soils have formed in veneers (<1 m) of sandy fluvial deposits overlying gravelly fluvial deposits, primarily in the active stream channels of the Birkenhead River, Blackwater Creek, and Gates River. These areas are periodically inundated by river flood waters. The Rivers series soils are composed of 20 to 50 cm of nonstony loamy sand or sandy loam over moderately to exceedingly stony, gravelly to very gravelly sand to gravelly sandy loam. They are rapidly to moderately pervious, and very poorly drained as a result of seasonally high ground water tables and periodic inundation. Rivers soils are slightly to moderately calcareous. These soils occur on level to nearly level slopes on the channel bed and are bounded by moderate to steep slopes on the banks. Rivers series soils are similar to Ronayne soils in the Lillooet River area, but are The Rivers soils are classified as Rego Gleysol and have a shallow (<5 cm thick) calcareous. organic litter layer overlying a 10 to 15 cm thick, highly mottled, blue-gray horizon which grades to the parent material at 25 to 30 cm depth. The water table is usually at or within 25 cm of the surface. Some tree roots occur in the surface 15 cm. Some black cottonwood and willows are associated with this series.

Regand series (RG)

Regand series soils have formed on silty fluvial flood plain deposits of Blackwater Creek. Soils of the Regand series consist of nonstony silt loam or silty clay loam and are slightly to moderately calcareous, slowly to moderately pervious, very poorly drained due to high ground water levels, and occur on level to nearly level slopes in depressional areas. Ponding occurs during high runoff periods. The Regand series, classified as Rego Gleysol, is similar in morphology to the Rutherford series, but is calcareous. Regand soils have a dark brown surface horizon 5 to 10 cm thick or greater where the surface has been plowed which grades to mottled blue-gray parent material at 5 to 10 cm depth. The water table generally occurs between the surface and 35 cm depth. Roots occur in the surface 15 to 20 cm. Vegetation associated with the Regand series includes red alder, willow, common red osier dogwood, horsetails and some sedges.

Rivett series (RI)

Soils of the Rivett series have formed from the sandy fluvial deposits of the Birkenhead River, Blackwater Creek, and Gates River. They are nonstony loamy sand or sandy loam, slightly to moderately calcareous throughout, moderately to rapidly pervious, very poorly drained due to high ground water levels, and occur in level to nearly level areas. Rivett series soils are classified as Rego Gleysol and are similar in morphology to the Ranson series, but are calcareous. The Rivett soils have a dark brown surface horizon 5 to 10 cm thick which grades into a mottled, olive gray parent material which may contain occasional, thin bands of buried organic or organic enriched layers at depth. The water table generally occurs between 25 and 50 cm depth but is at the surface during some parts of the year. Black cottonwood, willows, American skunk cabbage, horsetails and sheep sorrel are some of the vegetative species associated with the Rivett series.

Sinnes series (SE)

Sinnes series soils have formed in silty fluvial deposits occuring on the flood plain of Blackwater Creek. These soils are nonstony silt loam or silty clay loam. They are moderately to strongly calcareous throughout, slowly pervious, poorly drained due to seasonally high ground water tables and slow permeability, and occur on level to nearly level slopes. Ponding and flooding occurs during high runoff periods. Soils of this series, classified as Rego Gleysol, are similar in morphology to Sankey soils, but are calcareous. Sinnes soils have a dark brown surface horizon 5 to 10 cm thick over a grayish brown, strongly mottled horizon 5 to 10 cm thick which grades to an olive gray parent material at about 30 cm depth. Occasional, thin (<5 cm thick) bands of buried organic or organic enriched layers occur throughout the profile. Tree roots are encountered in the surface 50 cm. Vegetation commonly associated with the Sinnes series includes willows, some black cottonwood, and horsetails.

Summerskill series (SM)

Summerskill series soils have developed from veneers (< 1 m) of silty fluvial deposits overlying sandy fluvial deposits on the Blackwater Creek, Birkenhead River, and Gates River flood plains. They are nonstony and consist of 20 to 50 cm of silt loam or silty clay loam overlying loamy sand or sandy loam. Summerskill soils are slightly to moderately calcareous throughout, moderately pervious, poorly drained due to seasonally high ground water levels, and occur on level to nearly level slopes in depressional areas. They are classified as Rego Gleysol. In minor areas strongly calcareous soil variants are mapped as Summerskill:calcareous variant (SM:cv). A minor area of very poorly drained Summerskill soil is mapped as Summerskill series:drainage variant (SM:dv). Summerskill series soils are similar in morphology to Scullard soils, but are calcareous. The Summerskill soils have a dark brown surface horizon 5 to 10 cm thick which grades to mottled, olive gray parent material. Rooting occurs throughout the soil profile. Associated vegetation includes black cottonwood, white spruce, horsetail and wild roses.

Van Beem series (VB)

Van Beem series soils have formed in silty fluvial deposits, interbedded with organic accumulations on the flood plains of the Birkenhead River, Blackwater Creek and Gates River. They are composed of nonstony silt loam or silty clay loam layers which are interbedded with organic or organic enriched layers. There is usually 20 to 35 cm of silt loam or silty clay loam at the surface. The individual layers are at least 5 cm thick and continuous. Van Beem series soils are slightly to moderately calcareous throughout, slowly pervious, poorly to very poorly drained due to seasonally high ground water tables and slow permeability, and occur on level to nearly level slopes in depressional areas. Ponding and flooding occurs in these soils during high runoff periods. They are calcareous. The Van Beem soils have a dark brown surface horizon 5 to 10 cm thick (15 to 25 cm thick where cultivated) overlying olive gray parent material interbedded with organic or organic enriched layers 5 to 15 cm thick. Tree roots occur occasionally throughout the soil profile. Some of the vegetation associated with these soils includes willows, devil's club, grand fir, western hemlock, western red cedar, and some Rocky Mountain Douglas-fir.

Wheeler series (WE)

Wheeler series soils have formed in veneers (< 1 m) of sandy fluvial deposits overlying gravelly fluvial deposits on the flood plains of the Birkenhead River, Blackwater Creek, and Gates River. These soils are composed of 20 to 50 cm of nonstony loamy sand or sandy loam overlying moderately to exceedingly stony, gravelly to very gravelly loamy sand or gravelly sandy loam. Wheeler series soils are slightly to moderately calcareous throughout, rapidly pervious, imperfectly drained due to fluctuating ground water tables and periodic flooding, and occur on level to nearly level slopes on the river flood plain. They are classified as Gleyed Regosol. Wheeler soils are similar in morphology to Walden series soils, but are calcareous. The Wheeler soils have a thin, (<5 cm thick) dark brown surface horizon grading to a faintly mottled, yellowish brown gravelly parent material. Tree roots are encountered throughout the soil profile. Associated vegetation includes willows, lodgepole pine, and some black cottonwood.

Wuschke series (WG)

Wuschke series soils have formed on gravelly fluvial deposits on the flood plains of the Birkenhead River, Blackwater Creek, and Gates River. They are composed of moderately to exceedingly stony, gravelly to very gravelly loamy sand or gravelly sandy loam. They are slightly to moderately calcareous throughout, rapidly permeable, imperfectly drained due to fluctuating ground water levels, and occur on level to very gently slopes. These soils are classified as Gleyed Regosol and are similar in morphology to the Whitehead series except that the Whitehead series is acid. Wuschke soils have no profile development and are faintly mottled and gray throughout. Vegetation commonly associated with the Wuschke soils are Rocky Mountain Douglas-fir, Rocky Mountain maple, common paper birch and willows.

Winters series (WN)

Winters series soils have formed in veneers (< 1 m) of silty fluvial deposits overlying sandy fluvial deposits on the flood plains of the Birkenhead River, Blackwater Creek and Gates River. These soils consist of 20 to 50 of nonstony silt loam or silty clay loam overlying nonstony loamy sand or sandy loam. They are slightly to moderately calcareous throughout, slowly to moderately pervious, imperfectly drained due to fluctuating ground water levels, and occur on level to very gentle slopes. Soils of the Winters series are classified as Gleyed Regosol and are similar in morphology to Wallace series soils. Wallace soils, however, are acid. Winters soils have a thin (5 to 10 cm thick) organic litter layer overlying a thin (5 to 10 cm thick) dark brown surface mineral layer which grades into faintly mottled, gray parent material. Tree roots occur throughout the soil profile. Some of the vegetation associated includes Rocky Mountain Douglas-fir, trembling aspen, common paper birch and red alder.

5.1.3 Soils formed in Morainal Materials

A. Lillooet River area

Yantzie series (YA)

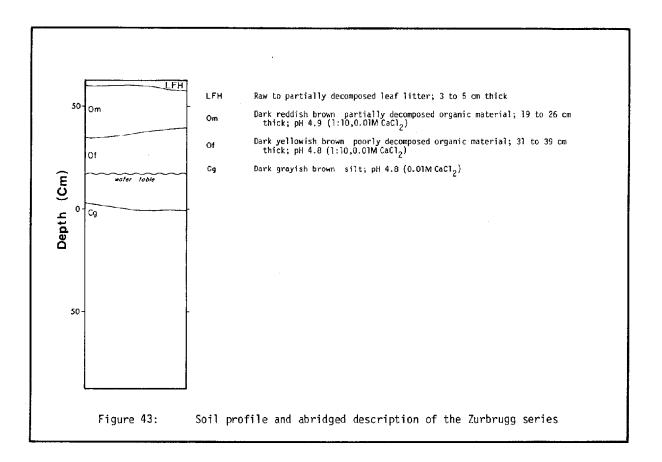
Yantzie series soils have formed in gravelly morainal deposits in the Green River and One Mile Creek regions of the study area. These soils are composed of moderately to exceedingly stony, gravelly loamy sand or gravelly sandy loam. They are acid, moderately pervious, well drained, and occur on very gentle to steep slopes. They are classified as Eluviated Dystric Brunisol. Yantzie soils have an organic litter layer 5 to 10 cm thick at the surface underlain by a leached horizon 10 to 15 cm thick over a reddish brown horizon 15 to 20 cm thick which grades into the brown parent

material at 35 to 40 cm depth. Vegetation associated with the Yantzie series includes coast Douglas-fir, western hemlock, western red cedar and lodgepole pine.

B. Birkenhead River, Blackwater Creek, Gates River area

Yvonne series (YV)

Yvonne series soils have formed in gravelly morainal deposits within the Birkenhead River, Blackwater Creek, and Gates River valleys. Soils of the Yvonne series are moderately to exceedingly stony, gravelly to very gravelly loamy sand or gravelly sandy loam. These soils are slightly to moderately calcareous in the parent material, moderately pervious, well drained, and occur on very gentle to steep slopes. They are classified as Orthic Eutric Brunisol. Minor areas of soil variants occur which are mapped as Yvonne:shallow variant (YV:sv) where depth to bedrock is less than 1 m and Yvonne:calcareous variant (YV:cv) where the parent material is strongly calcareous. Vegetation associated with the Yvonne series includes lodgepole pine, Rocky Mountain Douglas-fir, willow and roses.

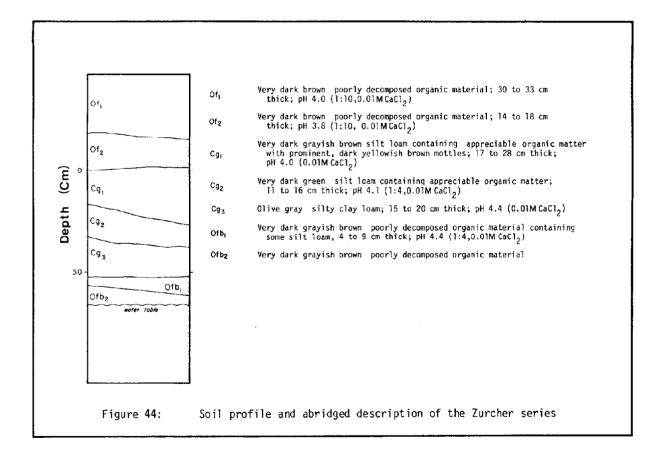

5.1.4 Soils formed in Organic Materials

A. Lillooet River area

Zurbrugg series (ZA)

Zurbrugg series soils have developed from poorly decomposed organic deposits derived from sedges, rushes and reeds occurring on the Lillooet River flood plain. They consist of 60 to 160 cm of fibric (poorly decomposed) organic material overlying mineral material, commonly silt or silt loam. They are acid, nonstony, moderately to rapidly pervious, poorly to very poorly drained due to high ground water levels caused by seepage from adjacent slopes and from the Lillooet River during freshet, and occur on level to nearly level slopes. Soils of the Zurbrugg Series are classified as Terric Mesic Fibrisol. The native vegetation consists of rushes, sedges, and reeds, with some willow and bog birch.

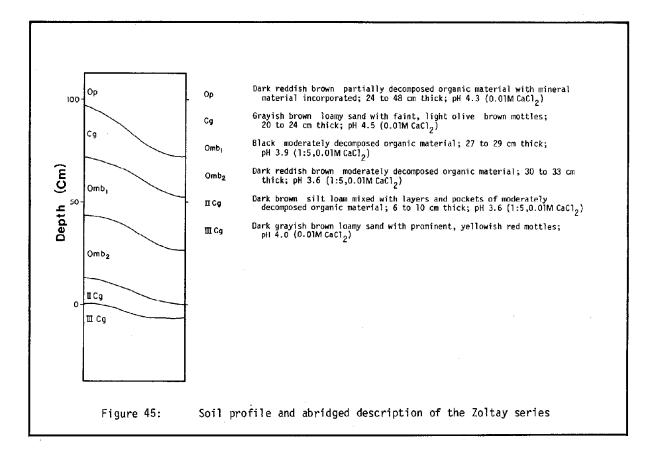
A brief description and diagram of a representative Zurbrugg series soil profile, which was sampled, is presented in Figure 43.



.

Zurcher series (ZE)*

Zurcher series soils have developed from undecomposed organic materials derived from sedges, rushes and reeds occurring in wet, depressional areas on the Lillooet River flood plain. Soils of the Zurcher series consist of 60 to 160 cm of fibric (poorly decomposed) organic material with layers of mineral (commonly silt or silt loam) material interbedded. The mineral layers, either together or as a single layer, total 5 to 30 cm in thickness and are continuous. These soils are acid, nonstony, rapidly pervious, poorly to very poorly drained due to high ground water levels, and occur on level to nearly level slopes. Zurcher soils are classified as Terric Fibrisol but map units may include Cumulo Fibrisols where the depth of organic material is greater than 160 cm.


A diagram and brief description of a sampled Zurcher series soil profile is given in Figure 44.

Zoltay series (ZO)

Zoltay series soils have formed from moderately decomposed organic materials derived from sedges, rushes, and reeds occurring in wet depressional areas on the flood plain of the Lillooet River. These soils are composed of 40 to 160 cm of mesic (moderately decomposed) organic material interbedded with layers of silty mineral material. The mineral layers, either together or as a single layer, total 5 to 30 cm in thickness. The Zoltay soils are acid, nonstony, rapidly to moderately pervious, poorly to very poorly drained due to high ground water levels caused by seepage from adjacent areas, and occur on level to nearly level slopes. Zoltay series soils are classified as Terric Mesisol: cumulo phase. The main vegetation is sedges, rushes, and reeds, with some shrubs.

Figure 45 is a brief description and diagram of a Zoltay series soils profile, which was sampled.

B. Birkenhead River, Blackwater Creek, Gates River area

Zaruba series (ZR)

Soils of the Zaruba series have formed in undecomposed organic materials found in wet, depressional areas of the flood plains of the Birkenhead River, Blackwater Creek, and Gates River. Zaruba series soils are composed of 60 to 160 cm of fibric (poorly decomposed) organic material which is interbedded with variable textured mineral layers. The mineral layer(s) which are continuous, are individually at least 5 cm thick and, in total, less than 30 cm thick. These soils are slightly to moderately calcareous, nonstony, moderately to rapidly pervious, poorly to very poorly drained due to high ground water levels, and occur on level to nearly level slopes. They are classified as Terric Fibrisol:cumulo phase. The water table fluctuates from the surface to a depth of 30 cm. Roots occur throughout the profile. Vegetation associated with the Zaruba series includes bog glandular birch, red alder, sedges and some mosses.

5.1.5 Miscellaneous Land Types

Anthropogenic (A)

Anthropogenic land types are areas of land which have been altered by man's activities. The soils have been so modified that there no longer exists recognizable soil profile characteristics. Areas mapped as "Anthropogenic" in the study area are characteristically landfill areas, sawmill sites, urbanized areas, and gravel pits. Soils mapped as anthropogenic variants of established series have been disturbed by man's activities, but some recognizable soil profile characteristics still remain.

Rock land (RO)

Rock land areas are characterized by exposed bedrock outcrops or areas where the soil mantle is less than 10 cm thick. Often these land areas have steep slopes.

5.2 Discussion of Relative Positions of Soil Series to each other in the Landscape

The relationships between the soils of the study area are complex. In order to simplify and illustrate some of the soils interrelationships oblique landscape sketches and cross-sectional diagrams have been developed. Descriptions of the relationships of the soil series to each other on the landscape are described verbally and illustrated diagramatically in the sections following. Figure 46 indicates the portions of the valley covered by the oblique sketches and identifies the location of the cross-sectional diagrams.

In all of the cross-sectional diagrams the lower boundaries of the various soil textures are approximate and estimated from field observations. These diagrams are drawn approximately to scale with approximately 100 times vertical exaggeration. Each cross-sectional diagram is located in a specific area of the study area, but is also meant to give a general indication of the patterns within the area in which it is located.

Based on the general landscape patterns of soil parent materials and soils, the study area can be subdivided into six general sections as follows: Meager Creek to Wolverine Creek, Wolverine Creek to Miller Creek, Miller Creek to Lillooet Lake, the Birkenhead River – Gates River – and Blackwater Creek valleys, Green River, and uplands.

5.2.1 Meager Creek to Wolverine Creek Section

Figure 47 illustrates that portion of the Lillooet River valley upstream from the Kenworthy farm to Meager Creek and shows the braided nature of the Lillooet River upstream from Wolverine Creek.

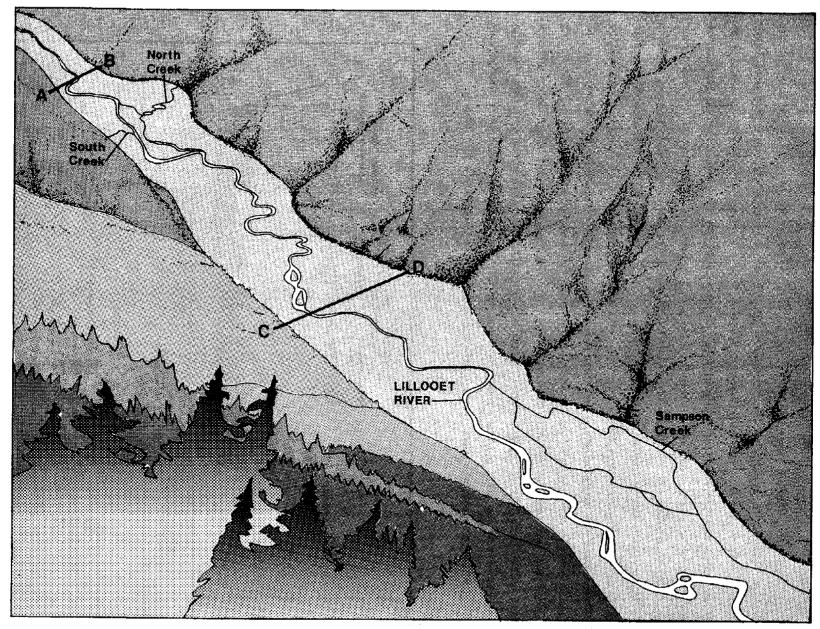
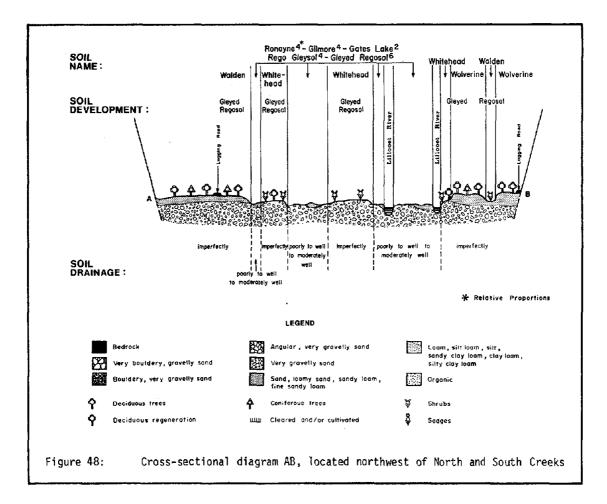
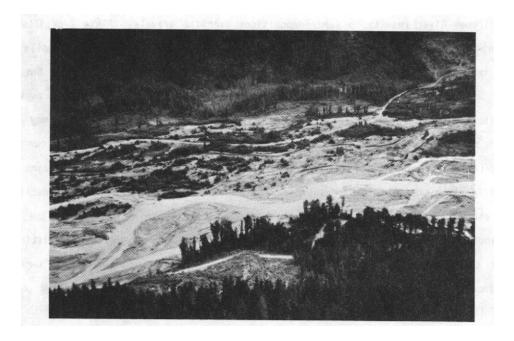
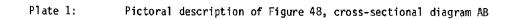
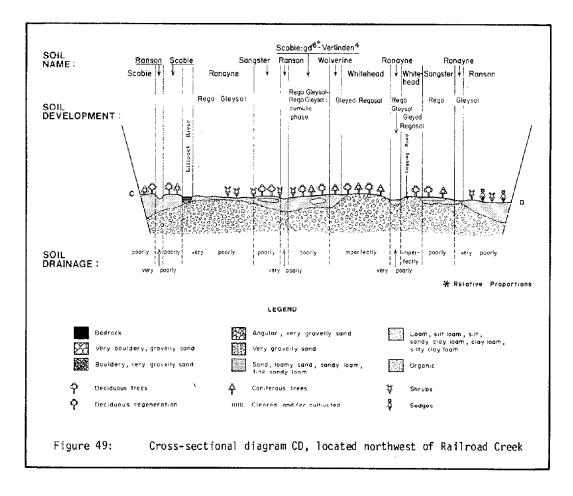
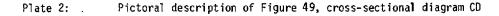





Figure 47: Oblique diagram of the Meager Creek to Wolverine Creek section of the Lillooet River valley. Approximate locations of cross-sectional diagrams AB, and CD are indicated.


Cross-sectional diagram AB (Fig. 48) illustrates the nature of soils which occur on the braided flood plain deposits of the Lillooet River. Plate 1 gives a picture of the area being described by Figure 48. The relatively high velocity of the river is indicated by deposits of gravel which remain on the flood plain as flood waters recede. On the slightly raised terraces of the flood plain, the gravels are covered by veneers (< 1 m thick) of sandy material (Walden series soils) or by blankets (> 1 m thick) of sandy deposits (Wolverine series soils). However, adjacent to the presently active channel of the river these sands are absent. In the channels, which appear to be periodically flooded as indicated by lack of vegetation and pockets of standing water, shallow to deep veneers of sandy materials are again found. The deeper deposits appear to be located on the inside bends of the channels and become thinner toward the outside or eroding side. On Walden series and Wolverine series soils both deciduous and coniferous forest are established, although most of the large, mature cedar has been removed by logging. The Ronayne series soils are found in the channels of the flood plain which are inundated during freshet, and the water table remains near the surface throughout the year. Parts of these channels may be flooded all year long.



Cross-sectional diagram CD (Fig. 49) illustrates the area where reduction in flow velocity of the Lillooet River results in sandy depositions over the gravels. Plate 2 depicts the general area being described by Figure 49. The sandy, poorly drained Scobie series soils which occur adjacent to the river are related to Ranson series soils which are also sandy but very poorly drained. Soils of the Ranson series generally occur in stream channels which are occupied by slower moving waters during freshet and include slightly ponded areas where the soils may contain thin lenses of silt. Whitehead series soils are gravelly throughout and generally occur on landscape positions (at slightly higher elevations) which are not as frequently flooded. Ronayne series soils are found in river channels free of water during much of the year but which are generally inundated during freshet. The Sister series soils occur where water is ponded for part of the year but are also periodically inundated by high velocity water. This results in the characteristic alternating layers of sandy and silty deposits associated with the Sister series. Wolverine series soils are found adjacent to the gravelly Whitehead soils, in what appears to be an infilled portion of the inside of the original river channel.

5.2.2 Wolverine Creek to Miller Creek Section

The oblique landscape diagram in Figure 50 illustrates that portion of the valley from approximately the confluence of Ryan Creek and the Lillooet River downstream to Miller Creek. Within this area three cross-sectional diagrams have been drawn to illustrate the relationship of the soils to each other on the landscape.

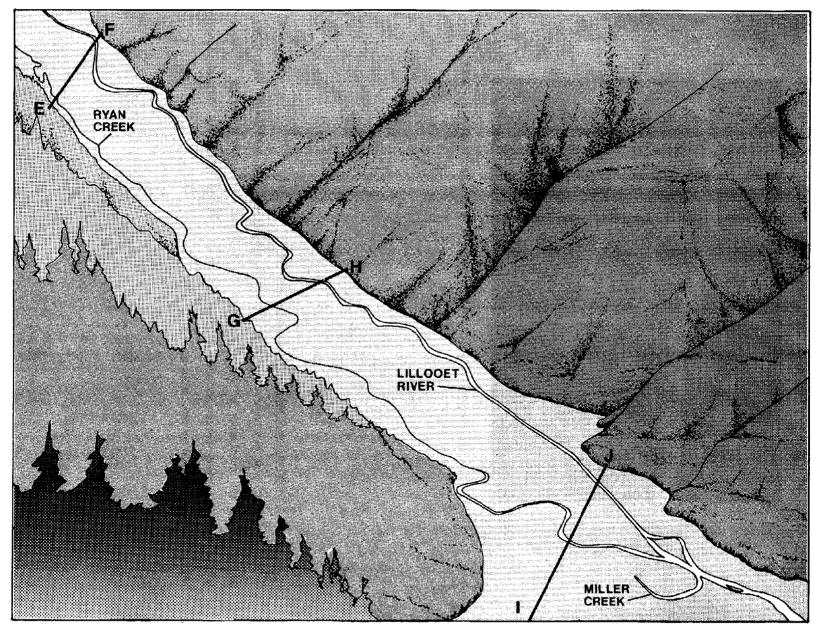
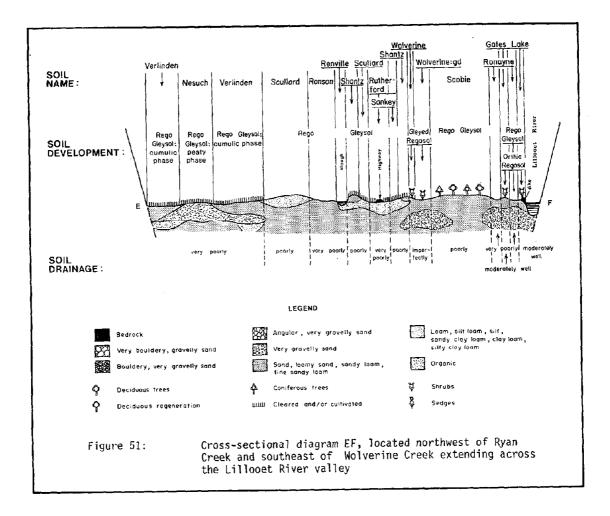
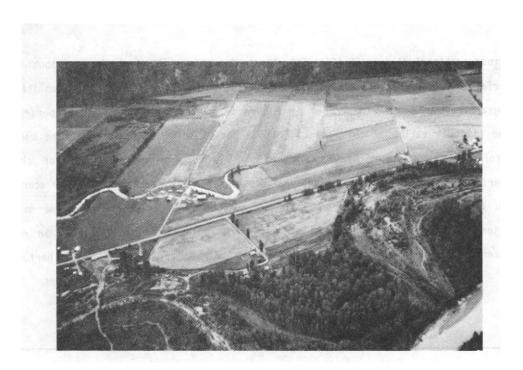
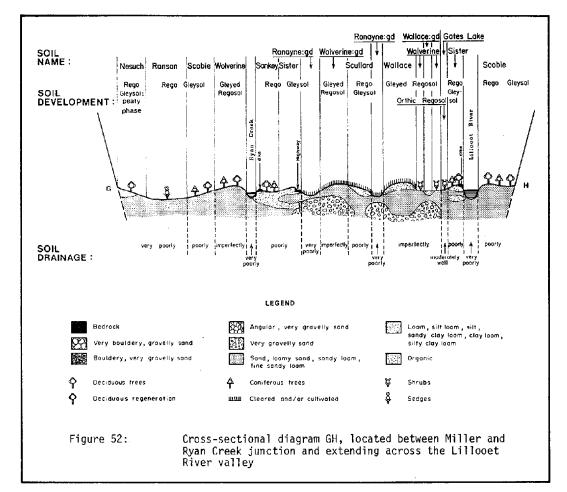
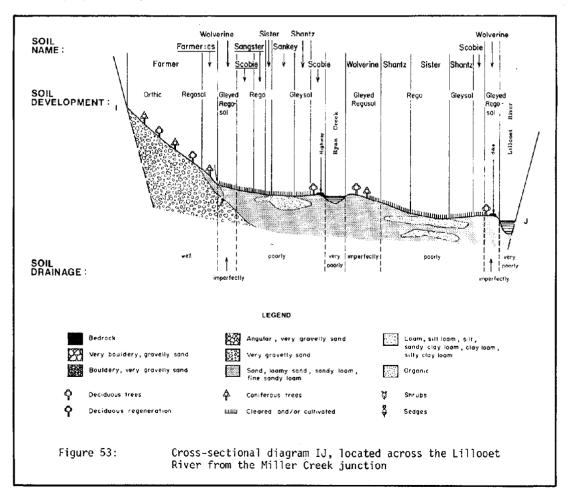



Figure 50: Oblique diagram of the Wolverine to Miller Creek area. Approximate location of cross-sectional diagrams EF, GH, and IJ are indicated

•

Cross-sectional diagram EF (Fig. 51) illustrates an area in which the distribution of soil parent materials has been influenced primarily by the Lillooet River. Plate 3 gives an illustration of the geographical area being described by Figure 51. There are no major tributary streams entering the Lillooet valley at this point. Scobie series soils are located in the middle of a meander scroll of the Lillooet River abandoned as a result of channelization of the river. Wolverine series and Wolverine series:gravelly at depth occur in the abandoned meander scar. On the east side of the valley the Scobie series soils are bounded by Gates Lake and Ronayne soils. The Ronayne series soils, located in channels, are periodically inundated, particularly during freshet and have water near the surface throughout most of the year. Sankey series and Rutherford series


Plate 3: Pictoral description of Figure 51, cross-sectional diagram EF

soils generally occur in depressional areas. Near the west side of the valley a greater frequency of buried organic layers occurs to form the Verlinden series soils. These are situated adjacent to the Nesuch series soils. Shantz series soils are transitional between Sankey series and Scobie series, being composed of sandy loam or fine sandy loam overlying loam to silty clay loam. Scullard series soils are also transitional between Sankey series and Scobie series, but are composed of silt loam or silty clay loam overlying sandy loam to fine sandy loam. Cross-sectional diagram GH (Fig. 52) illustrates the greater complexity of soils which have formed as the result of the influence of two large streams. The west side of Ryan Creek shows a relatively simple progression from the imperfectly drained Wolverine series, through poorly drained Scobie series and very poorly drained Ranson series, to the very poorly drained Nesuch soils. All of these soils have developed in sandy fluvial soil parent materials deposited primarily by Ryan Creek. The soil differences are defined on the basis of soil drainage which is the result of differences in elevation and topographic micro-relief.

That part of the cross-section between Ryan Creek and the Lillooet River illustrates some of the complexity which has resulted from the meeting and mixing of deposits of Lillooet River and Ryan Creek on the flood plain. Ronayne soils are found in abandoned stream channels, while Wolverine series and Wallace series are located on the levees adjacent to both present and abandoned stream channels. Sankey soils occur in a depression into which the meander of Ryan Creek was gradually expanding until it was diked. Sister series soils are found in slightly depressional areas adjacent to the streams where their development was influenced by frequent flooding. Ronayne series:gravelly at depth; Wallace series:gravelly at depth; and Wolverine series occur in the channel occupied by the Lillooet River prior to channelization. Scullard series and Wallace series are found adjacent to old stream channels and were probably formed as backwater channel deposits where quiet waters deposited silts over the sands.

Cross-sectional diagram IJ (Fig. 53) illustrates the sequence of soils occurring from the apex of the Miller Creek fan northward across Ryan Creek to the north side of the Lillooet River. Plate 4 depicts the general geographical area described by Figure 53. The soils in this cross-section progress from the Farmer series on the Miller Creek fan through the Wolverine and Scobie series to the Sister, Sankey and Shantz series on the flood plain. Sankey series soils have formed in depressional areas which are subject to flooding and intermittent ponding. The Sister series occurs up slope from Sankey soils and have resulted from periodic flooding by quickly moving waters depositing sands followed by inundation by ponded waters in which silts were deposited. These soils are often flanked by the Shantz soil series which was deposited in a fashion similar to the Sister series although greater depths of sands were laid down.

Plate 4:

Pictoral description of Figure 53, cross-sectional diagram IJ (photo by J.M. Ryder)

5.2.3 Miller Creek to Lillooet Lake Section

The oblique landscape diagram in Figure 54 illustrates the portion of the valley upstream from Lillooet Lake towards Pemberton. This area has been influenced by the confluence of the Green, Birkenhead, and Lillooet rivers and One-Mile Creek.

The soils of this portion of the study area are considered to have developed under relatively similar conditions of climate, vegetation, parent materials, relief and time. However, minor variations particularly in soil parent materials and relief, combined with some differences in water regime, have caused the differences among identified soil series. The textures of soil parent materials range from sandy loam to silt loam and some silty clay loam. There are also localized areas of gravel in abandoned river channels and on fans where tributaries join the main valley. Shallow to deep organic deposits occur in depressional areas along the valley sides.

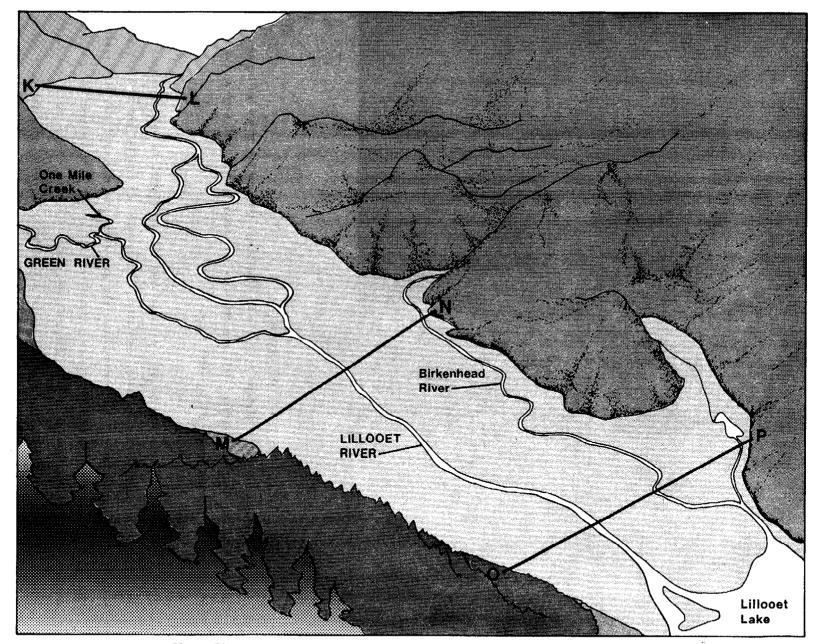
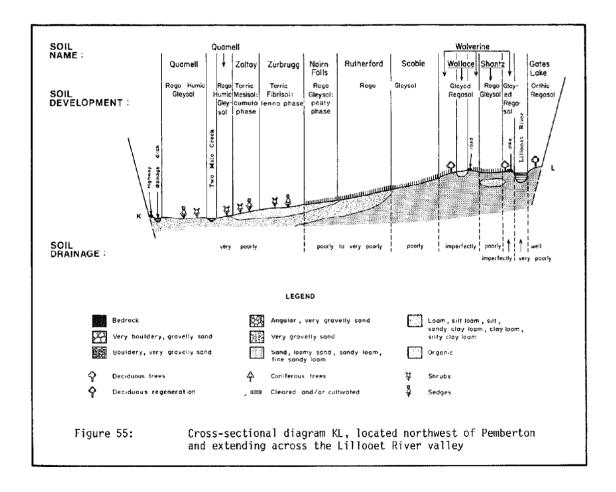


Figure 54: Oblique diagram of the Miller Creek to Lillooet Lake area showing the approximate locations of cross-sectional diagrams KL, MN, and OP

Cross-sectional diagram KL, in Figure 55, illustrates the gradation of soils across the valley floor just northwest of Pemberton. It illustrates a rather simplified progression of soils extending from the topographically higher Lillooet River to the depressional areas on the opposite side of the valley. Plate 5 depicts the general geographical area described by Figure 55 and is looking west up the valley. The Gates Lake series occurs on the active flood plain of the Lillooet River. The Wolverine soil series occurs on the levees adjacent to the Lillooet River and its old channel. Shantz soils occur in minor meander scars left by the river at a previous time. The Wolverine series grades into the Scobie series. Gates Lake, Wolverine, and Scobie series soils have developed in sandy materials deposited by quickly moving water which maintained its load of silt and clay to be deposited later in the quieter water of the depressional areas. This is illustrated by the gradation from Rutherford to Quamell soils. Rutherford soils have formed at what appears to be the upper extent of a ponding zone and sands can be expected at some depth below the silts.



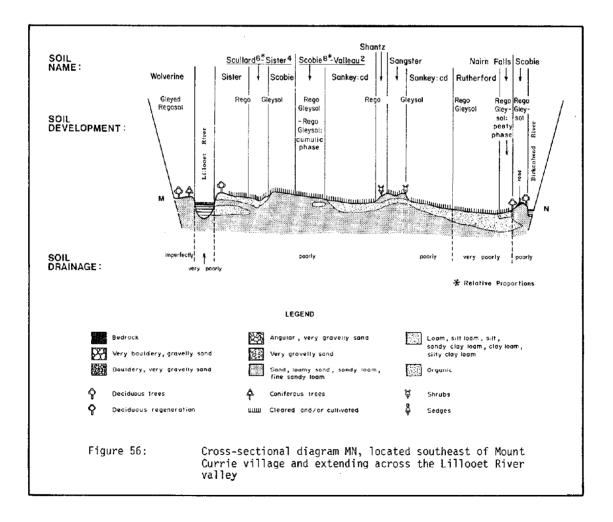
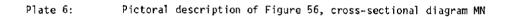
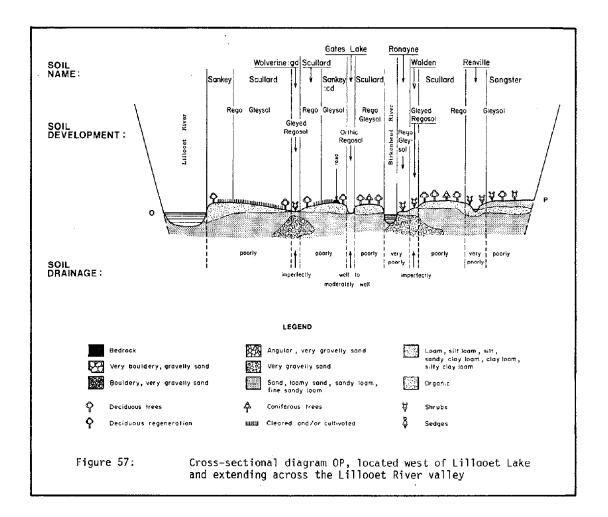


Plate 5:


Pictoral description of Figure 55, cross-sectional diagram KL (photo by J. M. Ryder)

Rutherford soils grade into the Nairn Falls series which has a shallow capping of organic material overlying the silts. The organic accumulation has resulted because of the proximity to a ponding area. Nairn Falls series then grades into Zurbrugg and Zurcher series which are primarily shallow organic soils, although Zurcher series, with its lenses of mineral material, indicates periodic flooding. The Quamell soil series represents what once was a localized pond which has since been drained.


Cross-sectional diagram MN (Fig. 56) illustrates the influence on the soils of the depositional and erosional effects of the Lillooet and Birkenhead rivers. Plate 6 depicts the general geographical location of Figure 56. Wolverine soils occur between the Lillooet River and the valley side on the south side of the valley. On the north side, the Sister soils grade into Scullard soils which generally occur in abandoned backwater channels. Also associated are the Scobie soils occurring at slightly higher elevations than the Scullard soils. Scobie soils grade into Sankey series:coarse at depth soils. Traversing across a Sankey:coarse at depth soil area are Shantz and Sangster soils developed on the deposits of a small stream channel that wanders across the flood plain. Sankey:coarse at depth soils then grade into the Rutherford series. Near the Birkenhead River organic surfaces typical of the Nairn Falls soils have developed. The Scobie series reoccurs adjacent to the Birkenhead River.

Cross-sectional diagram OP (Fig. 57) indicates that both the Lillooet and Birkenhead rivers appear to be degrading their channels and forming terraces in the pre-existing flood plain deposits. Plate 7 depicts the general geographical area described by Figure 57. Soils at this point have been formed primarily from loam to silty clay loam fluvial materials overlying sandy materials. The soils grade from deep (>1 m) silty deposits as in the Sankey series through Sankey series:cd soils to Scullard series, which have silty veneers less than 50 cm thick. This gradation is interrupted in places where previous channels of the river, now abandoned except perhaps during freshet, have eroded through the surface layers exposing the sandy Gates Lake series. In other channels, gravelly deposits typical of the Wolverine series: gravelly at depth or Walden series are encountered between 50 and 100 cm depth. Adjacent to the Birkenhead River the Ronayne soils occur on a slight terrace above the river and appear to be periodically inundated, particularly during freshet. North of the Birkenhead River, Renville soils occur in a small channel which is periodically inundated, especially during heavy runoff from the valley sides following rainfall or snowmelt. The adjacent Sangster soils have formed as a result of periodic overbank flooding.

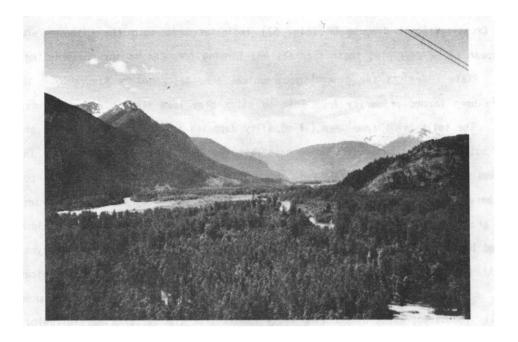
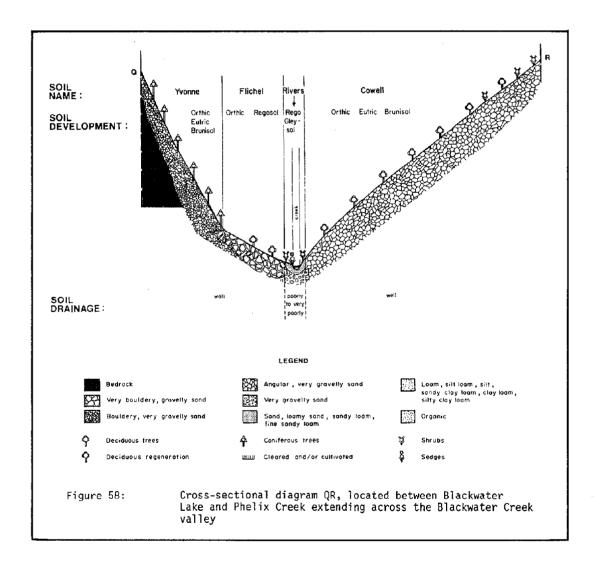



Plate 7: Pictoral description of Figure 57, cross-sectional diagram OP

5.2.4 Blackwater Creek Valley-Gates River Valley-Birkenhead River Valley Section

This section discusses the relationships of the soils in the Blackwater Creek, Gates River and Birkenhead River valleys. Each of these valleys is distinctive with respect to the soils which have developed, the soil parent materials from which they have formed, and their topographic expression. Cross-sectional diagram QR (Fig. 58) illustrates a fairly typical sequence of soils extending across the Blackwater Creek valley. Plate 8 illustrates the geographical area described by Figure 58. The Yvonne soils have formed on morainal deposits on the south wall of the valley. Near to and at the bottom of the slopes Flichel soils (developed on both active and inactive fluvial fans) are frequently found. The valley bottom soils are Rivers series, and are situated in and adjacent to the Blackwater Creek flood plain. The Cowell soils have developed in the avalanche tracks and fans on the north side of the valley.

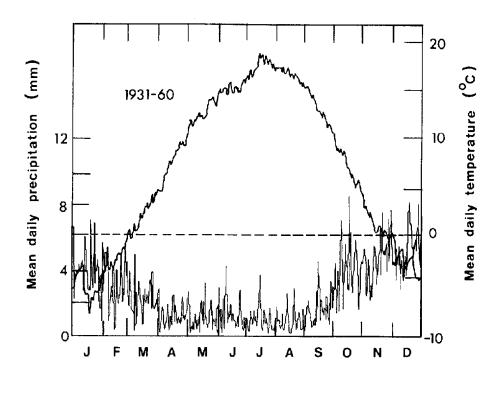
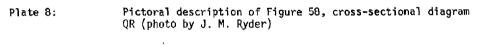
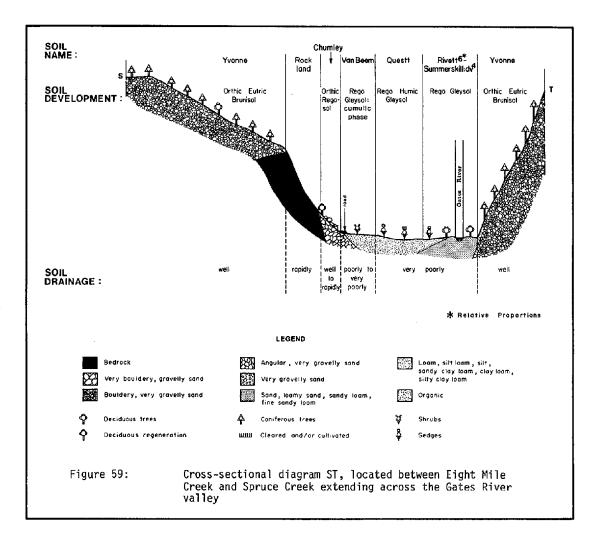
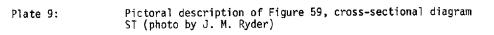



Figure 5: Mean daily temperature and precipitation, Pemberton Meadows (after Gilbert, R., 1972)


4.2 Physiography and Drainage

The Pemberton Valley lies within the Pacific Ranges of the Coast Mountains region as defined by Holland (1964). The valley itself is drained by the Lillooet River which flows southward into Lillooet Lake and thence to Harrison Lake and the Fraser River. The Lillooet River is fed by its tributaries; Meager, Pebble, North, South, Wolverine, John Sandy, Gingerbread, Ryan, Miller, and One Mile creeks and the Green River. The Birkenhead River with its tributaries, Poole, Spetch, and Owl creeks, also drains southward into Lillooet Lake. Gates River, and its tributaries including Eight Mile, Spruce, Blackwater and Haylmore creeks, drains northward into Anderson Lake. The drainage basins of the major streams within the study area are presented in Figure 6.



Cross-sectional diagram ST (Fig. 59) illustrates the typical soils in the Gates River valley. Plate 9 illustrates the general geographical area described by Figure 59. The Gates River valley, which is generally wider than the Blackwater Creek valley, also has a greater diversity of soils. Soils parent materials range from morainal deposits to rock outcrops along the valley walls to the fluvial deposits of the valley floor. Yvonne soils are found on the morainal deposits of the valley slopes. Talus accumulations below bedrock outcrops are primarily Chumley series. On the valley bottom the soils grade from Van Beem series through the Questt series to the Rivett series and Summerskill series:drainage variant. Rivett soils are situated in and adjacent to the Gates River stream channel.

Cross-sectional diagram UV (Fig. 60) illustrates the soils in the lower part (downstream of the canyon) of the Birkenhead River valley. Plate 10 depicts the general geographical area described by Figure 60. Soil parent materials range from morainal deposits and bedrock outcrops on the valley sides to the fluvial fan deposits of Owl Creek and the fluvial deposits of the Birkenhead River. Yvonne soils are developed on the morainal deposits on both sides of the valley. Flichel series soils occur on the Owl Creek fan. Giguere series soils are found on small terraces slightly above the level of the Birkenhead River and are occasionally inundated.

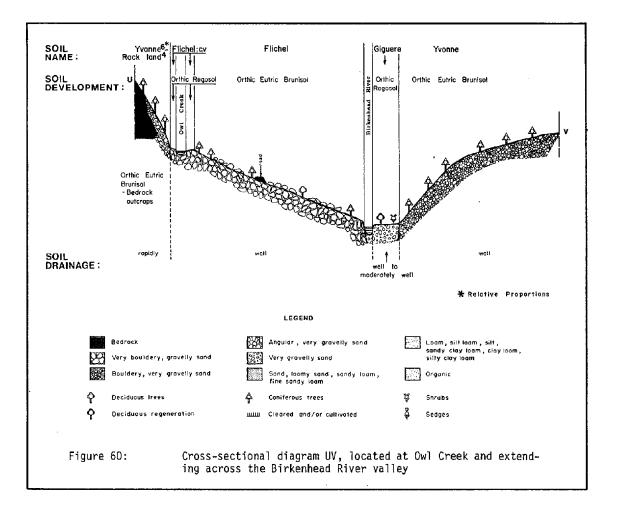


Plate 10: Pictoral description of Figure 60, cross-sectional diagram UV

5.2.5 Green River Section

In the Green River section of the study area the soils have formed primarily on landslide and fluvial fan deposits. Frontier soils have developed on the bouldery, gravelly fluvial fan deposits of Rutherford Creek and the Green River. Also in this area are the Clausen soils formed on colluvial landslide deposits. Grundy soils occur on the upper fluvial terraces of the Green River and Gilmore soils are found along the flood plain. Bedrock outcrops occur at Nairn Falls.

Cross-sectional diagrams are not presented for this and the following areas because of the relatively simple relationships of the soils here and the small amount of area involved.

5.2.6 Uplands Section

Mapped uplands in the main Lillooet River valley include those adjacent to Pemberton as well as those near Mt. Currie.

A. near Pemberton

On the uplands adjacent to Pemberton are found Cloutier series, Collister series, Conroy series, Fotsch series and Frontier series and Rock land. Cloutier series soils are found on actively forming colluvial talus slopes. Collister soils occur on shallow, neutral to moderately calcareous colluvial materials over bedrock. Conroy soils occur on deeper colluvial deposits which are generally non-calcareous. Fotsch series soils occur along the edges of One Mile Lake where wave action has modified the original deposits into beaches. Frontier series soils occur on the bouldery, gravelly, coarse textured fluvial deposits of One Mile Creek.

B. near Mt. Currie village

The soils which occur on the uplands near Mt. Currie village are Collister series, Conroy series, Cosulich series, Flichel series, Yvonne series and Yvonne series:shallow variant, and Rock land. Collister series and Cosulich series occur primarily in colluvial deposits greater than 1 m deep overlying bedrock while Conroy series have developed in shallower colluvium. Yvonne soils have formed on morainal deposits which are sometimes veneers overlying bedrock (YV:sv). Rock land areas are primarily bedrock outcrops which may have a shallow (< 10 cm) mantle of soil occuring in some places.

chapter 6

INTERPRETATIONS FOR SELECTED LAND USES

6 INTERPRETATIONS FOR SELECTED LAND USES

6.1 Agriculture

6.1.1 Agricultural Capability

Agricultural capability ratings of the study area were derived from the soil information in combination with climatic capability for agriculture ratings. The agricultural capability ratings indicate the limitations placed on agricultural crop production by climatic and soil characteristics.

A. <u>Climatic capability for agriculture</u>

Climatic capability for agriculture ratings are based on defined climatic limits for each class. (Figure 61 illustrates the distribution of the climatic capability for agriculture classes within the study area). Definitions of the climatic limits for each climatic capability for agriculture class and examples of the types of crops which have potential for growth within that class as well as definitions of the subclasses and the map symbols used are given in the legend of Figure 61 (Resource Analysis Branch, 1978). Table 4 presents a summary of some climatic characteristics of selected locations in the Pemberton Valley.

Table 4:	Summary of sc	ome climatic	characteristics (of selected	locations	in the	Pemberton Va	alley
----------	---------------	--------------	-------------------	-------------	-----------	--------	--------------	-------

Station	Average Growing Degree Days Above 5°C	Average Freeze Free Period (days)	Average May to Sept. Precip. (mm)	Average May to Sept. Climatic Moisture Deficit (mm)
Pemberton	1661	No Data	194	-269
Pemberton Meadows	1801	150	187	-281
Mount Currie	1467	110	150	-354
Gingerbread Creek	1453	115	140	-329

Reference: Resource Analysis Branch, 1978

The climatic capability for agriculture ratings (Williams, 1977) for the study area range from Class 1a through 3, with irrigation. The most suitable climates, 1aF, occur south of where Ryan Creek enters the main Pemberton valley and along the Gates River valley bottom from Devine to Anderson Lake. The capability of these areas is restricted by the freeze free period (subclass F) which is less than 150 days. Additional Class 1a areas in the northeast corner of the Mt. Currie Indian reserve and east of Pemberton are limited by both insufficient freeze free period (subclass F) and insufficient growing degree days above 5° C (subclass G) and are labelled 1aFG.

The main Pemberton valley between Lillooet Lake and Wolverine Creek and up the Birkenhead River to Owl Creek has a rating, with irrigation, of Class 1F. The freeze free period in these areas is less than 120 days. Additional Class 1 areas limited by freeze free period (F) and growing degree days (G), and rated as Class 1FG, occur on the north side of the Pemberton valley near Wolverine Creek and west up the valley to the vicinity of Railroad Creek; along the Green River south of Pemberton; along the Birkenhead River where it enters the main Pemberton Valley near Mt. Currie village; and north of Eight Mile Creek along the Gates River to Anderson Lake.

Areas of climatic capability for agriculture Class 2F, limited by a freeze free period of less than 90 days, occur in the upper Lillooet River valley between the vicinity of Railroad Creek and west of North and South Creeks; north and west along the Birkenhead River to Fowl Creek and along the Gates River to Devine; and west along Blackwater Creek to Phelix Creek.

Regions of Class 3F, limited by a freeze free period of less than 75 days, are present in the vicinity of Birkenhead Lake between Phelix Creek and Fowl Creek; and west of North and South Creek, in the Lillooet River valley, to Meager Creek. The climatic capability for agriculture ratings west of Wolverine Creek along the Lillooet River are estimates only due to the lack of climatic information. The areas for which the climatic capability has been estimated are outlined in Figure 61 by dashed lines.

	CAPABILITY CLASSES						
SUMMARY OF LIMITATIONS	la	1	2	3	4	5	
Freeze free period(days) Growing degree days accumulated > 5°C	120 to 150(interior) > 150(coast) 1505 to 1779	90 to 119(interior) > 150 (coast) 1310 to 1504	75 to 89(interior) 120 to 150(coast) 1170 to 1309	60 to 74(interior) 100 to 119(coast) 1030 to 1169	50 to 59(interior) 80 to 99(coast) 1030 to 1169	30 to 49 (interior) 60 to 79 (coast) 780 to 1029	
Climatic moisture deficit Climatic moisture surplus Effective growing degree days		up to -40 mm < 0.33	-40 to -115 mm 0.34 to 0.55 736 to 825	-116 to -190 mm 0.56 to 0.75 650 to 735	-191 to -265 mm 0.76 to 1.00 491 to 649	-266 to -340 mm > 100 421 to 490	
Range of Crops: examples	corn, apples, pears, cherries, raspberries, strawberries, bests, broccoli, brussel sprouts, cabbage, carrots, cauliflower, celery, kohlrabi, leeks, lettuce, parsnips, peas, potatoes, radish, rhubarb, spinach, Swiss chard, turnips, cereal grains, and forage crops	<pre>silage corn, strawberries, raspberries, blackberries, asparagus, beans, beets, broccoli, brussel sprouts, cabbage,carrots, cauliflower, celery, kohlrabi, leeks, lettuce, parsnips, peas, potatoes, radishes, rhubarb, turnips, spinach, Swiss chard, bulbs, cucurbits, tomatocs, onions, oil seed crops, pumpkins, filberts, some tree fruits</pre>	asparagus, beets, broccoli, brussel sprouts, cabbage, carrots, kohlrabi, leeks, lettuce, parsnips, radishes, rhubarb, turnips, spinach, Swiss chard, strawberries, raspberries, cauliflower, celery, peas, potatoes, hardy varieties of broad beans, oil seed crops, cereal grains and forage crops	cool loving vegetables (cabbage, cauliflower, lettuce, peas), potatoes, forage crops, and cereal crops	cool loving vegetables, forage crops, and cereal crops (periodically)	only forage crops	

Legend for Figure 61: Provisional Climatic Capability for Agriculture

LIMITING SUBCLASSES	EXAMPLE
 A - drought or aridity which occurs during the growing season resulting in moisture deficits limiting plant growth F - any minimum temperature above or below freezing which damagingly affects plant growth during the growing season 	bracketed capability class as determined by therma limitations (moisture limitations have been reduced by irrigation and/or drainage). 5A (lgF)
G - insufficient heat units (Growing Degree Day or Effective Growing Degree Day) during the growing season. This does not include Corn Heat Units	capability class

Reference: Climatic Capability Classification for Agriculture in British Columbia, 1978, Resource Analysis Branch.

.

B. Land capability for agriculture

Land capability for agriculture ratings are determined by climatic capability for agriculture in combination with soil characteristics. The classes and subclasses, which indicate the major limitations of the land for agriculture, and the symbols used to express these are defined in the legends of the capability maps presented in Figures 62 - 68. The capability of some soils can become greater through improvement procedures such as installation of irrigation and/or drainage. The improved capability ratings are indicated by () for irrigated and by [] for drained conditions. In some cases both are used. Even with such improvements, the regional climate is the ultimate factor limiting the capability of the soils for agricultural use.

The lands in the Blackwater Creek valley are generally Class 5_M^T with minor inclusions of 6_M^T , 7_R^T , or 7_R^R in steeper places along the valley sides. Along streams and adjacent to Blackwater Lake some of the land has been rated as 6_I^W , or 5_I^W improving to [3X] through artificial soil drainage. The remainder of the valley floor is generally rated either as 4W improving to [3X] with artificial soil drainage or 05_F^W , improving to $[04_W^F]$ or $[03_W^F]$ with artificial soil drainage (0 preceding the class rating indicates organic soils).

The slopes along Birkenhead Lake are predominantly Class 5_M^T with inclusions of 6_M^M , 6_M^T , 7_T^P , 7_M^T , 6M, 7_M^P and 7_T^R . These low capability classes result from severe topographic, soil droughtiness, stoniness, and/or shallowness to bedrock limitations.

The Birkenhead River canyon area is severely limited by shallowness to bedrock, steeply sloping topography, stoniness, and/or soil droughtiness. Generally, the land in the canyon itself is Class 7, while on the upper, more level slopes it is Class 5 at times improving, through irrigation, to Class 4.

The Gates River valley from Gates Lake to Anderson Lake has a variety of land capability for agriculture ratings ranging from Class 4 to Class 7. Some of the Class 4 or 5 soils will improve to Class 3 or 4 with irrigation or drainage. The major limitations to the range of agricultural crops on the valley sides are stoniness, soil droughtiness, and adverse topography. Common ratings for these lands are 6_P^T , 7T, 5_M^M , 5_P^P , 7_R^T and 7_M^P . The major limitations to agriculture on the valley floor are seasonally high water tables, and susceptibility to periodic inundation resulting in ratings such as 7_I^W , 6_I^W , 5_I^W and 5W. Following ameliorization of these problems, minor problems of soil droughtiness and fertility remain. The lands of Birkenhead River and Poole Creek valueys from Gates Lake to the junction with the Lillooet River valley are generally limited by topography, stoniness, shallowness to bedrock, and soil droughtiness on the valley slopes. This land is predominantly Class 5 which occasionally improves, with irrigation, to Class 4. The remainder is either Class 6 or Class 7. The limitations of the soils on the valley floor are predominantly seasonally high water tables, susceptibility to periodic inundation, and/or soil droughtiness. These lands are predominantly Classes $5_{\rm I}^{\rm W}$ ([$3_{\rm M}^{\rm W}$]) or ([$4_{\rm M}^{\rm W}$]), $3_{\rm M}^{\rm W}$ ([2X]), 5W ([4M]), 5M (4M), $5_{\rm I}^{\rm W}$, 6M, $6_{\rm M}^{\rm P}$ or $7_{\rm I}^{\rm W}$.

The upland areas adjacent to Pemberton and the Mount Currie village and in the Green River valley are limited in their capability by steeply sloping topography, shallow depths to bedrock, soil droughtiness and/or excessive stoniness. The capability classes in these areas include some Class 5 which may improve to Class 4 with irrigation but are dominantly Classes 6 or 7.

The lands in the Lillooet River valley from Lillooet Lake to approximately Wolverine Creek are rated as capability classes 3 or 4 in their unimproved state and are limited primarily by excessive wetness, soil droughtiness and, in some cases, low fertility. In most cases with adequate drainage and/or irrigation, these lands improve in capability to Class 2X or Class 1. Some limited areas of land are Class 2X or 2W which improve to Class 1 with irrigation or drainage. An extremely small area of Class 1 land (not requiring irrigation or drainage) is found in the valley. A relatively small proportion of the valley is Class 5 limited by excessive water, periodic inundation and/or soil droughtiness. This land generally improves to Class 4, and sometimes Class 3, with drainage and/or irrigation. Small areas of Class 05 $_{\rm F}^{\rm W}$ [04 $_{\rm W}^{\rm F}$] also occur as do Classes 6 $_{\rm I}^{\rm W}$ and 7 $_{\rm I}^{\rm W}$.

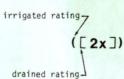
Upstream along the Lillooet River from Wolverine Creek to Meager Creek, the climate capability for agriculture becomes more limiting resulting in soils similar to those downstream having a lower capability rating. The majority of land in this portion of the valley is Class 3, 4 or 5 limited primarily by soil droughtiness, excessively high water tables, and/or periodic inundation. A significant proportion are Classes 6 or 7 limited by excessively high water tables, periodic inundation, excessive stoniness, and/or soil droughtiness.

Legend for Figures 62 - 68: Land Capability for Agriculture Maps

CAPABILITY CLASSES FOR MINERAL SOILS

- Class 1: Lands in this class have no significant limitations in use for crops.
- Class 2: Lands in this class have moderate limitations that restrict the range of crops or require moderate conservation practices.
- Class 3: Lands in this class have moderately severe limitations that restrict the range of crops or require special conservation practices.
- Class 4: Lands in this class have severe limitations that restrict the range of crops or require special conservation practices, or both.
- Class 5: Lands in this class have very severe limitations that restrict their capability to producing perennial forage crops, and improvement practices are feasible.
- Class 6: Lands in this class are capable only of producing perennial forage crops, and improvement practices are not feasible.
- Class 7: Soils in this class have no capability for arable culture or permanent pasture.

CAPABILITY CLASSES FOR ORGANIC SOILS


- Class 03: Organic soils in this class have moderately severe limitations that restrict the range of crops or require special management practices.
- Class 04: Organic soils in this class have severe limitations that restrict the range of crops or require special management practices, or both.
- Class 05: Organic soils in this class have very severe limitations that restrict their capability for the production of perennial forage and other specially adapted crops.
- Class 06: Organic soils in this class, in the native state, have no capability for arable agriculture, but are capable of producing native perennial forage and some natural grazing if feasible.

Example of Map Symbol

Unimproved Rating

classes

relative proportions _ major subclasses 3M 3.F ← secondary subclasses capability ____ _ capability subclasses

Improved Rating

Example of Map Symbol

Unimproved Rating

05 F

capability

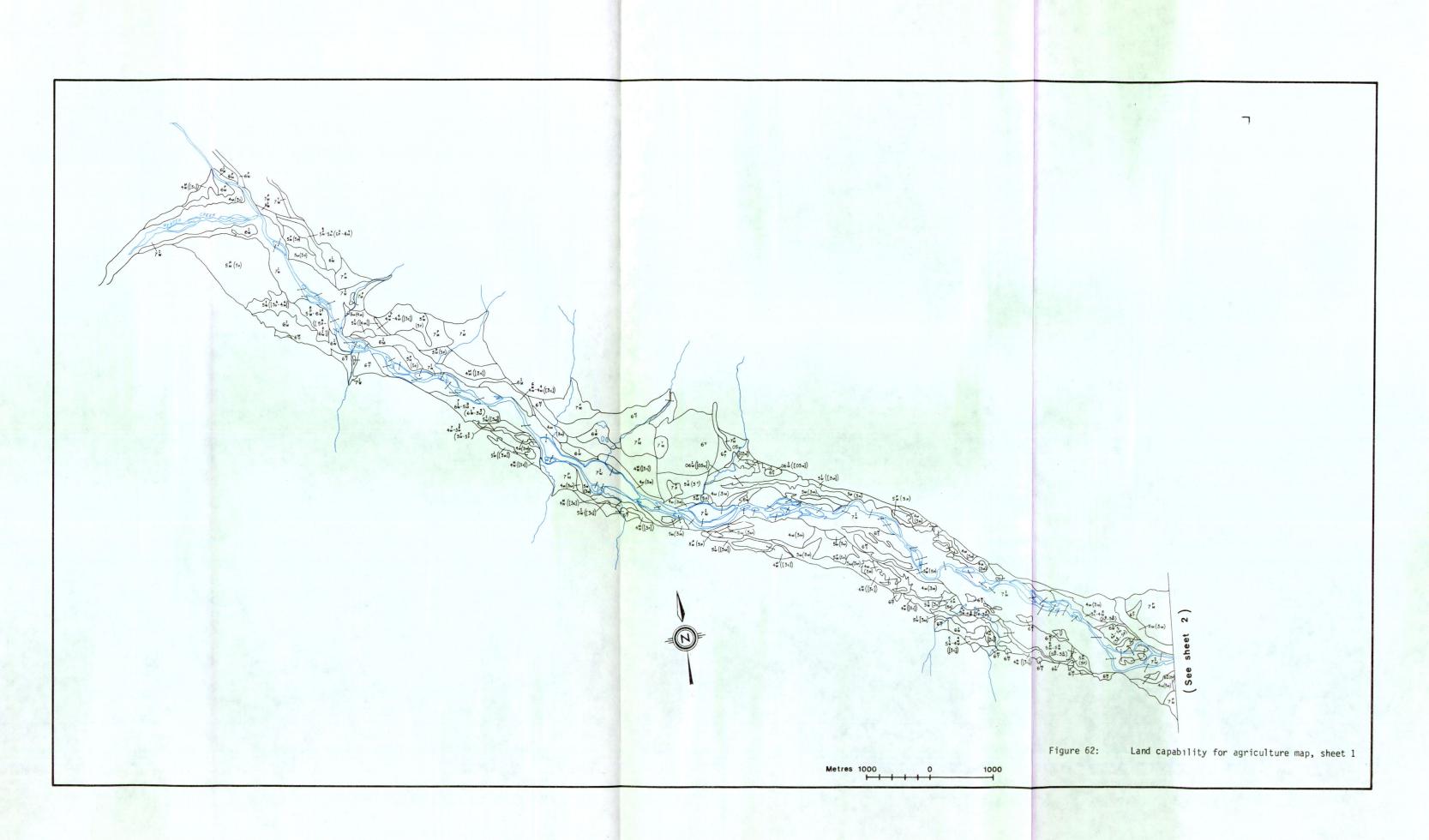
/ subclass

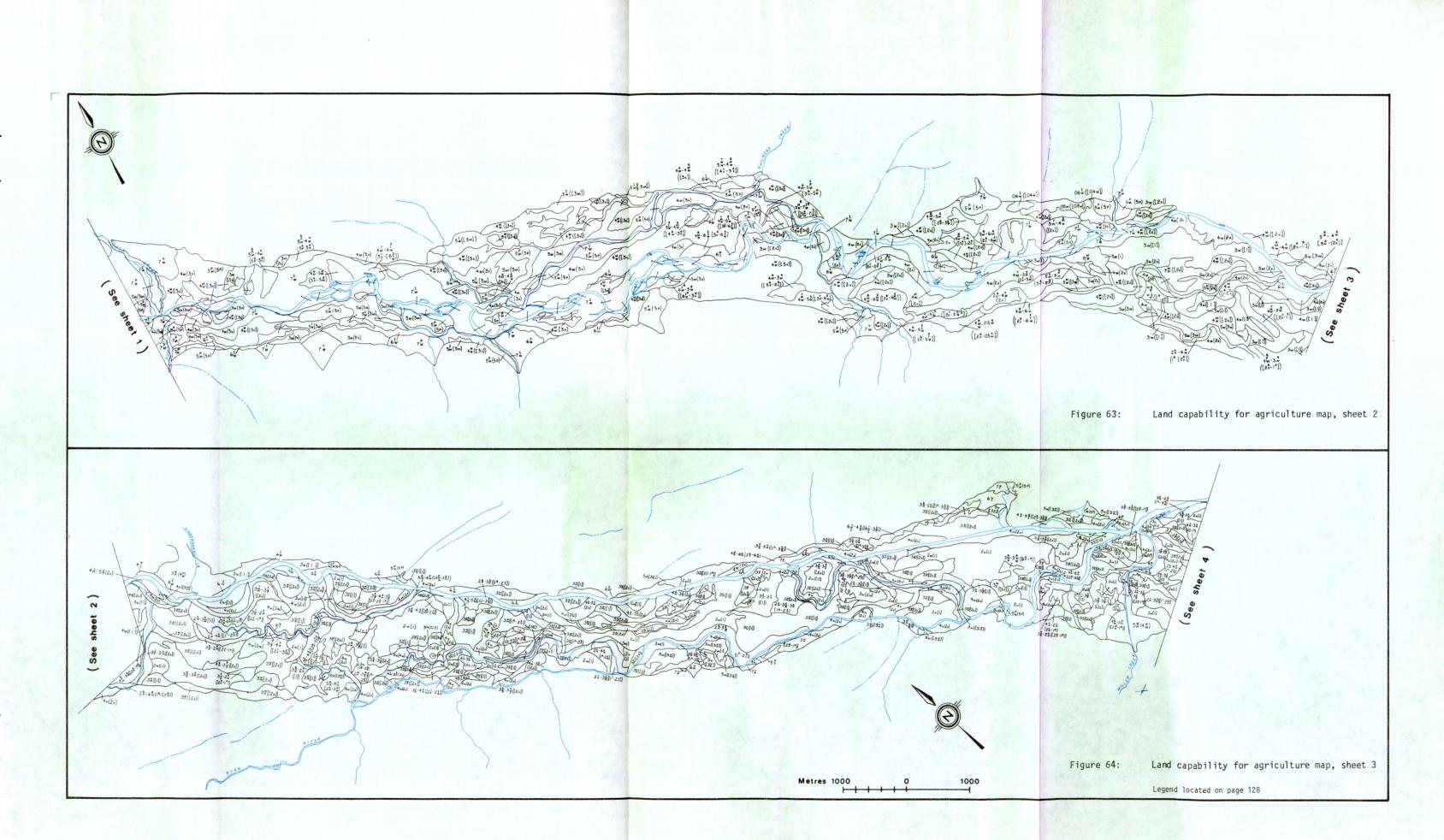
– capability

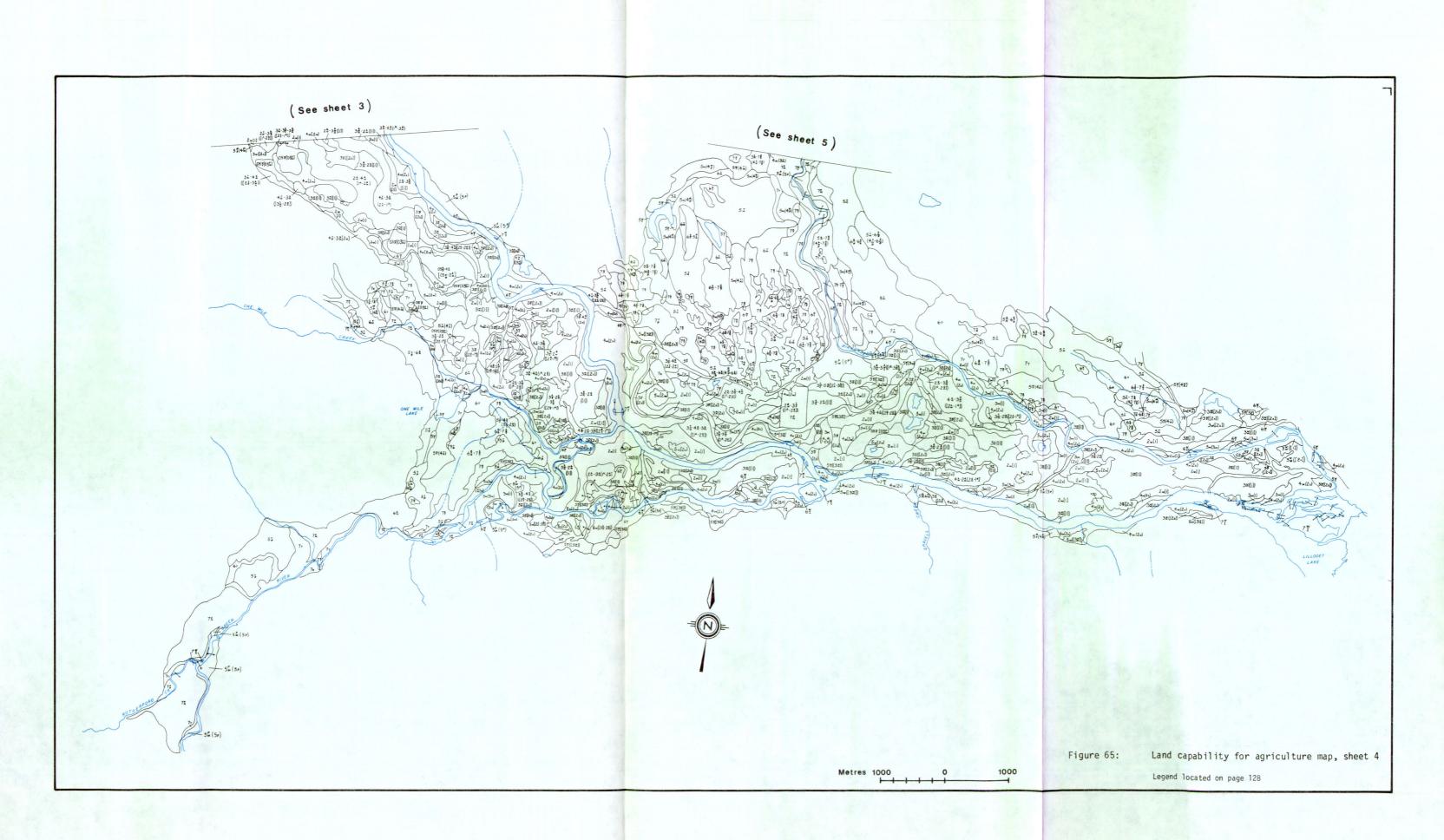
class

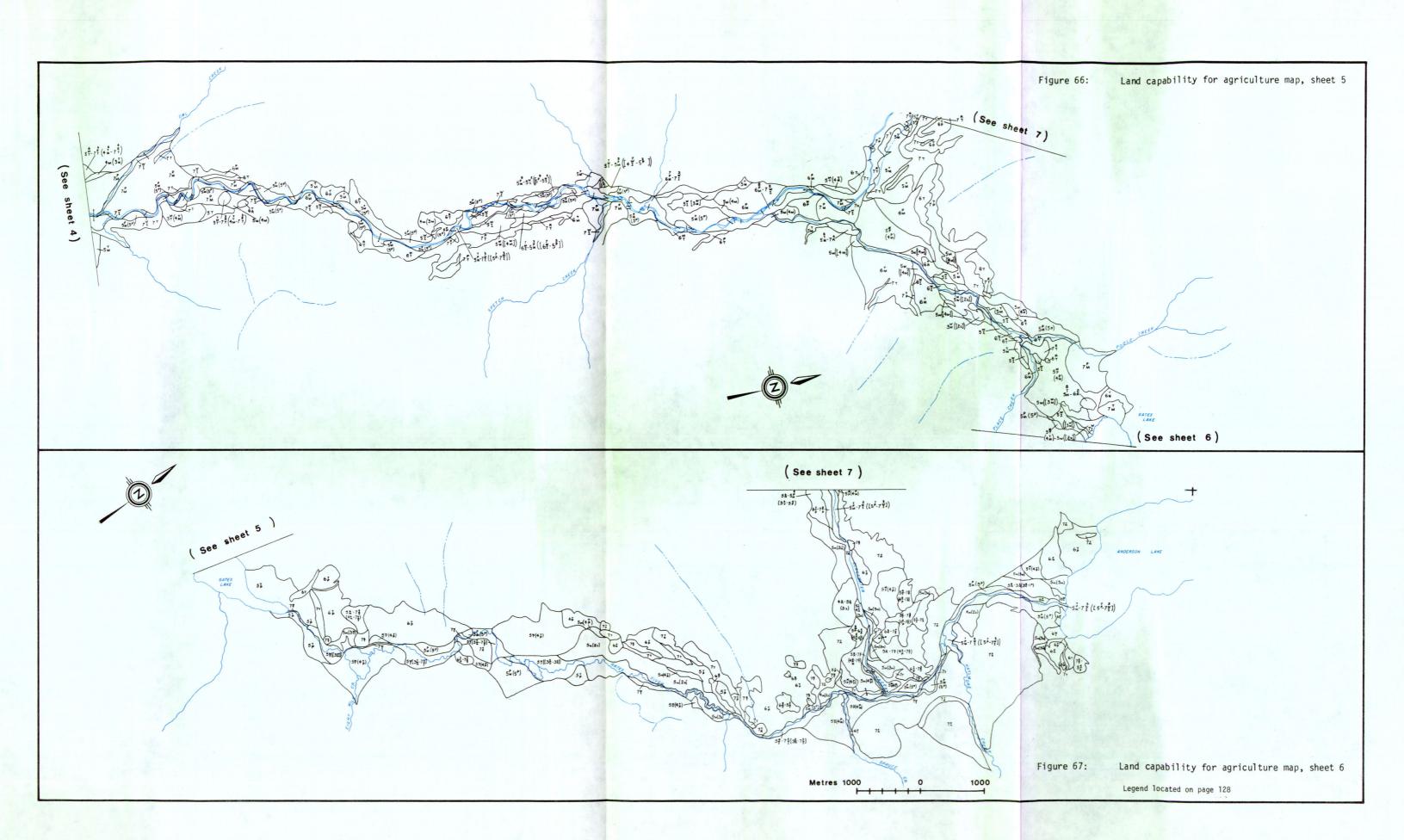
organic 7 soil 7

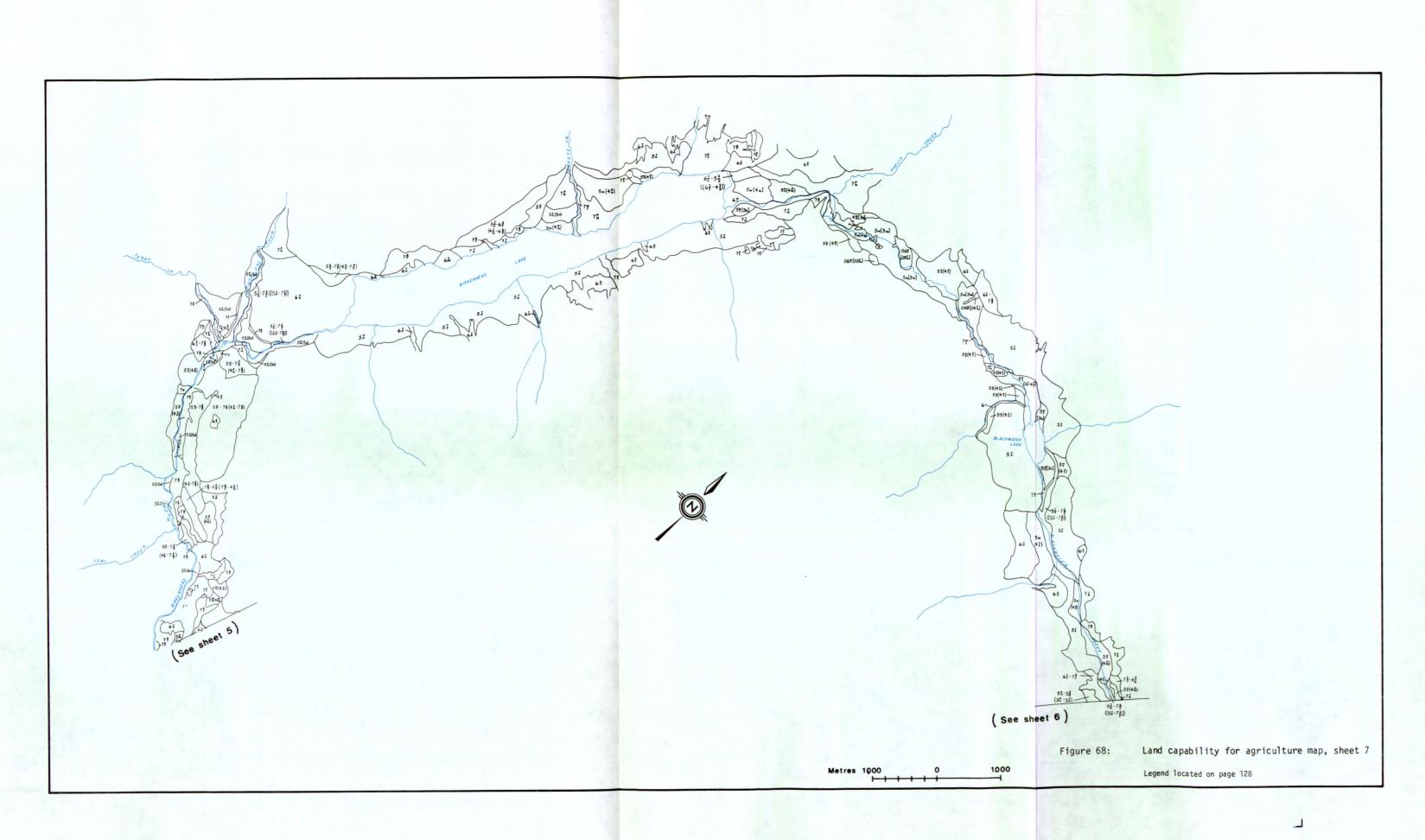
drained rating -






CAPABILITY SUBCLASSES


- C adverse climate
- F low fertility
- I inundation by streams and lakes
- M moisture limitation
- P stoniness
- R consolidated bedrock
- T topography
- W excess water
- X cumulative minor adverse characteristics


1:20 000 mapping available from: The Librarian Resource Analysis Branch Ministry of Environment Parliament Buildings Victoria, B.C. V8V 1X4

6.1.2 Chemical Characteristics of the Soils

Results of chemical analyses of selected soils of the study area are presented in Appendix 2. Selected chemical analysis of the surface horizons (upper 25 cm) of some of the more common soils of the Pemberton Valley are presented in Table 5. These analyses, required in part to determine soil classification, also provide an indication of the fertility levels of the soils and thus some idea of anticipated management needs. However, in order to determine the optimum fertilizer practices for individual farms or fields it is advisable to have independent analysis and interpretations conducted, because of the great variability found within the same soil from farm to farm due to differing past and present management practices.

A. Soil reaction

Soil reaction (pH) is expressed in values of 0 to 14. A value of seven indicates neutrality, decreasing values below seven indicate increasing acidity, while increasing values greater than seven indicate increasing alkalinity.

The reaction classes, as defined in the Canadian System of Soil Classification (1978), are:

acid	pH of 5.5 or less
neutral	pH between 5.5 and 7.4
alkaline	pH of 7.4 or greater

Applying these reaction classes, the majority of soils in the Lillooet River valley are acid.

The pH of the surface horizons is determined in large part by the mineralogy of the soils, the regional climatic conditions, the soil-water relationships, the organic matter content and the influences of some types of soil management (i.e. liming and kinds of fertilizer used). However, the origin of the soil parent materials and the ground and surface waters affecting the soils exert a very strong influence on the reaction of specific soils.

Table 8	5:
---------	----

5

.

Chemical characteristics of surface 25 cm of selected soils of the Pemberton Valley

	cm	1:1	он 1:2		I			changea	/100g ble Bas			% Base	Nu	trients			
Korizon	Depth	H20	CaC12	C	N	C/N	Ca	Mg	Na	к	CEC*	Saturation	Р	S	8	Cu	Co
GATES LAKE An+Cgj	0-6	5.3	4.8	2.92	0.196	14.9	5.33	1.11	0.26	0.06	11.04	61.2	2.53	4.0	0.34		
c_1	6-19	5.3	4.7	0.18	0.006	30.0	0.87	0.24	0,07	0.06	1.68	73.8	3.01	0.6	0.25	2.85	0.13
Cgj ₂	19- 24	5.4	4,7	0,21	0.006	36.0	1.36	0.28	0,13	0.07	2.89	63.7	3.01	1.5	0,26	6.00	0.28
GILMORE C1	0 - 10	5.5	4.7	0.16	0.006	26.7	0,96	0,16	0.07	0.04	1.68	73.2	10.01	2.2			
¢2	1 0- 18	6.0	5.0	0.03	0.020	1.5	0.94	0.15	0,08	0.03	1.63	73.6	3.00	0.2			
c ₃	18- 39	6.0	5.1	0.03	0.020	1.5	0.91	0.14	0.07	0.04	1.70	68.2	2.00	0.5			
NAIRN FALLS Op	0~ 18	1:2	1:4 4.6	13.49	0.875	15.4	20.79	7.58	1.15	0.60	41.06	73.4	9,69				
Cg	18- 35	1:2 5.4	1:4 4.6	6,80	0.306	22.2	5,80	1.96	0.29	0.32	23.31	35.9	7.77	2.0			
NESUCH Op	26- 14	1:2	1:2 4,3	16.53	0.928	17.8	22.53	2.20	0.47	0.11	53.89	47.0	5.07				
Of	14- 0	1:5 4.3	1:5 3.9	27.64	1.437	19.2	22.62	1.70	0.39	0.14	80,46	30.9	2,69				
NEVBERRY Om	20- 0	1:5 4.7	1:10 4.2	16.76	1.00	16.8	13.98	1.05	0.40	0.13	51.20	30.4	3.90				
Cg1	0- 12	5.2	4.5	1.85	0.111	16.6	3.50	0,16	0.19	0.18	8.88	45.4	6.35	3,8			
QUAMELL Ah	0- 15	5.2	4.5	5.84	0.347	16.8	5.71	1.10	0.37	0.13	24.27	30.1	7.78	2.0			
C91	15- 24	5.3	4.5	0.79	0.053	14.9	1.92	0.35	0.12	0.14	7.99	31.7	6.34	0.1			
RONAYNE Cg ₁	0- 12	5.0	4.3	3.12	0.215	14.5	4.11	1.84	0.31	0.12	20.64	30.9	2.04	35.0			
11 Cg ₁	12- 21	5.0	4.3	0.77	0.040	19.2	0,82	0.52	0.09	0.02	3.51	41.3	1.50	10,7			
RENVILLE Ah	0- 5	1:5	1:10 4.5	15,00	0.839	17.8	12.48	3.46	0.85	0.18	65.08	26.1	9,76				
Cgi	6- 13	1:2 4.7	1:4 4.3	5.64	0.432	13.0	5.58	1,94	0.52	0.18	33,08	24.8	7.81	28.8			
Cg ₂	13- 29	5.0	4.4	2.11	0.132	16.0	3.79	1.71	0.38	0.17	15.76	38.4	10.16	15.8			
RANSON Of	10- 0	1:5 5.1	1:5	20,19	1.292	15.6	37.05	2,60	0.66	0.17	88.75	45,6	10.02				
Cg	0- 28	5.8	5.1	0.23	0,006	38.3	0.91	0.20	0.07	0.03	1.90	63.7	6.31	0.1	0.25	3,26	0.12
11 Cg	28- 48												9,50	1.5	0.22	24.55	0.66
RUTHERFORD Cgl	0- 25	1:2	1:4 4.4	4.57	0.315	14.5	4.18	1.06	0.55	0.18	20,42	20.3	14.12	3.7	0.80	19.95	0.12
Cg2	25- 45												13.94	3.4	0.34	9.19	0,13
Cg3	45- 66												19.17	2.9	0.34	12.11	0.15
SANKEY								. –						4,17	0.20		0.10
Ap	0-9	4.9	4.6	3.53	0.284	i	5.59			0.14	54.02	15.9	15.04	21.3			
Cgl	9- 37	5.7	4.9	0.72	0.040	18.0	3.25	1.60	0.38	0.20	7.64	71.1	5.34	8.5			
SCOBIE Cg ₁	0-6	5.8	5.2	0.94	0.060	15.7	3.92	1.19	0.34	0.02	6.89	79.4	7.05	1.9	0,34	6.55	0.77
Cg ₂	6- 14	5.0	5.2	0.40	0.020	20.0	2.00	0,77	0.34	0.03	4.17	75.2	5.93	1.6	0.42	6.91	0.45
ll Cg+A hb	14-23	5.7	5.0	1.22	0.071	17.2	3.69	1.22	0,34	0.05	8.67	61.1	4.23	0.8	0.26	11.90	0.57
III C91	23- 45												3.71	0.2		3,71	0.25
III Cg ₂	45- 61												3.02	0.2		5,93	0.41
SHANTZ Api	0- 17	5.6	5.2	1.25	0.088	14.2	3,51	0.80	0.46	0.04	7.46	64.5	15.12	1.7			
Ap2	17- 27	5.0	4.4	2.80	Q.160	17.5	4.51	1.24	0.13	0.27	20.13	30.6	8.13				
SISTER Ap	0- 25	4.9	4.7	1.71	0.136	12.6		1.76	0.31	0.30	14.20	56.5		4.4	····		
	n exchang	_											00	÷			

*CEC = cation exchange capacity

Horizon	cm Depth	Г 1:1 Н20	0H 1:2 CaCl2	r 0	, N	C/N	Exc Ca	meq/l hangeab Hg	00g le Base K	s Na	CEC*	1 Base Saturation	Nut P	rients d S	ppm of Select B	ted Soil: Cu	° Co
SANGSTER Ap	0- 21	5.5	5.0	1.54	0,144	10.9	4.85	0.57	0.26	0.05	5.73	73.9	6,34	1.8			
II Cg	21- 32	5.9	5.4	1.43	0.129	11.1	8.59	0.75	0.32	0,11	9.77	70.5	3.74	0.4			
SCULLARD Ap	0- 17	5.5	4.8	1,61	0.125	12.9	3,85	0.78	0.85	0.09	10.74	51.9	54.53	3.4			
Cgl	17- 47	5.5	4.8	1.01	0.085	11.9	2.85	0.50	0.50	0.14	9.64	4].4	44.87	1.0			
TENQUILLE Ab	0- 13	6.6	6.2	5.09	0.331	15.4	18.58	3.90	0,86	0.05	28.12	83.2	6.06	6.8			
Bmj	1 3- 18	6.3	5.8	2.26	0.178	12.7	11.12	2.40	0.97	0.05	20.59	70.7	3,88	1.1			
Bm2	18- 25	5.9	5.3	2.29	0.179	12,8	10.61	1.82	0,66	0.08	20.27	65.0	4,28	0.9			
VALLEAU Ap	0- 15	5.4	4.8	1.62	0.113	14.3	4,22	1.18	0.56	0.08	10.02	60.3	7.08	1.1			
Cg	15- 35	5,2	4.8	2.01	0.163	12.3	6.14	1.81	0.40	0.13	12,92	65. 8	4.88	32.3			
VICCARS Apl	0- 11	1:2 4.5	1:4 4.3	4.88	0.327	14.9	6.03	1.50	0.43	0.10	18.70	43.1	14.61	0.0			
Ap2	11- 24	4.6	4.3	2.67	0.171	15.6	3.24	0,90	0.31	0.06	11.94	37.8	11.17	0.0			
VERLINDEN Op	18- 0	1:5 5.1	1:10 4.7	10.44	0.642	16.2	19.86	0,99	0.11	0.13	38.53	54.7	4.35				
Cg	0- 24	5.1	4.5	0.33	0.010	33.0	1.21	0.10	0.05	0.07	3.27	43.7	5.93	3.2			
VICKBERG Op	15- 0	1:5 4.6	1:10 4.3	28.68	1.525	18.8	30.28	4.65	0.60	0.19	87.89	40.6	7.51				
Cy	0- 9	1:5 4.7	1:10 4.2	3,87	0.215	18.0	5,54	1.18	0.45	0.12	20.10	36.3	12.56	27.4			
WALDEN Ap	0- 19	5.6	4.9	1.63	0.116	14.0	4.83	0.57	0.19	0.01	9.14	61.3	8.07	0.1			
Cgj	19- 26	5.9	5.0	0.22	0,022	10.0	1.13	0.18	0.09	0.03	2.11	. 67.8	4.21	0.0			
WHITEHEAD Cgj ₁	0~ 8	5.8	5.0	0.36	0.020	18.0	0.85	0.41	0.14	0.02	2.20	68.1	5.21	1.2			
Cg.jz	8- 23	5.7	4.9	0.16	0,020	8.0	0.94	0.27	0.16	0.02	1.88	73.9	5.21	0.7			
WITTAL Ap	0-20	5.4	4.7	1.95	0.198	9.8	4.67	0.58	0.32	0.05	9.60	58.5	18.49	0.7			
Cgj	20- 31	5.7	4.9	0.60	0.067	9.0	4.07	0.36	0.25	0.07	6.89	68.9	5.24	0,2			
WALLACE Cgj ₁	0-8	6.2	5.4	0.40	0.035	11.4	3.79	0.82	0.32	0.05	6.23	79.9	5.93	0.8			
Cgj ₂	8- 23	5.8	5.1	1.21	0.091	13.3	6.49	0.94	0.41	0.10	12.85	61.8	4.85	0.8			
WOLVERINE Apj	0- 11	5.7	5.1	0,37	0.010	37.0	2.52	0.21	0.24	0.04	4.02	74.9	4.22	0.6	0.22	1.66	0,30
CL	11- 23	5.9	5.2	0.14	0,022	6.4	1,58	0.08	0.15	0.04	2.41	77.2	4.21	0.2	0,30	1.10	0.14
C2	23- 46												3.00	trace	0,25	0.70	0.03
C9j1	46- 52												4.82	0.2	0.20	2.86	0.17
WILDFONG Ap	0-16	6.5	5.9	1,11	0.062	17.9	5.36	0,98	0.24	0.03	7.95	83.1	11.07				
Cgj	16- 24	6.3	5.7	0.30	0.013	23.1	2.27	0.66	0,22	0.03	3.97	80.1	4.82	0.0			
ZURBRUGG Om	56~ 36	1:5 5.4	1:10 4.9	47.14	2.821	16.7	55.67	4.70	1.15	0.43	179.60	34.5	4.61				
0f	36- 0	1:5 5.3	1:10 4.8	51.03	2.523	20.2	38.01	3.31	0.40	0.31	168.95	24.9	5.33				
ZURCHER Of 1	114- 82	1:5 4.3	1:10 4.0	33.01	2 .09 7	15.7	21.19	3.46	0.39	0.15	104.43	24-1	1.08				
Of2	82- 66	1:5 4.2	1:10 3.8	21.37	1.094	19.5	7.17	1.71	0,31	0.15	65.04	14.4	2.08				
ZOLTAY Op	120- 90	1:2 4,5	1:2 4.3	15.38	0.993	15.5	20.18	1.74	0.30	0.13	58.39	38.3	5.04				
Cgl	90- 68	5.0	4.5	0.41	0.028	14.6	1.06	0.11	0.07	0.03	3.16	40.2	6,33	5.4			

Table 5 cont'd: Chemical characteristics of surface 25 cm of selected soils of the Pemberton Valley

-

*CEC = cation exchange capacity

The soil series in the Lillooet River Valley which tend to be strongly acidic (pH < 4.5, 0.01M CaCl₂) include Nesuch, Newberry, Ronayne, Renville, Rutherford, Viccars, Vickberg, Zurcher and Zoltoy series. Soil series which are moderately acidic (pH 4.5 to 5.0), and which are the largest proportion of soils in the valley, include Gates Lake, Gilmore, Nairn Falls, Quamell, Ranson, Sankey, Sister, Scullard, Valleau, Verlinden, Walden, Wildfong, Whitehead, and Zurbrugg. Weakly acid soil series (pH 5.1 to 5.5) include Scobie, Shantz, Sangster, Wolverine, and Wallace. The only neutral pH soils are Wittal series and Tenguille series.

As a general comment and depending on the type of crop to be grown, soils with pH values greater than 5.5 do not usually require liming whereas, soils with pH values between 5.5 and 5.0 require slight amounts of liming, the actual amounts determined by the texture of the soil, and soils with pH values below 5.0 require increasing amounts of lime with decreasing pH. In addition to natural acidity, applications of acidic fertilizers will render a soil more acidic and this should be considered in soil management.

B. Organic carbon

Organic carbon analysis is an indicator of the amount of organic matter in a soil. Soil organic matter results from the decomposition and incorporation of leaves, twigs, roots, mosses, reeds, and other organic material. The amount of organic matter which accumulates is related to precipitation, drainage, vegetation, temperature etc. The amount can vary from less than 1% in mineral soils to nearly 100% in organic soils. In cultivated soils, organic matter maintenance is very important. Organic matter improves the soils resistance to crusting, puddling and erosion, makes them more friable, improves aeration and increases their moisture holding and nutrient holding capacities.

A guide to levels of organic carbon as used in this report is as follows (modified after Luttmerding and Sprout, 1969):

low	< 2.0%
moderate	2.0 to 5.0%
moderately high	5.0 to 10.0%
high	10 to 17%
very high	> 17%

Recently formed soils and soils which have undergone limited cultivation are the lowest in organic carbon content in the surface 25 cm, with values of less than 1.0%. Included in this category are the Gates Lake, Gilmore, Ronayne, Scobie, Whitehead, Wallace and Wolverine series soils. Cultivated mineral soil series including Shantz, Sister, Sangster, Scullard, Valleau, Walden, Wildfong, and Wittal tend to be slightly higher but are still low in organic carbon content. These soils generally have values of organic carbon between 1.0 and 2.0%. Soils showing moderate to high levels of organic carbon are generally the Rego Gleysol:peaty phases, Rego Humic Gleysols, Gleyed Sombric Brunisols, and some Rego Gleysol:cumulic phases. The soil series which fall in the moderate group include Rutherford, Sankey, Tenquille, and Viccars; the moderately high group includes Quamell, Renville, and Ranson; and the high group includes Nairm Falls, Verlinden and Zoltay. The organic soils, i.e. Zurbrugg and Zurcher series and some mineral soils with organic surface layers, i.e. Nesuch, Newberry, and Vickberg series have very high organic carbon contents.

In general the carbon levels of the mineral soils are highest at the surface and decrease with increasing depth, except those soils which have buried layers enriched in organic matter. The organic soils tend to have values of organic carbon which remain relatively constant throughout the soil profile or increase slightly with increasing depth.

C. Nitrogen

Plants require large amounts of nitrogen for growth. This nitrogen is utilized chiefly in the form of nitrates which are readily leached from the soil. Soil organic matter and commercial fertilizers are the major sources of nitrogen. However, small amounts of nitrogen are washed into the soil from the atmosphere by rain, or fixed from the atmosphere by nitrogen fixing bacteria.

Micro-organisms play an important role in the provision of nitrogen to plants. Bacteria convert nitrogen in soil organic matter and the atmosphere into forms which are available for plant growth. In general, the nitrogen content of soil varies directly with the organic matter content. The amount of nitrogen which is released and available for plant growth during the growing season is determined mainly by soil drainage and temperature.

Under favourable soil conditions total nitrogen values can aid in estimating the nitrogen supplying power of the soil. For this purpose the following levels may serve as a guide (Luttmerding and Sprout, 1969):

low	< 0.25%
medium	0.25 to 0.40%
high	> 0.40%

In general the soils of the Pemberton Valley can be grouped into four levels of total organic nitrogen content in the surface 25 cm. These levels are: less than 0.15%, 0.20 to 0.35%, 0.60 to 1.55%, and greater than 2.00%.

The soils which have less than 0.15% total nitrogen are recently deposited soils and/or recently cultivated soils with very low organic matter contents. The series in this group are Gates Lake, Gilmore, Ronayne, Whitehead, Wallace, Wolverine, Wittal, Scobie, Shantz, Sister, Sangster, Scullard, Valleau, and Walden. The soils of the 0.20 to 0.35% group are primarily those which are organic enriched, loam to silty clay loam or have organic layers at the surface. Included in this group are Quamell, Rutherford, Sankey, Tenquille, Viccars, and Wildfong soils. Nairn Falls, Nesuch, Newberry, Renville, Ranson, Verlinden, Vickberg, and Zoltay soils are in the 0.60 to 1.55% group. These soils are primarily mineral soils with organic surfaces, or cultivated Organic soils. The soils with total nitrogen values greater than 2.00% are the non cultivated Organic soils, i.e. Zurcher and Zurbrugg series.

For most crops those soils having total nitrogen levels of greater than 0.40% in the surface 25 cm, are not likely to need much nitrogen fertilization, but since these values will vary widely from site to site, individual field determinations would be most reliable when devising a fertilization program. Soils with values less than 0.25% total nitrogen will generally require fertilization.

D. <u>Phosphorus</u>

Phosphorus is a major element required by plants for growth. Plants can utilize predominantly inorganic forms of phosphorus, therefore, most organic forms must be mineralized by micro-organisms before plant uptake is possible. Most phosphorus occurs as various organic and inorganic compounds in the soil, most of which are not immediately available for plant growth. The proportion of phosphorus available for plant growth to the total present in the soil at any one time is generally small.

The following table from Luttmerding and Sprout (1969), indicates the various levels of phosphorus availability:

very low	less	than 5.0 ppm (parts per million)
low	5 -	10 ppm
medium	10 -	20 ppm
moderately high	20 -	30 ppm
high	grea	er than 30 ppm

The soils of the Pemberton area which have very low phosphorus values in the surface 25 cm are Gates Lake, Nesuch, Ronayne, Zurcher, Scobie, Tenquille, Wolverine and Zurbrugg. Gilmore, Newberry, Sangster, Valleau, Verlinden, Whitehead, Wallace, Walden, and Zoltay soils are low in available phosphorus. Soils series with medium levels of available phosphorus are Nairn Falls, Quamell, Renville, Ranson, Sister, Wittal, Rutherford, Sankey, Shantz, Viccars, Vickberg and Wildfong. The Scullard series is the only soil exhibiting a high available phosphorus content which is likely the result of recent inorganic fertilizer application.

Depending on the crop to be grown, soils with high phosphorus levels will generally require little or no fertilization, whereas those which have medium to very low values will require varying amounts of fertilization as determined by individual soil tests, and crops to be grown.

E. Cation exchange capacity

Cation exchange capacity is defined as the total amount of exchangeable cations that a soil can absorb. This is expressed as the milli-equivalents (meq) of cations required to balance the negative charge of 100 grams of soil at pH 7.0. The exchange sites are generally located on organic matter and clay minerals. Depending on the organic matter content and the kind and amount

of clay minerals present, the exchange capacities can range from less than 10 to greater than 100 milli-equivalents per 100 grams (meq/100g) of soil. The following values can be used as a guide (modified after Luttmerding and Sprout, 1969) to the relative levels of the exchange capacities of soils:

very low	less than 5 meq/100g
low	5 - 10 meg/100g
medium	10 - 20 meq/100g
high	greater than 20 meq/100g

Very high (greater than 100 meq/100g) cation exchange capacities occur in the organic soils of the study area, particularly in the Zurbrugg and Zurcher series. High cation exchange capacity values of between 50 and 100 meq/100g are found in those soils having partially decomposed peaty surface layers particularly the Nesuch, Newberry, Ranson, Vickberg, and Zoltay series. The soils having cation exchange capacities in the range of 20 to 50 meq/100g include Quamell, Rutherford, Tenquille, Nairn Falls, Renville, Sankey, and Verlinden. These soils all have loam to silty clay loam surface mineral layers which have moderately low to high (5 - 20%) organic carbon contents. Shantz, Sister, Scullard, Valleau, and Viccars soils have medium values of cation exchange capacity. Low cation exchange capacities are found in Scobie, Sangster, Walden, Wildfong, Wallace and Wittal series soils. These soils are generally sand to fine sandy loam at the surface and have low levels of organic carbon. Very low cation exchange capacities are found in the soils which are sand to fine sandy loam at the surface and also have very low organic carbon contents. The soils included in this range are Gates Lake, Gilmore, Ronayne, Whitehead, and Wolverine series.

In general, the greater the cation exchange capacity the greater is the soils' ability to retain cations, and the less susceptible it is to leaching loss of many plant nutrients.

F. Exchangeable cations

Calcium, magnesium, sodium, and potassium ions are the most abundant exchangeable cations. Their proportions vary from soil to soil depending on soil characteristics and past management practices. Aluminum and hydrogen ions are very abundant in most soils, but are not measured directly, rather they are assumed to make up the remainder of the total cation exchange capacity that is not filled by the basic ions (Ca, Mg, Na, K). Aluminum and hydrogen ions predominate in acid soils. Calcium and magnesium are the most common in near neutral soils. Strongly

alkaline or saline soils may contain significant proportions of exchangeable sodium (in comparison to acid and neutral soils), as well as calcium and magnesium. Exchangeable calcium and magnesium, which are removed by crops and lost by leaching, are usually replaced by aluminum which results in a decrease in pH.

In general the soils of the Pemberton Valley tend to be more acid than those of the Birkenhead River, Blackwater Creek and Gates River valley and are generally low in most exchangeable cations.

Potassium

Exchangeable potassium exists in equilibrium with the fixed forms in the soil. This equilibrium is disturbed when the exchangeable forms are removed. In order to re-establish the equilibrium, some fixed potassium is released to the system. Thus, the maintenance of an adequate supply is dependent on the reserve of potassium and its rate of release. As a guide, the following levels of exchangeable potassium (calculated after Luttmerding and Sprout, 1969) may be used:

very low	less than 0.076 meq/100g
low	0.076 - 0.15 meq/100g
moderate	0.15 - 0.23 meg/100g
moderately high	0.23 - 0.31 meq/100g
high	greater than 0.31 meq/100g

Low potassium values occur in the Gilmore, Ronayne, Gates Lake, Verlinden and Whitehead soil series. Moderate potassium levels are found in the surface layers of the Walden, Wolverine, and Wittal series soils. The surface layers of Shantz, Sister, Sangster, Wildfong and Zoltay soils exhibit moderately high levels of potassium. Potassium levels in the surface layers of Nesuch, Newberry, Quamell, Scobie, Viccars, Walden, Zurcher, Valleau, Renville, Ranson, Rutherford, Sankey, Scullard, and Vickberg series soils are in the high range (0.31 to 0.70 meq/100g). Very high (> 0.70 meq/100g) potassium levels occur in the surface layers of Tenquille, Nairn Falls and Zurbrugg series soils.

Generally those soils with high to very high levels of potassium will require little or no potassium fertilization, whereas those with moderate to very low levels of potassium will require increasing amounts of potassium fertilizer with decreasing levels of potassium. The required levels should be determined by individual soil tests and crop requirements.

Sodium

The exchangeable sodium values for all of the soils of the Lillooet River valley, excluding Nairn Falls (1.15 meq/100g), Sister (0.30 meq/100g), and Zurbrugg (0.43 meq/100g), are low to very low (all < 0.20 meq/100g).

Sodium is not considered an essential plant nutrient, and becomes toxic to many crops at high to very high levels. However, sodium levels are not a problem in the Pemberton valley soils.

Calcium

Calcium values of the Lillooet River valley soils are generally greater than 4 meq/100g. Exceptions are Gates Lake, Gilmore, Whitehead, Ronayne, Scobie, Scullard, and Wolverine soils which have calcium levels of less than 4 meq/100g. These soils are all sandy loams or gravelly sandy loams with low cation exchange capacities and low organic matter contents and have limited ability to retain such easily leached cations as calcium.

Specific calcium levels have not been generally defined for British Columbia crops. However, calcium: magnesium ratios are critical for some crops.

Magnesium

B.C. Soil Test Laboratory (1978) generally rates soil levels of magnesium as: low less than 0.86 meq/100g medium 0.86 - 1.72 meq/100g high greater than 1.72 meq/100g

Magnesium levels of the Pemberton valley soils are generally between 1 and 4 meq/100g. However, Nairn Falls, Vickberg and Zurbrugg series magnesium levels are greater than 4 meq/100g. Soils with sandy surfaces, such as Gates Lake, Whitehead, Wolverine, Gilmore, Ronayne, Sangster, Scullard, Walden, Wildfong, Wallace, and Wittal, have magnesium values of less than 1 meq/100g.

Soils with high magnesium levels require little or no magnesium fertilization, while those with moderate to low levels with increasing amounts of magnesium fertilizer. As stated for other nutrients, the necessary amounts required should be determined by individual soil tests and requirements of the specific crops to be produced.

G. Base saturation

The base saturation percentage indicates how much of the total soil cation exchange capacity is occupied by calcium, magnesium, potassium, and sodium cations present in the soil. Aluminum and hydrogen ions generally occupy that portion of the total cation exchange capacity that is not satisfied by basic cations.

The ease with which cations are absorbed by plants is related to the degree of base saturation. For any given soil the availability of the basic cations increases with the degree of base saturation. For example a soil with a base saturation of 80% would provide cations to growing plants far more easily than the same soil with a base saturation of 40% (Tisdale and Nelson, 1966).

The sandy soils have the highest percentage of base saturation. Those soil series with the highest base saturation (> 60%) include Gates Lake, Gilmore, Scobie, Sangster, Tenquille, Valleau, Walden, Whitehead, Wildfong, Wallace, Wolverine and Wittal. Rutherford and Zurcher soils are the least base saturated with values of less than 30%.

H. Sulphur

Tentative B.C. Soil Test laboratory (1978) guidelines for sulphur levels in soils are: low less than 3 ppm medium 3 - 6 ppm high greater than 6 ppm

Available sulphur, an essential element for plant growth, has a wide range of values in the soils of the Lillooet River valley. The highest values (> 10 ppm) appear to occur in the very poorly drained soils which also have high organic matter contents in their surface layers. These high values are found in Renville, Valleau, Vickberg, Ronayne and Sankey soils. The lowest values (< 1.0 ppm) occur in the sandy, well to imperfectly drained soils which have low organic matter content in their surface mineral layers. These soils include Gates Lake, Gilmore, Ranson, Scobie, Shantz, Sangster, Viccars, Wolverine, Walden, Whitehead, Wildfong, Wallace, and Wittal.

Analyses for available sulphur was not determined in most of the organic soil layers. The amount of available sulphate in organic soils is highly dependent on the rate of mineralization, which is controlled by local temporary environmental factors. These factors may change rapidly and thus any analyses would have little basis for extrapolation.

Soils with high sulphur levels require none or only slight sulphur fertilization for most crops. Soils with moderate to low levels of sulphur require varying additions of sulphur depending on the crop and the amount of sulphur available in the individual soils as determined by soil tests.

I. Boron, copper, cobalt

Analyses of available boron, copper, and cobalt levels were completed for a few representative soils in order to provide an indication of levels present in the study area.

Boron levels appear to be relatively constant in the soils analysed varying from 0.22 ppm to 0.34 ppm in the surface 25 cm, although values tend to be slightly higher (0.80 ppm) in the silt loam to silty clay loam Rutherford soils.

Copper values are highly variable in the limited number of samples analysed. They are highest at 19.95 ppm in the very poorly drained, silt loam to silty clay loam Rutherford soils. Wolverine series soils, which are sandy and imperfectly drained, have the lowest levels of copper (1.66 ppm) of the soils analysed.

Cobalt levels are generally low, less than 0.25 ppm, although the Scobie series has a substantially higher value of 0.60 ppm.

6.1.3 <u>Soil Suitability for Crops</u> (by N. Gough, British Columbia Ministry of Agriculture) Climate largely determines the kinds or range of crops that may be grown in a region. Soil suitability, the ability of a soil to produce regionally adapted crops of economic importance, depends on factors other than climate. These factors include good management practices such as fertilizer use, adequate drainage and irrigation in combination with satisfactory topography.

In the Lillooet River Valley, northwest of Lillooet Lake to approximately North and South creeks some of the suitable crops include: cauliflower, cabbage, lettuce, parsnip, turnip, beets, carrot, early hybrid corn varieties, wheat, barley, oats, peas, onions, asparagus, pumpkin, squash, cucumber, timothy, clover, potato and strawberry. These crops have generally been grown success-fully throughout the valley except in some minor unfavourable climatic locations, or on sandy and

gravelly, rapidly drained soils and in some poorly to very poorly drained areas. Commercial tomato production is not recommended because of the high possibility of late spring frost damage and insufficient heat units available to bring the crop to maturity.

Among the legumes most commonly grown for hay in the valley, alfalfa is prone to failure on poorly to very poorly drained - high ground water table soils. This is most likely due to the high water tables that exist for parts of the year and low boron levels in many of the soils.

Organic or peaty phase mineral soils occupy a comparatively small percentage of the study area but these soils, if properly managed, can grow good crops of potato, onion, carrot, parsnip, beets, cabbage, cauliflower, sweet corn and lettuce.

Field trials of a limited number of crops have been carried out since 1949 by the Canada Department of Agriculture (now Agriculture Canada) and the B.C. Department of Agriculture (now Ministry of Agriculture). The yields of these trials, produced under various types of management and farming practices, do not necessarily represent the highest yields which may have been obtained under the best systems of management. It is almost impossible to relate most of the yields to soils that are now mapped since site specific locations of these trials are not usually available from reports.

Faulknor (1951) reported combined commercial and seed potato yields averaging 23 tonnes/ha and an average per hectare yield of 14 tonnes for turnips.

Reports compiled in the early 1950's by Hughes (1978) indicated fertilized oats in variety tests yielded up to 3.7 hl/ha in one location, while in another, up to 8.8 hl/ha were obtained on mineral soils. Wheat yields of 1.6 hl/ha and barley at 2.0 hl/ha were also reported at the first location.

In 1953 R.M. Hall (1959) had carried out fertilizer trials on potatoes. He obtained combined commercial and seed yields of up to 47 tonnes/ha. Similar fertilizer applications on potatoes over three subsequent years (1954, 1955 and 1956), gave highest average yields of 38 tonnes/ha. The 1954-1956 trials were carried out on Nairn Falls soils located on the ald J.C. Collins' farm.

R.M. Hall (1959) in fertilizer trials conducted on oats in 1955, reported highest average yields of 6.6 hl/ha.

Snow Crest Packers has reported pea yields ranging from 3 to 9 tonnes/ha (Hughes, 1978).

If the soils maps acompanying this report are used to identify soils when future yield plot work is carried out, then it will not be long before valid predictions can be made on the potential productivity of the various soils.

6.2 Physical Properties Of The Soils And Their Implications For Use

6.2.1 Soil Texture and Drainage Classes

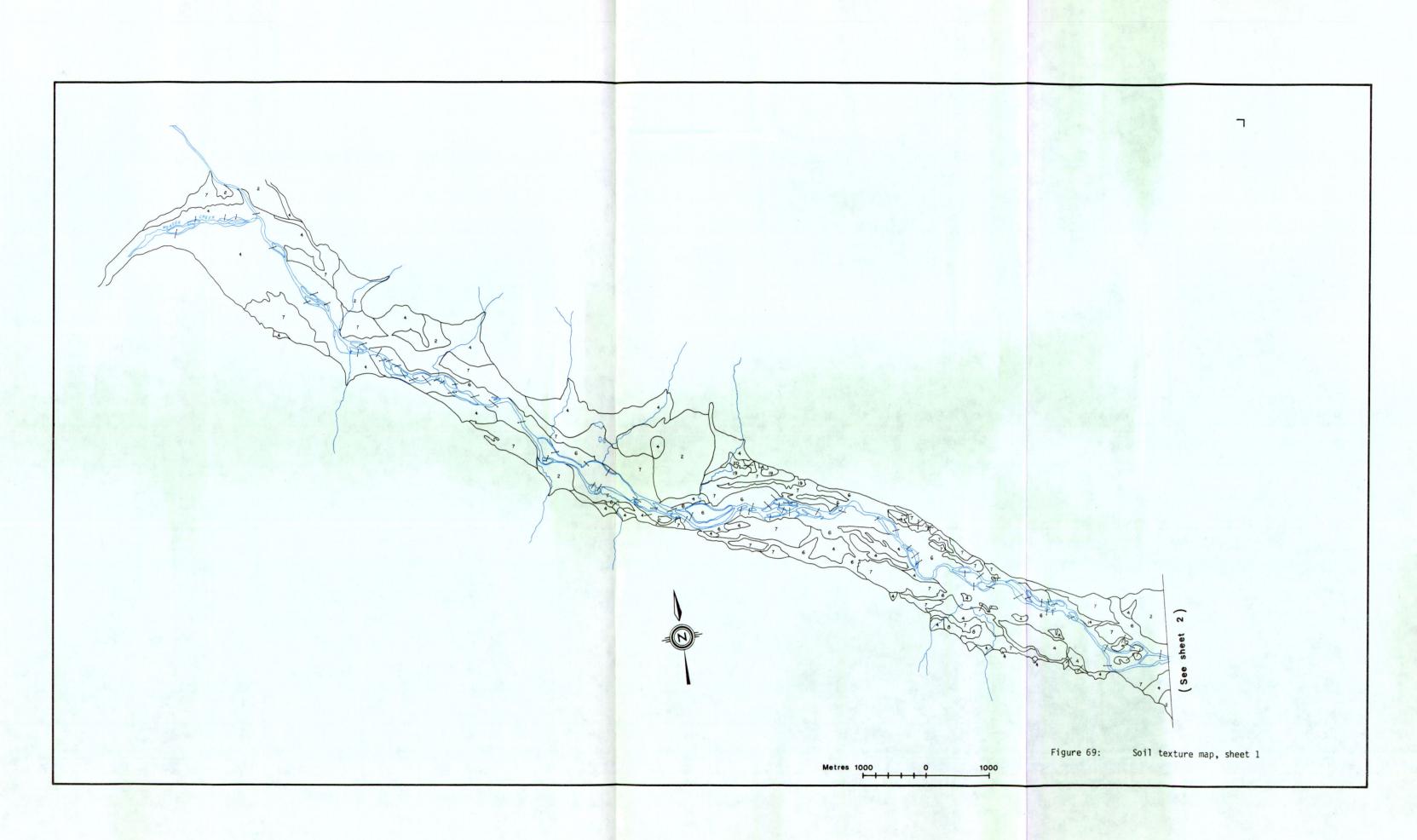
A. Soil texture

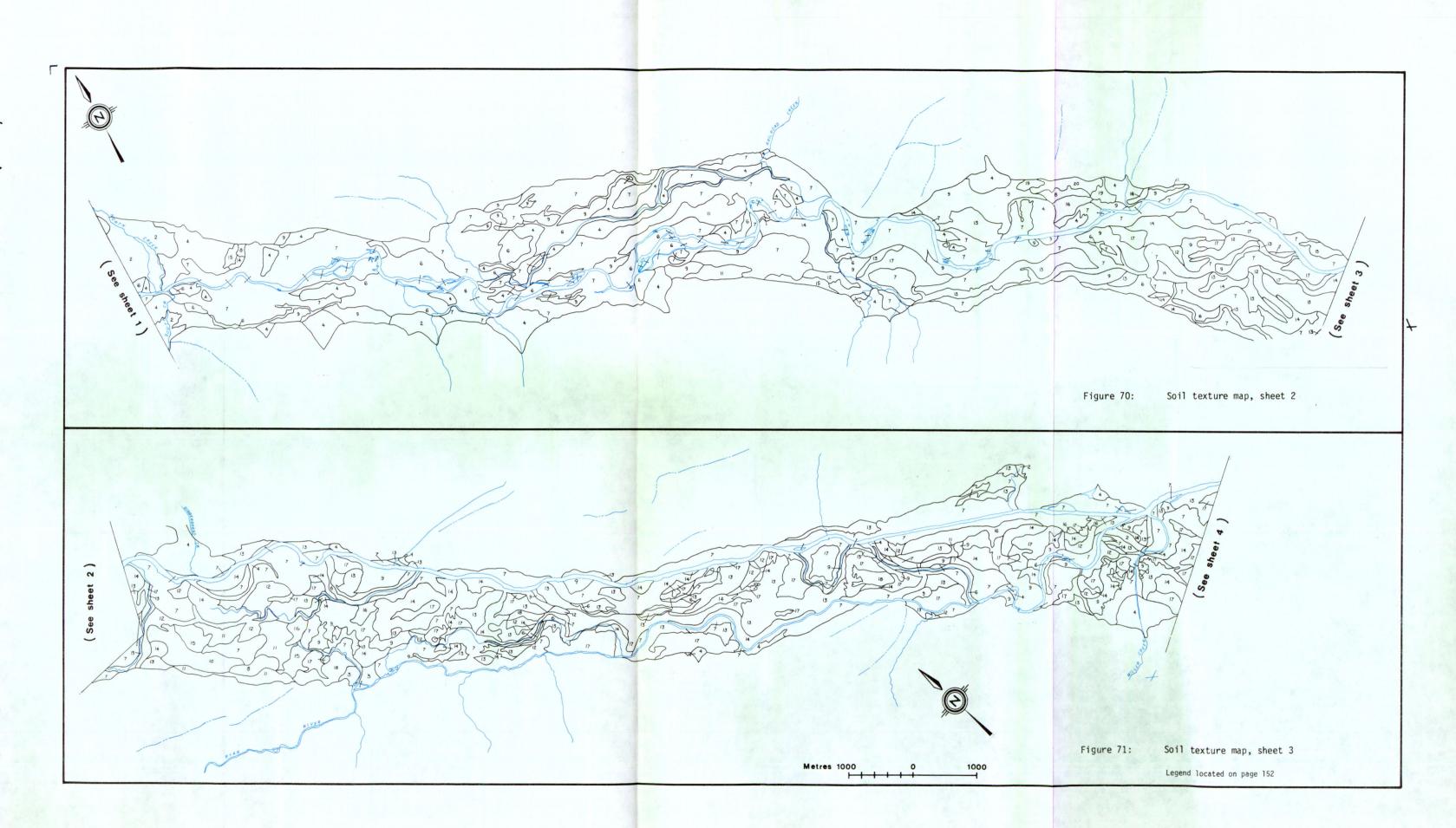
Soil texture refers to the relative proportions of sand, silt, and clay in a soil. Textural class groupings are those defined in the 1974 "System of Soil Classification for Canada" as follows:

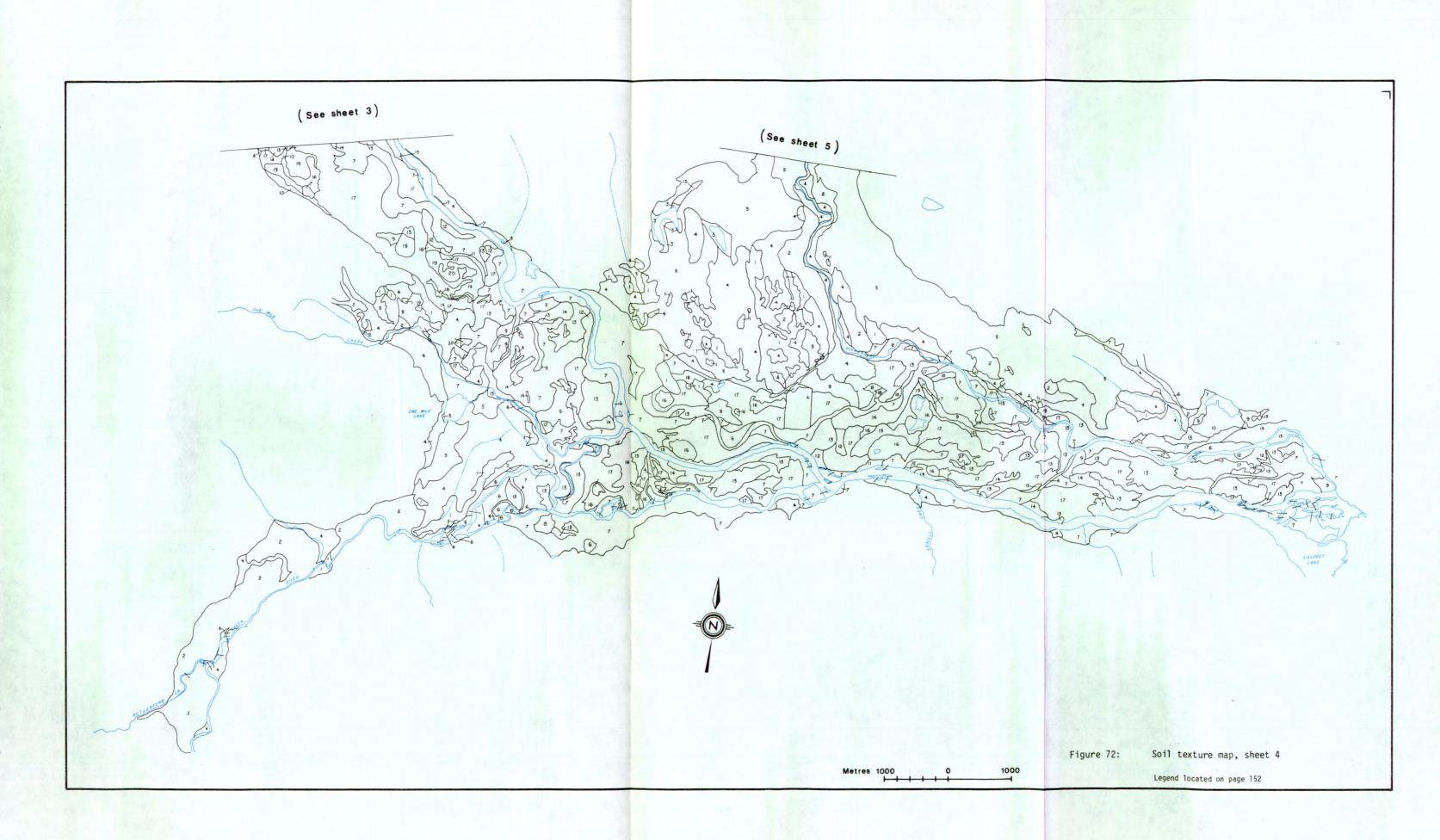
- a) coarse textured
 - 1. very coarse: sand and loamy sand
 - 2. moderately coarse: sandy loam and fine sandy loam
- b) medium textured
 - 1. medium: loam, silt loam, and silt
 - 2. moderately fine: sandy clay loam, clay loam, and silty clay loam
- c) gravelly textured gravelly class names are added to the textural class names according to the following rule:

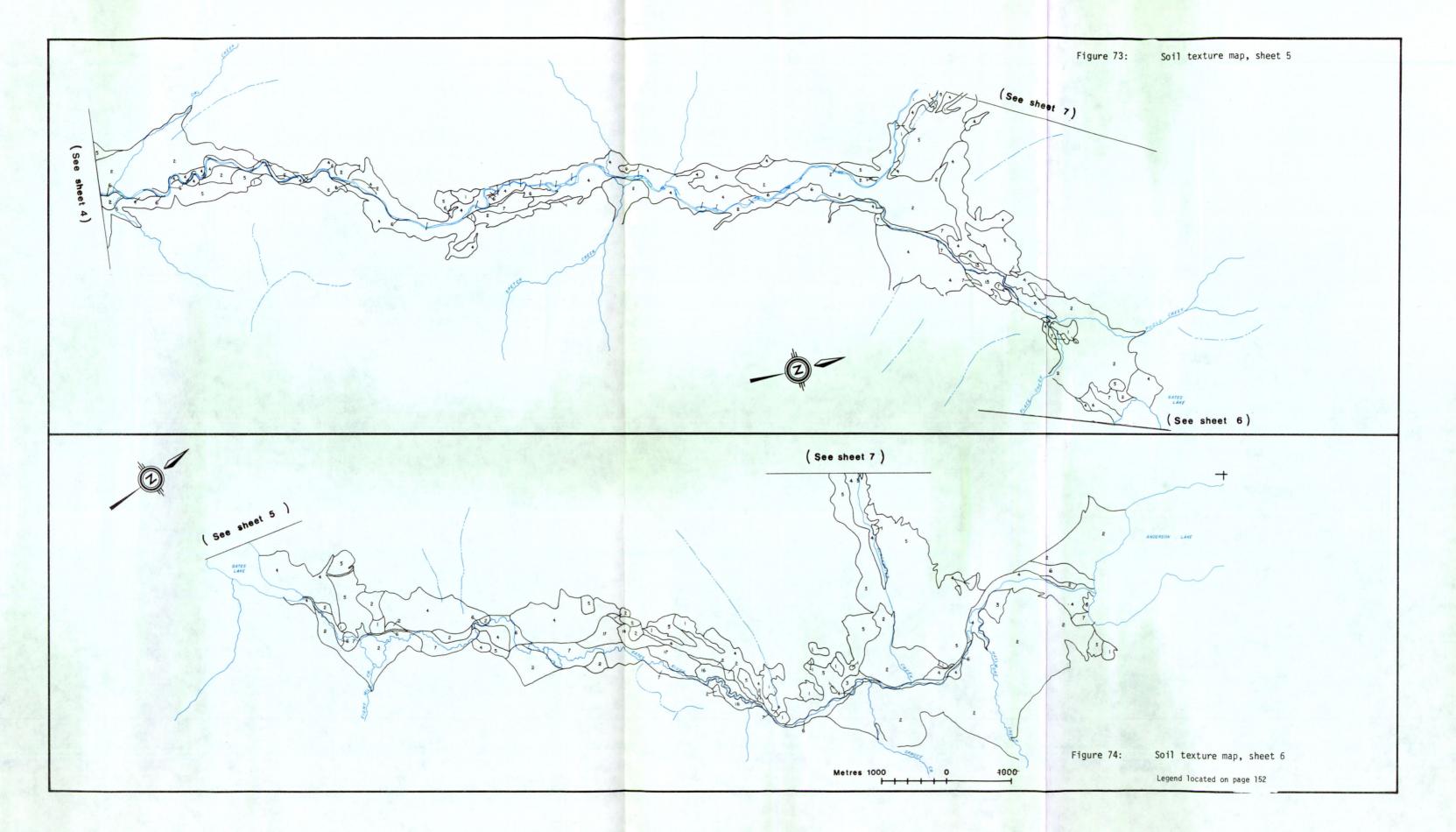
% gravel by volume

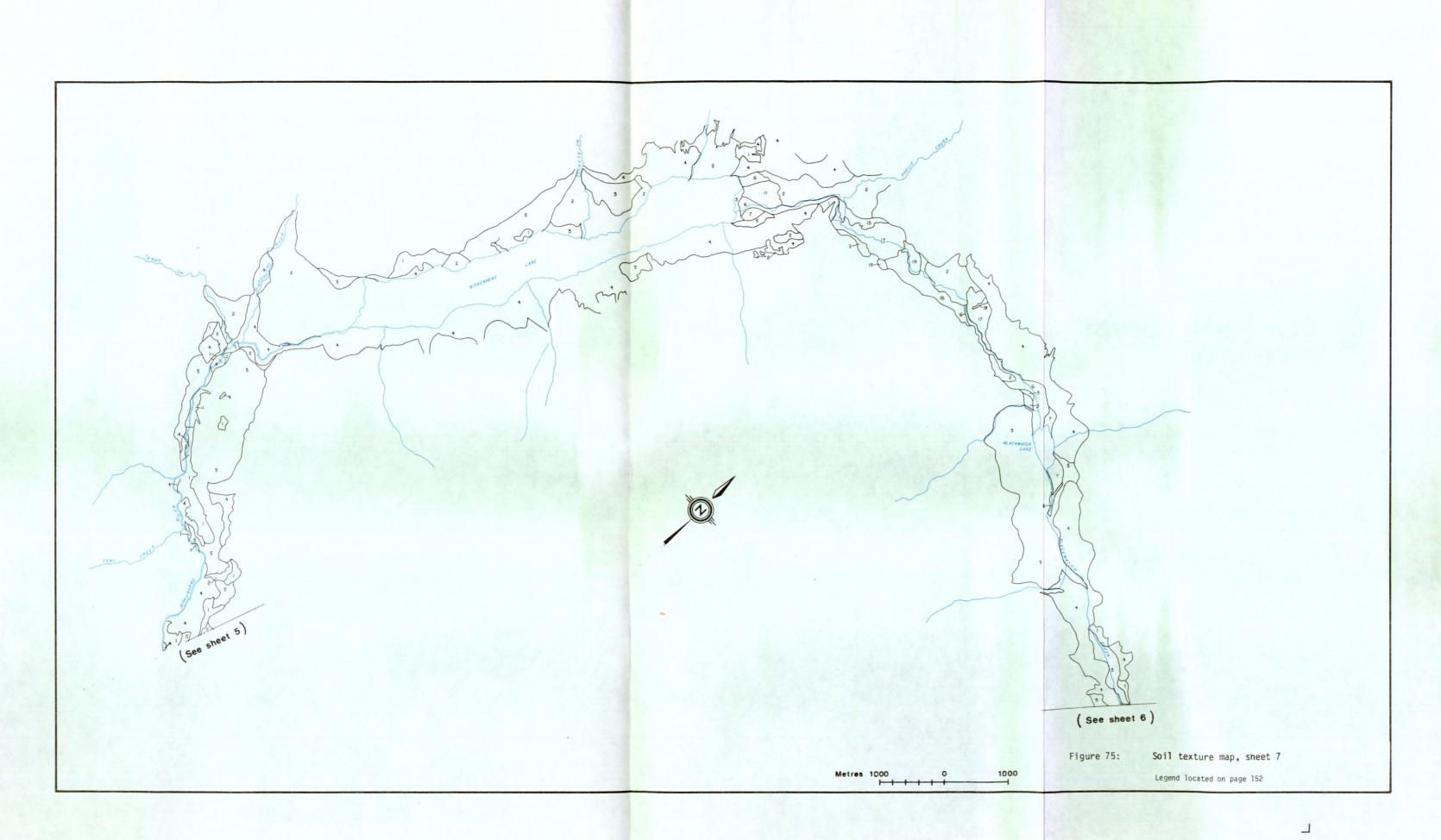
<20	- use textural class name only
20-50	- gravelly and texture
50-90	- very gravelly and texture
>90	- cobble land type


Maps showing the distribution and extent of the textural class groups found within the study area are presented in Figures 69 - 75.


Legend for Figures 69 - 75: Soil Texture Maps


Ма	p Symbol	Textural Classes	Soils Included
	1	Bedrock	RO
	2	Bouldery or cobbly, gravelly coarse and gravelly very coarse textured	CC, CD, C₩, FB, CH:bv, FL, FR, GR, GU
	3	20 to 50 cm or >50 cm of coarse textured material overlying bouldery, gravelly, coarse textured material	FC, F0
	4	Gravelly, coarse textured	CA, CB, CE, CF, CG, CH, CI, GG, GI, FA, WH, WG
	5	Gravelly, very coarse to moderately coarse textured	YA, YV
	6	20 to 50 cm of very coarse to moderately coarse textured material overlying gravelly, coarse textured material	RA, RB, WD, WE, FA:cs
	7	Very coarse to moderately coarse textured	GA, RI, RN, SC, WO
	8	15 to 60 cm (fibric) or 40 cm (mesic) of peaty material overlying very coarse to moderately coarse textured material	NE
	9	Alternating layers of very coarse to moderately coarse textured material interbedded with medium to moderately coarse textured material; coarse textured at the surface	SN, WI
	10	15 to 40 cm (mesic) or 60 cm (fibric) organic material overlying alternating layers of medium to moderately fine and very coarse to moderately coarse textured material	NW
	11	20 to 50 cm of very coarse to moderately coarse textured material overlying medium to moderately fine textured material with organic material interbedded	VE
	12	20 to 50 cm of very coarse to moderately coarse textured material overlying medium to moderately fine textured material	SH, WT
ł	13	20 to 50 cm of medium to moderately fine textured material overlying very coarse to moderately coarse textured material	RE, SM, SU, WL, WN
i	14	Alternating layers of medium to moderately fine and very coarse to moderately coarse textured materials; medium textured at surface	\$ 1
1	15	Alternating layers of medium to moderately fine, very coarse to moderately coarse, and organic materials; 20 to 35 cm of medium textured material at surface	VC
	16	Medium to moderately fine textured materials interbedded with organic materials; 20 to 35 cm of mineral material at surface	VA, VB, VI
	17	Medium to moderately fine textured	QM, QU, RG, RU, SA, SE, TN
	18	15 to 40 cm (mesic) to 60 cm (fibric) of organic material overlying medium to moderately fine textured material	NA, NB
	19	Greater than 60 cm of fibric organic material interbedded with layers of mineral material	ZA, ZE, ZR
	20	Greater than 40 cm oદ mesic organic material interbedded with layers of mineral material	ZO
	NOTE:		
	textur	mbols are assigned to a unit according to the largest proportion of that un al class and sequence. Thus there may be significant inclusions of areas w sting textural classes within designated units.	nit which is a specific which are composed of
	1:20 0	00 mapping available from: The Librarian, Resource Analysis Branch, Minist: Parliament Buildings, Victoria,	
		·	


.

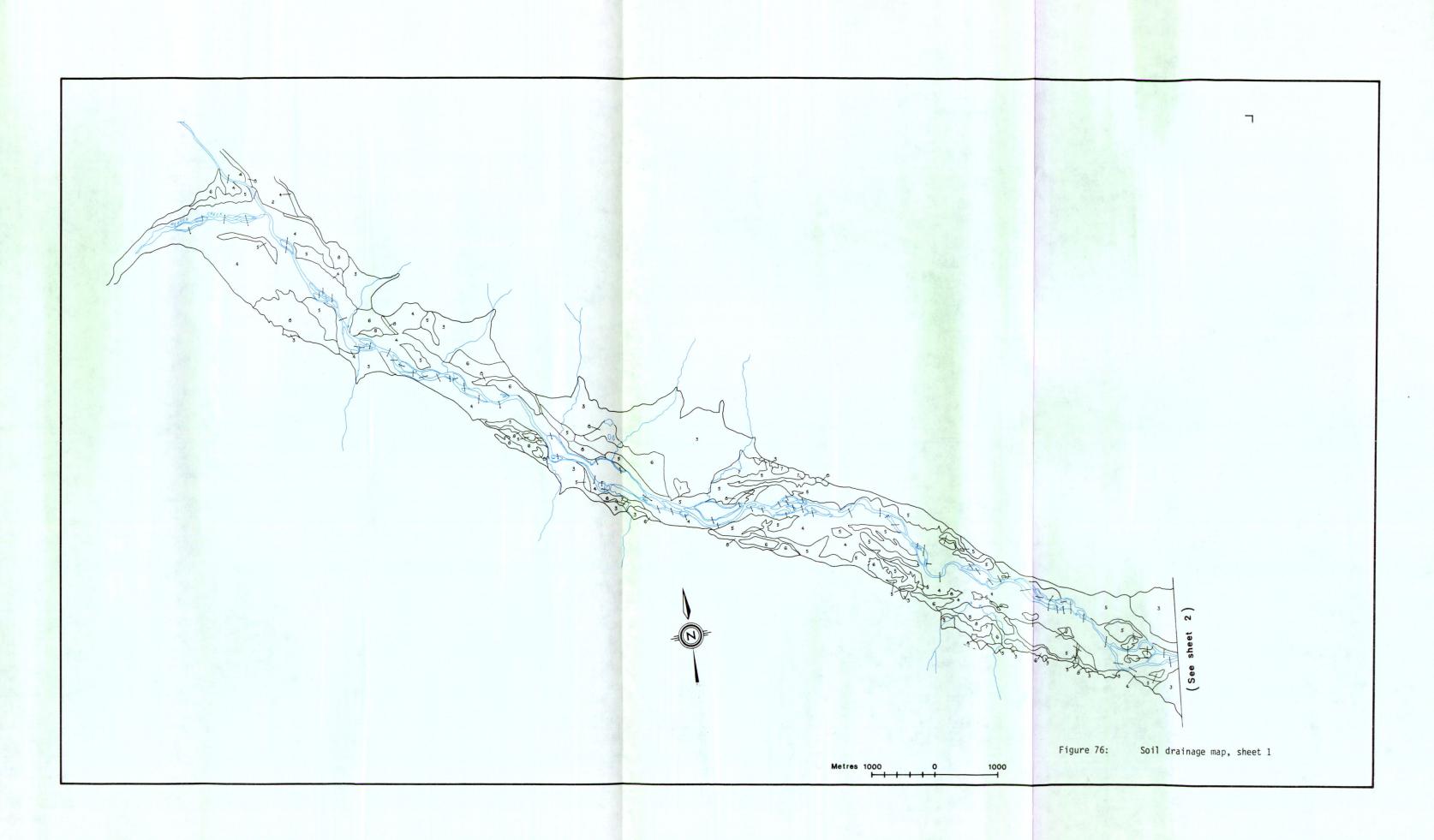

,

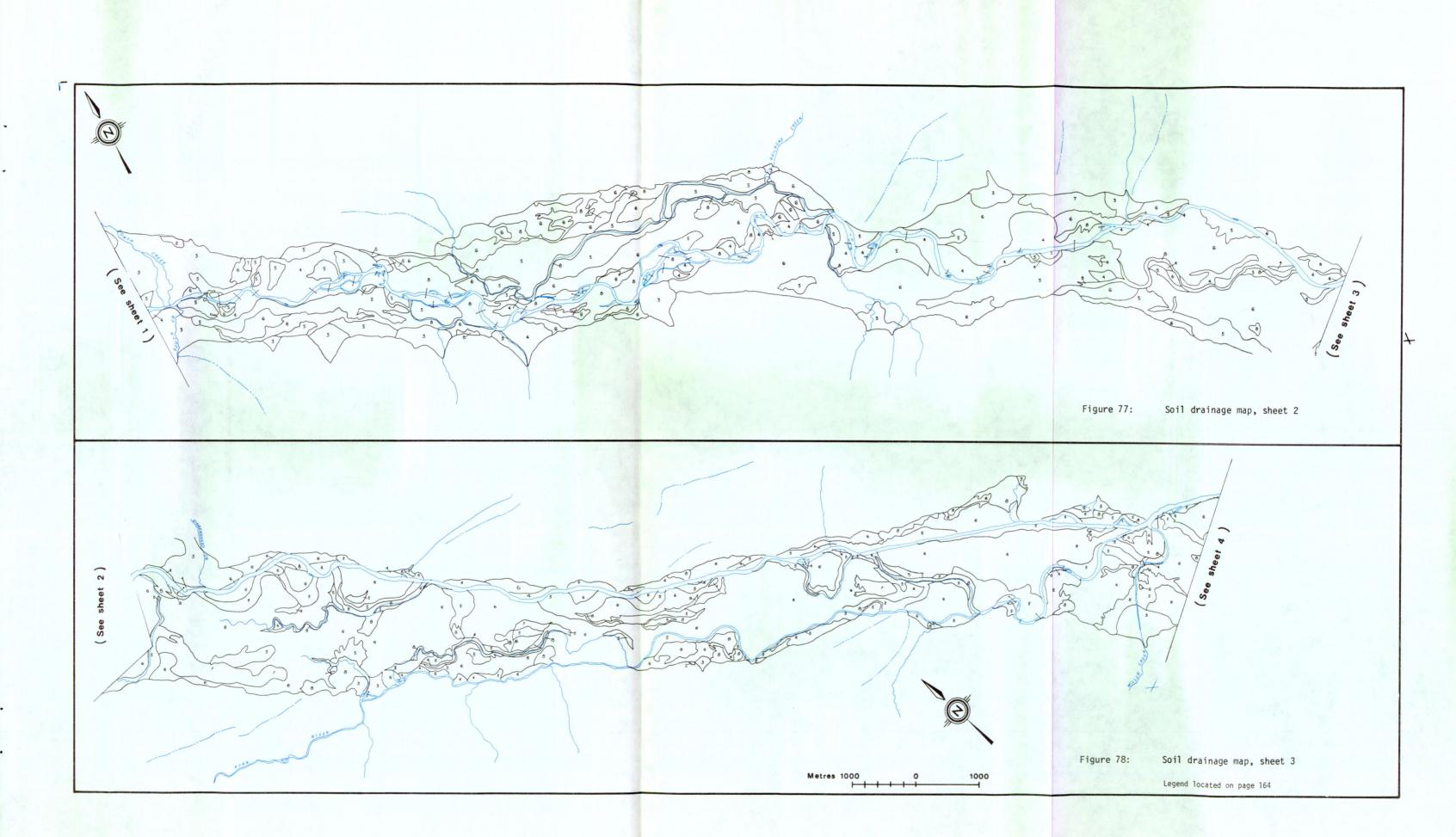
B. Soil drainage

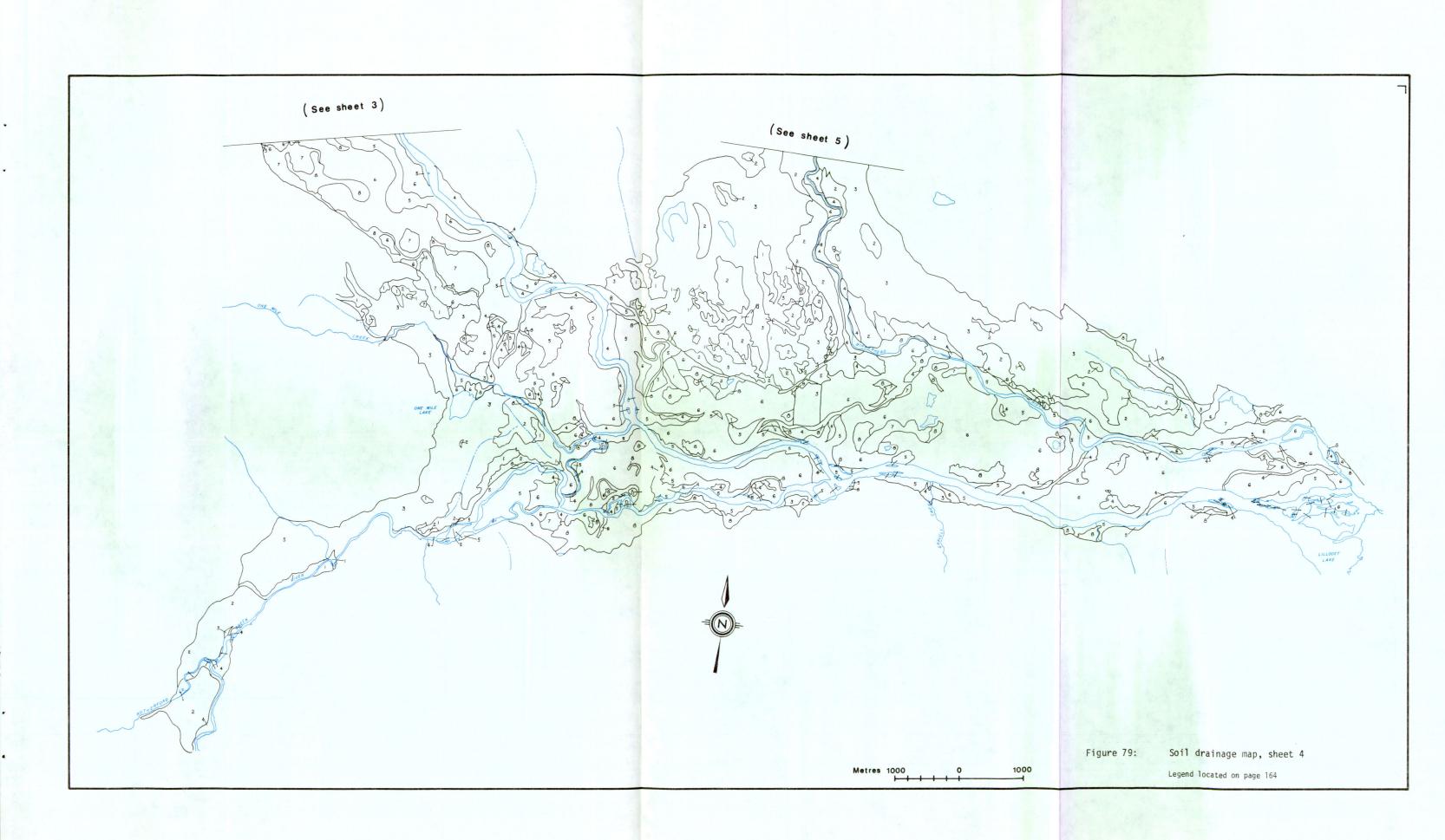
Soil drainage classes were determined according to the "System of Soil Classification for Canada" (1974) and the "Cansis - Manual for describing soils in the field" (1975, 1978). Definitions of the seven soil drainage classes are as follows:

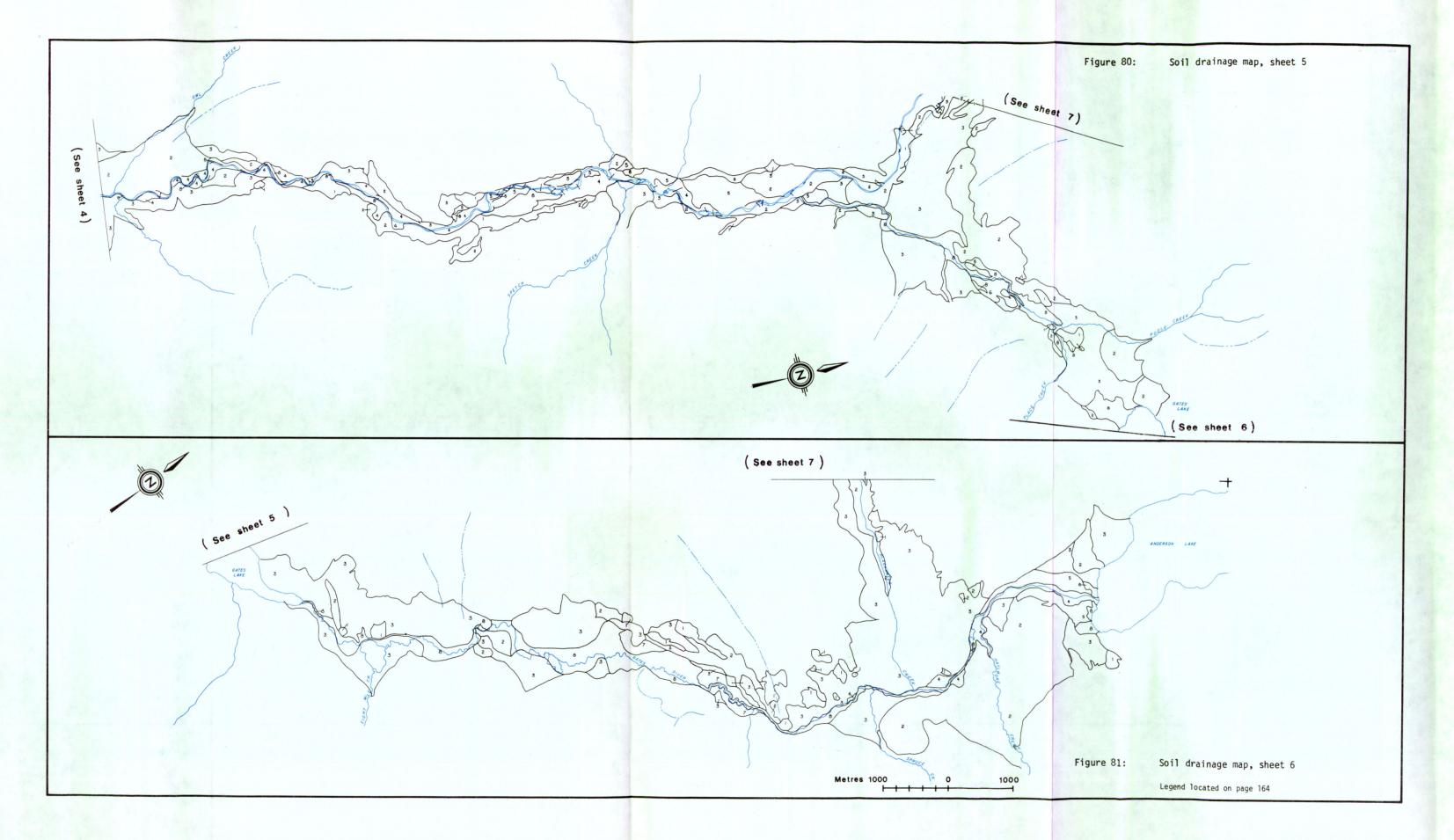
very rapidly drained - Water is removed from the soil very rapidly in relation to	
supply.	
rapidly drained - Water is removed from the soil rapidly in relation to supply.	
well drained - Water is removed from the soil readily but not rapidly.	
moderately well drained - Water is removed from the soil somewhat slowly in relation to	
supply.	
imperfectly drained - Water is removed from the soil sufficiently slowly in relation	
to supply to keep the soil wet for a significant part of the	
growing season.	
poorly drained - Water is removed so slowly in relation to supply that the soil	
remains wet for a comparatively large part of the time the soil	
is not frozen.	
very poorly drained - Water is removed from the soil so slowly that the water table	
remains at or on the surface for the greater part of the time	
the soil is not frozen.	

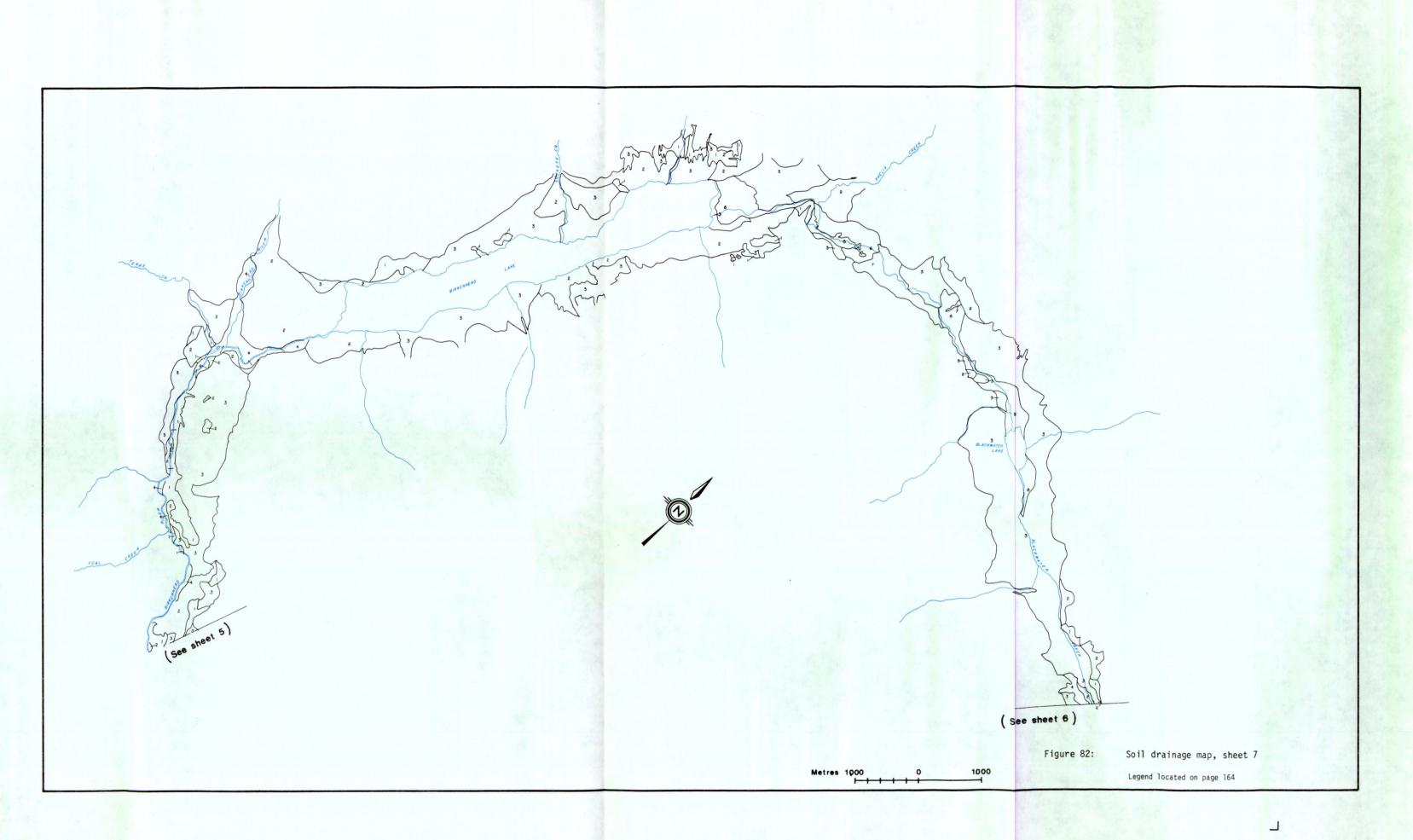
The distribution and extent of the drainage classes occurring in the study area is indicated in Figures 76 - 82.


Legend for Figures 76 - 82: Soil Drainage Maps


Map Symbol	Soil Drainage Classes	Soils Included
1	Rapidly drained	CD, RO, CW
2	Well to rapidly drained	CA, CB, CE, CG, FL, GR, GU, FR
3	Well drained	CC, CF, CH, CI, FA, FB, FC, FO, YA, YV
4	Well to moderately well drained	GA, GG, GI
5	Imperfectly drained	TN, WD, WE, WG, WH WI, WL, WN, WO, WT
6	Poorly drained	SA, SC, SE, SH, SI, SM, SN, SU, VA, VC, VE, VL, VN
7	Poorly to very poorly drained	NA, NB, NE, NW, QM, VB, ZA, ZE, ZO, ZR
8	Very poorly drained	QU, RA, RB, RE, RG, RI, RN, RU, VI


NOTE:


Map symbols are assigned to a unit according to the largest proportion of that unit which is a specific drainage class. Therefore, there may be significant inclusions of contrasting drainage classes within some units.


1:20 000 mapping available from: The Librarian Resource Analysis Branch Ministry of Environment Parliament Buildings Victoria, B.C. V8V 1X4

6.2.2 Hydrologic Properties

Available water storage capacity is defined as the ability of a soil to retain that portion of water in a soil that can be readily absorbed by plant roots and therefore was determined on contrasting textured layers within the surface 50 cm of the soil profile. Bulk density, which is the mass of dry soil per unit bulk volume, was also determined in these layers as well as at the greatest depth within the sample pit. Saturated hydraulic conductivity, the rate of viscous flow of water in a soil at saturation was measured "in situ" (Van Beers, 1963) at depths of 180 and 100 cm wherever the water table was sufficiently high to allow these measurements to be made. The data from the above determinations are presented in Table 6.

Available water storage capacity (AWSC) is dependent primarily on the texture and organic matter content of the soil layers. Soils with silty textures and high organic matter content usually have the highest AWSC. Organic layers of the Nesuch series, and the Zoltay series have the highest AWSC, greater than 0.5 cm/cm. The AWSC of the sandy textured, low organic matter content layers of Gates Lake, Gilmore, Newberry, Ronayne, Ranson, Scobie, Whitehead, Wolverine, and Wittal series tend to be very low, less than 0.15 cm/cm. The higher the AWSC, the more water available for plant growth after drainage.

Bulk density depends largely on the texture and degree of compaction of the soils being evaluated and affects the hydraulic conductivity of the soil. Generally, the higher the bulk density, the more compact is the soil, the more poorly defined is the soil structure, and the smaller is the amount of pore space. The higher the bulk density for a given textural class, the smaller the amount of pore space present (Tisdale and Nelson, 1966). The bulk densities of the Lillooet River valley soils are relatively low with the majority of soils having values of less than 1.50 g/cm³. The lower the porosity of the soil the more slowly water will drain through the soil. At very high bulk densities the flow of water and the penetration of roots may be impeded to such a point that plant growth is limited or restricted, whereas at very low bulk densities the water may be allowed to pass through the soil so quickly that they are left droughty.

Soil Name	Depth (as defined in profile description) Cm	Soil Texture	Available Water Storage Capacity cm/cm	Bulk Density g/cm ³	Saturated Hydraulic Conductivity m/day	Soil Name	Depth (as defined in profile description) Cm	Soil Texture	Available Water Storage Capacity cm/cm	8u1k Density g/cm ³	Saturated Hydraulic Conductivity m/day
Gates Lake	0- 24 24- 35 35- 56 93-103	sl, fsl ls ls s	0.06 0.11 0.02	0.66	*	Rutherford	0- 25 25- 60 180	sil sicl	0.25 0.28	0.66 0.85	1.2
Gilmore	0- 10 10- 50	gs s	0.01 0.004	***	*	Sankey	0- 50 50- 83 180	sicl	0.38	1.18 0.96	0.6
Nairn Falls	0- 52 82-102 180	sil sicl	0.195	0.41 0.69	0.8	Scobie	0- 23 23- 45 45- 61 120	fsl sl fsl	0.14 0.05 0.09	1.15	**
Nesuch	14- 0 0- 10 10- 20 104	peat sil sl	0.56 0.81 0.09	1.17	**	Shantz	0- 1/ 17- 55 80-100	l fs1	0.22 0.14	1.25	**
Newberry	0- 37 37- 47 80 160	s] sil	0.08 0.24	0.58	2.2 1.7	Sister	0- 36 36- 64 91-106 180	sil ls sil	0.25 0.02	0.82	8.1
Quamel1	0- 15 15- 66 180	l sil	0.22 0.25	0.88	1.6	Sangster	0- 21 21- 32 32- 42 42- 51	fsl sil fsl sicl	0.25 0.57 0.21	1.64	**
Ronayne	0- 12 12- 41	sil gls	0.38 0.015	0.90	**		97-127	sil	0.60	2.03	
Renville	0- 29 29- 50 76-106	sicl fsl	0.25 0.12	0.83 1.08	**	Scullard	0- 47 47- 60 120 180	sicl 1	0.36 0.27	1.11 1.07	0.5
Ranson	0- 28 28- 48 48- 73 170	ls sil si	0.03 0.34 0.12	1.33	1.4	Tenquille	0- 30 30- 58 105	sil sicl	0.21 0.24	0.84 1.13	*

Table 6: Comparative values of available water storage capacities, saturated hydraulic conductivities, and bulk densities for selected soils of the Pemberton Valley

unable to measure "in situ"; the water table was at greater than 2m depth
 unable to measure "in situ"; sands at depth filled in the auger hole, and adequate equipment was not available.
 *** gravel - not sampled.

× ,

Soil Texture Terms:

fsl - fine sandy loam sl - sandy loam s - sand ls - loamy sand

l - loam sil - silt loam sicl - silty clay loam

gs – gravelly sand gsl – gravelly sandy loam

Soil Name	Depth (as defined in profile description) cm	Soil Texture	Available Water Storage Capacity Cm/Cm	Bulk Density g∕cm ³	Saturated Hydraulic Conductivity m/day	Soil Name	Depth (as defined in profile description) cm	Soil Texture	Available Water Storage Capacity cm/cm	Bulk Density g/cm ³	Saturated Hydraulic Conductivity m/day
¥alleau	0- 15 15- 35 35- 45 45- 61 70-100	l sicl sil peat	0.27 0.31 0.37 0.23	0.93		Wittal	0- 20 20- 31 31- 40 40- 61 61-101	fsl sil lfs sil sil	0.33 0.24 0.03 0.31	1.14 0.84	•
Viccars	180 0- 24 24- 32 32- 48	l Is sicl	0.21 0.02 0.25 0.17	0.97	0.3	Wallace	0- 23 23- 31 31- 57 84-118	sicl ls sil s	0.30 0.04 0.23	0.90	*
Verlinden	48- 71 94-106 180 - 18- 0	-sil sil muck	0.26	1,13	7.4	Wolverine	0- 11 11- 46 46- 52 120	fsl sl-ls fsl	0.12 0.03 0.10	1.19	*
	0- 24 24- 35 35- 53 64- 86 162	sl peat sic sil	0.07 0.69 0.30	1.00 1.00	0.3	Wildfong	0- 16 16- 24 24- 32 32- 42 42- 63	fsl sl sicl fsl sil	0.17 0.08 0.31 0.11 0.24	1.05	*
Vickberg	0- 9 9- 19 19- 39 39- 48	sicl peat fsl peat	0.32 0.21 0.55 0.22	0.83		Zurbrugg	73-113 100 180	sì		1.18	14.1 8.7
Walden	100 180 0- 19 26- 49	l gs	0.35 0.02	1.36	3.4 *	Zurcher	$ \begin{array}{r} 114-82\\82-66\\66-44\\44-31\\14-0\end{array} $	peat peat sil peat	0.08 0.12 0.17	0.23	2.8
Whitehead	0- 8 8- 63	gs1 gs	0.04 0.015	***	*	Zoltay	66 120- 90 90- 68 0	peat Is	0.50 0.06	1.06	2.6
			<u> </u>					 	 		

Table 6 cont'd:	Comparative values of available water storage capacities, saturated hydraulic conductivities, and
	bulk densities for selected soils of the Pemberton Valley

unable to measure "in situ"; the water table was at greater than 2 m depth.
 unable to measure "in situ"; sands at depth filled in the auger hole, and adequate equipment was not available.
 gravel - not sampled

Soil Texture Terms:

٠

fsl - fine sandy loam sl - sandy loam s - sand ls - loamy sand

gs – gravelly sand gsl – gravelly sandy loam

ι τ

l - loam sil - silt loam sicl - silty clay loam

Hydraulic conductivity values range from moderate 0.3 m/day to rapid 14.1 m/day. Zurbrugg series, Sister series, and Viccars series soils have rapid hydraulic conductivities at 180 cm depth. However, Nairn Falls, Sankey, Scullard, Valleau, and Verlinden soil series have moderate hydraulic conductivities of less than 1m/day. A guide to hydraulic conductivity rates (British Columbia Drainage Guide, 1972) follows:

slow	less than 0.01 to 0.1 m/day
moderate	0.1 to 1.0 m/day
moderately-rapid	1.0 to 5 m/day
rapid	greater than 5 m/day

In general, the higher the hydraulic conductivity the easier a soil is to drain by artificial means.

The results of AWSC, bulk density and hydraulic conductivity determinations are useful in determining drainage tile spacings and irrigation requirements. However, in order to plan a drain tile or irrigation system for a specific farm it will be advantageous to conduct further on-site measurements. This is due to the variability of soils generally found on any one farm or even in one field.

6.2.3 <u>Soil and Water Management</u> (by M. Driehuyzen, British Columbia Ministry of Agriculture)

The water regime of the Pemberton Valley has a strong influence on land use and water management requirements for agricultural production. The valley floor forms the lower part of the Lillooet River basin above Lillooet Lake, through which runoff of an area of 3 100 km² or 1 915 000 ha finds its way via the Lillooet river to Lillooet Lake. In the course of this discharge, materials are either eroded or deposited along the way. Also fluctuations of the ground water levels are brought about which affect the use of the valley floor.

As the proportion of watershed area to valley floor area is in excess of 15 to 1, it is not difficult to understand that hydrologic events in the watershed can have significant consequences on the valley floor. Dikes have eliminated most of the flooding in the lower part of the valley but this protection is not present in the upper regions where hydraulic gradients increase and erosion and braiding occurs actively.

Before completion of diking in 1954 and in the presently undiked portion of the flood plain, periodic flooding caused and continues to cause deposition of river sediment. The coarsest materials accumulate close to the river bank while the finer ones accumulate further away at relatively lower elevations. Poor drainage conditions are generally encountered in the finer textured soils away from the main stream whereas dry or droughty conditions occur in the coarse textured soils closer to current, or abandoned stream channels. In general, the finer textured soils are at slightly lower elevations than the coarser textured soils.

Meltwater from accumulated winter snow brings about a prolonged period of discharge which peaks early in June, followed by a second, higher peak in mid July. Seepage from these high river stages can contribute significant amounts of soil moisture at the peak of the growing period of crops, thus mitigating drought conditions and reducing irrigation water requirements. The onset of fall rains brings about another discharge peak in October. Normally the fall discharge peak is lower than summer discharge, although the highest discharge volumes on record have occurred in October.

A. Drainage

The majority of soils in the Pemberton Valley are Regosolic, Gleysolic or Organic soils which are subject to high water table conditions during significant periods of the year. Melting of accumulated snow, high precipitation and low evapotranspiration in combination with low elevation, low hydraulic conductivity of the soil and poor outlet conditions are the main factors responsible for the adverse drainage conditions. The effects of poor drainage are variable, depending on land use and the degree of poor drainage. However, in general, such effects may vary from total land loss where soils are completely unsuitable for cropping, in severe cases, to reduced productivity and restricted land access. Most of the poorly to very poorly drained soils will benefit from improvements. Such improvements range from providing, or improving, outlet ditches to more detailed measures, including mole drainage and in some cases complete detailed under drainage usually consisting of a system of parallel tile (plastic) drains emptying into an outlet ditch. The depth and width of spacing of drains are closely related to each other. Under normal soil and outlet conditions a drain depth of 120 cm is used. The distance between drain lines (drain spacing) depends besides the drain depth, on a number of factors of which the hydraulic conductivity of the soil is of major importance. Although soil structure can have a strong bearing on the hydraulic conductivity it is usually texture that has the greatest influence. On the average, a drain spacing

of 20 m gives good results. Finer textured soils generally require a spacing of 15 m or less, while coarser textured soils give good results with a spacing of 25 to 30 m (B.C. Drainage Guide, 1972).

Elimination of excess soil water as early as possible in spring is advisable, not only for improved growing and land-use considerations, but also in view of deteriorating outlet conditions as the main basin runoff builds up to a peak in early June. Unless drainage takes place before stream water levels have risen it will be more difficult or impossible to do so later on when river levels are high. This is particularly true in the Pemberton valley since ground water levels in this valley are highly dependent on Lillooet River levels. Melting of snow due to temperature fluctuations in early fall, together with high rainfall causes high discharge conditions during this period. Also, in view of the potential danger of crop loss during this period, proper drainage reduces such danger and facilitates harvesting. Good drainage facilities can be of dual benefit by providing water for sprinkler irrigation and in some cases for subirrigation.

Iron algae, produce a filamentous reddish brown growth called ochre, which is prevalent in many areas of the valley. Ochre combined with the bacteria that produce it can clog most drainage facilities and are particularly hazardous to underdrainage systems.

B. Irrigation

Low rainfall, in conjunction with limited available water storage capacity of many soils of the Pemberton valley, is responsible for a deficit of water available for plant growth during the summer. However, seepage and high ground water levels in early June and particularly during the second part of July have a considerable mitigating effect on this water deficit. Additional benefits can be derived from these high river levels by upgrading current drainage facilities and adapting them for subirrigation.

From climatic observations, an average seasonal water deficit ranging from 265 to 355 mm occurs if moisture stored in the soil is not taken into account. However, with an average available water storage capacity of 5 cm per 0.30 metres of soil at least 7.5 cm of water is available from the soil for shallow rooted crops (45 cm) and as much as 15 cm for most deeper rooted (90 cm) crops.

Organic and fine textured soils have higher storage capacities than that indicated above, reducing seasonal water requirements for those even further. However, since water normally is supplied before 50% of the stored water has been depleted the following general assumptions apply based on the average climatic water deficit, of 30 on and water holding capacities presented in the B.C. Irrigation guide:

Seasonal Water Deficit

	Shallow rooted crops	Deep rooted crops
Sand	11.25 cm	11.0 cm
Sandy loam	10.9 cm	10.5 cm
Silt loam	10.1 cm	9.5 cm
Clay	10.2 cm	9.6 cm

Where the seepage conditions described earlier occur water deficits are substantially lower.

6.2.4 <u>Suitability of Soils for Selected Engineering Uses</u>

Analyses for engineering properties of soils includes determination of particle size distribution, plastic limit, liquid limit, and bulk density. These data are useful in determining the suitability of individual soils for engineering uses such as dwellings, septic tank effluent disposal systems, and sand and gravel sources. The results of the engineering analyses are presented in Table 7.

The suitability of the individual soils for specified uses and the limitations are presented in Table 8.

The engineering uses selected for interpretation are: suitability for dwellings with and without basements, septic tank effluent disposal fields, shallow excavations, and sources of sand and gravel.

n h		<i>.</i>
ab	ıe.	

1

il ve

Engineering properties of selected soils of the Pemberton Valley

				Partic	le Size	Distril	oution		ý							Atterber	g Limits		
Soil Name	Depth .cm	>1/2 inch	1 inch	3/4 inch	3/8 inch	4.76	2,00	0.84	0.42 mm	0.25	0.105	0.074	Sand	Silt	Clay	Plastic Limit % water	Liquid Limit content	Bulk Density g/cm ³	Textural Class
Gates Lake	93-103	0	0	0	0.2	0.5	2.2	6.3	31.5	53.8	2.2	3.2	90.2	8,2	1.6	NP	NL	1.65	sand
Gilmore	73-100						no		sample										
Nairn Falls	82-102	0	0	0	0	0	0	0.2	0.2	0.5	0.9	0.4	0.2	65.3	34.5	45.66	59.71	0.71	silty clay loam
Nesuch	72- 97	0	0	0	0	0	0	0.3	4.2	37.3	44.0	4.6	91.3	7.2	1.5	NP	NL	1.24	sand
Newberry	47- 57	0	0	0	0	0	0	0.1	0.2	0,2	0.3	0.2	0.7	78,2	21.1	31.28	33.95	•	silt Ioam
Quamell	66- 91	0	0	0	0	0	0	0	0.1	0.2	3.0	1.5	*	*	*	NP	NL	*	*
Ronayne	21- 41	10,6	18.5	6.3	12.1	12.1	9.0	7.9	12.0	5.8	3.9	0.4	85.3	12.5	2.2	NP	NL	•	gravelly loamy sand
Renville	76-106	0	0	0	0	0	0	0.1	0.4	0.3	0.9	0.6	1.4	79.4	19.2	37.4	42.0	1.08	silt loam
Ranson	48- 73	0	0	0	0	D	0	0.1	0.3	0.3	2.2	1.0	62.2	33.3	4.5	NP	NL	*	sandy loam
Rutherford	78- 93	0	0	0	0	0	0	0.5	0,8	0.6	0.9	3.3	55.1	37.0	7.9	35.89	39.90	0.85	sandy loam
Sankey	102-117	*	*	*	*	*	*	*	*	*	*	*	13.1	46.8	40.1	*	*	0.96	silty clay loam
Scobie	98-108	0	0	0	0	0	0	trace	0.6	5.2	55.3	16.5	83.7	14.3	2.0	NP	NL	1.17	loamy sand
Shantz	80-100	0	0	0	0	o	0	0.5	0.7	0.3	1.4	1.6	9.7	79.6	10.7	NP	NL	1.23	silt loam
Sister	91-106	0	0	0	0	0	•0	0.8	1.1	0.7	0.8	0,2	0.4	78.9	20.7	NP	NL	0.47	silt loam
Sangster	97 - 127	0	0	0	0	0	0	0.1	0.3	0.4	7.2	2.4	22.0	73.9	4.1	NP	NL.	2.03	silt loam
Scullard	84-114	0	1.1	0	0	0	0	0.2	0.6	0.7	7.5	4.3	25.8	65.2	6.3	NP	NL	1.07	silt loam
Tenquille	86-101	0	0	0	0	0	0	0.2	0.3	1.3	9.6	2.2	35.5	46.4	18.1	21.96	22.98	1.13	silt loam
Valleau	70-100	0	0	0	0	0	0	5.4	6.9	4.4	6.0	1.6	0.3	66.1	33.6	68.94	81,79	0.41	silty clay loam
Viccars	94-106	υ	0	0	0	0	0	0.1	0.2	0.2	5.2	9.2	21.0	72.1	6.9	NP	NL	1.13	silt loam
Verlinden	86- 91	0	0	0	0	0	0	0.2	0.4	0.3	2.4	8.3	32.0	63.3	4.7	NP	NL	1.00	silt loam
Vickberg	74- 77						no		sample									0.70	
Walden	94-116	19.4	11.9	8.4	13.2	9.6	9.2	9.1	4.9	7.5	5.1	0.4	91.9	6.6	1.6	NP	NL	*	gravelly sand
Whitehead	23- 68	15.3	14.7	11.1	17.1	10.2	7.1	5.6	9.0	6.6	2.8	0.1	88.7	9.6	1.7	NP	NL	*	gravelly sand
Wittal	124-134	0	0	0.4	1.0	3.5	13.1	31.0	25.0	12.3	7.7	0.5	+	*	*	NP	NL	0.84	*
Wallace	84-118	0	0	0	0	0	0	1.2	1.8	2.3	11.9	9.3	90.7	7.5	1.8	NP	NL	1.01	sand
Wolverine	83-113	0	0	0	0	0	0	trace	trace	2.7	73.9	12.5	68.4	29.5	2.1	NP	NL	1.20	sandy loam
Wildfong	73-113	o	0	0	0	0	0	trace	trace	trace	6.2	2.9	48.5	46.0	5.5	NP	NL	1.20	sandy loam
Zurbrugg	0- 10	0	0	0	0	0	0	0.1	0.2	0.2	0.6	0.8	4.0	84.7	11.3	40.59	44.92	+	silt
Zurcher	31~ 14						no		sample									0.63	
Zoltay	0- 10	0	0	0	0	0	1.1	6.4	22.0	29.3	31.4	2.6	86.3	12.0	1.7	NP	NL	1.15	loamy sand
			* miss	sing dat	ta	l				NP-nonp	lastic		I			NL-n	onliquid	لـــــــــــــــــــــــــــــــــــــ	

·		INTE	RPRETATIONS	OF SUITABILI	TY FOR:	_									
Soil Name	Map Unit	Slope* Classes	Dwell With Basements	Without	Septic Tank Absorption Fields	Sand and Gravel Source	Shallow Excavations	Scil Name	Map Unit	Slope* Classes	Dwelli With Basements	ngs Without Basements	Septic Tank Absorption Fields	Sand and Gravel Source	Shallow Excavations
Callaway Chumley	CA CB	5,6	**М ^{13***} 5,6	м ¹³ 5,6	м ³ 5,6	м ¹³	L _{5,6,8}	Farmer	FA	1,2,3,4	M ²	м ²	M ² 3,12	м ²	м <mark>2</mark>
		7,8,9,10	L ^{5,13}	L ^{5,13}	L ^{3,5}	1 ^{5,13}	L ⁵ 6,8			5,6	M_5^2	M_5^2	M ² 3,5,12	M ²	M ² 5,8
Clausen	CC	1,2,3,4	M ₆	м _б	M _{3,6}	M ₈	M _{6,8}	Fougberg	FB	1,2,3,4	м <mark>2</mark> 6	M ₆ ²	M ² 3,6,12	M ² 6	M ² 6,8
		5,6	M _{5,6}	M _{5,6}	M _{3,5,6}	M _{8,16}	M _{5,6,8,16}			5,6	M ² 5,6	M ² 5,6	M ² 3,5,6,12	M_6^2	M ² 5,6,8
		7,8,9,10	L ^{5,16}	L ₆ ^{5,16}	L ^{5,16}	L ^{5,16}	L ^{5,16} 6,8	Franks	FC	1,2,3,4	M ₆ ²	м ²	м ² 6	M ² 6,8	M ² ,8
Cloutier Combow	CD CW	1,2,3,4	L ^{6,16}	ر6,16	L ^{3,4,6,16}	L ^{6,8}	L ^{6,16}	Flichel Frontier	FL FR	1,2,3,4	м ⁶	м ⁶	L ^{3,4,6}	м <mark>6</mark>	м <mark>6</mark>
		5,6	L ^{6,16}	L ^{6,16}	L ^{3,4,6,16} L _{5,13}	L ^{6,8,16} 13	L ^{6,16} 5,13			5,6	м <mark>6</mark>	м <mark>6</mark>	L ^{3,4,6}	M ⁶ 5,8	M ⁶ 5,8
		7,8,9,10	L ^{5,6,16}	L ^{5,6,16}	L ^{3,4,5,6,16}	L ^{6,13,18} 16	L ^{5,6,13,16}	Fotsch	FO	1,2,3,4	M_6^2	м ²	L ^{2,12}	M ² 6,8	M ² 6,8
Collister	CE	1,2,3,4	L ^{7,10}	м ⁷ 10	L ^{3,4,7,10}	м ¹⁴ 8	L ^{7,10}			5,6	M ² 5,6	M_5^2	L ^{2,12} 5,6	^M ² 5,6,8	M ² 5,6,8
		5,6	L ^{7,10}	M ⁷ 5,10	3,4,7,10	M ^{14,16}	L ^{7,10} 5,8	Gates Lake Gilmore:cd	GA GI:cd	1,2,3,4	ι_1^2	L ²	L ₁ ^{2,12}	M ² ₁	M ² 1,8
		7,8,9,10	L ^{5,7,10}	L ^{5,7}	L ^{3,4,5,7,10}	L ₈ ^{5,14,16}	L ₈ ^{5,7,10}	Giguere Gilmore	GG GI	1,2,3,4	L ² 1	L ²	L ^{2,3,4,12}	M ² 1	M ^{2,8}
Conroy	CF	1,2,3,4	M ₁₀	н	M ³ 10	M ¹⁴ 8	н	Grundy Guthrie	GR GU	1,2,3,4	м ⁶	м ⁶	м ⁶ 3,4	м ⁶	M ^{6,8}
:		5,6	^M 5,10	M ₅	M ³ 5,10	M ^{14,16} 8	M _{5,10}			5,6	м ₅ 6	м <mark>6</mark>	M ⁶ 3,4,5	м <mark>6</mark>	м ⁶ , ⁸
		7,8,9,10	L ⁵ 10	L ⁵ 10	L ^{3,5}	L ^{5,14,16}	L ⁵ 10			7,8,9,10	L ^{5,6}	L ^{5,6}	L ^{5,6} 3,4	L ^{5,6}	L ^{5,6,8}
Cosulich	CG	1,2,3,4	ι ^{7,10}	M ⁷ 10	L ^{3,4,7,10}	M ₈ ¹⁴	L ₈ ^{7,10}	Nairn Falls Naylor Newberry	NA NB NW	1,2,3,4	ι ^{1,2,4}	M ² 1,4	L ^{1,2,4,12}	L ^{1,2,8}	L ^{1,2,4}
		5,6	L ₅ ^{7,10} .	M ⁷ 5,10	L ₅ ^{3,4,7,10}	M ^{14,16} 5,8	L ^{7,10} 5,8	Nesuch	NE	1,2,3,4	L ^{1,2,4}	M ² 1,4	L ^{1,2,4,12}	L ¹ , ²	L ^{1,2,4}
		7,8,9,10	ι ^{5,7,10}	L ^{5,7} 10	L ^{3,4,5,7,10}	L ^{5,14,16}	ι ₈ ^{5,7,10}	Quamell Questt	QM QU	1,2,3,4	L ^{1,2,4}	L ^{1,2,4}	ι ^{1,2,4,12}	L ^{1,2,8}	L ^{1,2,4}
Cottingham Cowell	CH CI	5,6	м ¹⁶ 5,13	м ¹⁶ 5,13	M _{3,5,6}	M _{8,13}	M ¹⁶ 5,13	Ronayne Rivers	RA RB	1,2,3,4	L ^{1,2,4}	L ^{1,2,4}	L ^{1,2,4,12}	L ^{1.2}	L ^{1,2,4,8}
		7,8,9,10	L ^{5,13,16}	L ^{5,13,16}	L ⁵ 3,6	L ^{5,13}	L ^{5,13,16}								

.

i

.

Table 8: Suitability of soils within the study area for selected engineering uses

• •

Soil Name	Map Unit	Slope* Classes	Dwelli With Basements	Without	Septic Tank Absorption Fields	Sand and Gravel Source	Shallow Excavation	Soil Name	Map Unit	Slope* Classes	Dwell With Basements	ings Without Basements	Septic Tank Absorption Fields	Sand and Gravel Source	Shallow Excavations
Renville	RE	1,2,3,4	L ^{1,2,4}	L ^{1,2,4}	L ^{1,2,4,12}	L ^{1,2,8}	L ^{1,2,4}	Yantzie Yvonne	YA YV	1,2,3,4	н	H	н	м ₈	M ₈
Regand Rutherford	RG RU	1,2,3,4	L ^{1,2,4}	L ^{1,2,4}	L ^{1,2,4,12}	L ^{1,2,8}	L ^{1,2,4}		Y¥:cv	5,6	M5	м5	м ₅	м ₈	M _{5,8}
Rivett Ranson	RI RN	1,2,3,4	L ^{1,2,4}	L ^{1,2,4}	L ^{1,2,4,12}	L ^{1,2}	L ^{1,2,4}			7,8,9,10	L ⁵	L ⁵	L ^{3,5}	۲ <mark>5</mark> 8	۲ <mark>5</mark>
Sankey	SA SA:an SA:fv SA:cd SA:dv	1,2,3,4	L ^{1,2,4}	ι ^{2,4}	ر ^{1,2,4,12}	L ^{1,2,8}	L ^{1,2,4}	Yantzie Yvonne	YA:sv YV:sv YV:cv,sv	1,2,3,4 5,6	м ¹⁰ м ¹⁰ м ¹⁰	M7,10 M5,7,10	M ³ _{7,10} M ³ _{5,7,10}	M _{8,18} M _{8,18}	⁷ ,8,10 د ⁷ ,8,10
Sinnes	SE									7,8,9,10	L ^{5,7,10}	L ^{5,7,10}	13,5,7,10	L ⁵ 8,18	ر 5,7,8,10
Scobie	SC	1,2,3,4	L ^{1,2,4}	M ² 1,4	ر1,2,4,12	ι ₈	ι1,2,4,8	Zurbrugg Zurcher	ZA ZE	1,2,3,4	L ^{1,2,4,8}	L ^{1,2,4,8}	L ^{1,2,3,4,8}	L ^{1,2,8}	L ^{1,2,4,8}
Shantz Scobie:md	SH SC :md	1,2,3,4	L ^{1,2,4}	M ² 1,4	L ^{1,2,3,4,12}	L ^{1,2,4,8}	L ₈ ^{1,2,4}	Zoltay Zaruba	ZO ZR						
Sister Sangster	S I SN	1,2,3,4	L ^{1,2,4}	M ² 1,4	L ^{1,2,3,4,12}	L ^{1,2,4,8}	L ^{1,2,4}	*Slope Classes							
Summerskill Scullard	SM SU	1,2,3,4	L ^{1,2,4}	M ² 1,4	L ^{1,2,4,12}	L ^{1,2,4}	L ^{1,2,4,8}	1,2,3,4 5,6	0 to 9% 10 to 30% > 30%						
Tenquille	TN	1,2,3,4	L ^{2,4}	M4,8	M ² 3,4,12	L ^{2,8}	м42	7,8,9,10 **Suitability I		nş					
Valleau Valleau:cd Van Beem Verlinden Vickberg	VA VA:cd VB VE VI	1,2,3,4	L ₈ ^{1,2,4}	L ^{2,4} 1,8	L ₈ ^{1,2,4,12}	ι ^{2,8}	L ^{2,4}	# •	ential - some to b	re limiting limitations e recognized	factor #, 1 for the spe but can be	or none (supe cific use inf overcome with	: use interpreta erscripted) terpretations; f n good managemen s (subscripted)	these limita	tions need n
Viccars Verlinden:md	VC VE ;md	1,2,3,4	L ^{1,2,4}	ι ^{2,4}	L ^{1,2,4,12}	ι ^{2,8}	L ^{2,4}	L Low Potenti	ial – enou	ah limitatio	ons to make u	se questional	lone (superscrip ble; however, w	ith careful	planning
Walden Wheeler Wuschke Whitehead	WD WE WG - WH	1,2,3,4	2,4	м <mark>2</mark>	2,3,4,8,12	м12	_ل 2,4,8	# Limiting Factor	then mode	become limi	ting.		vercome, but ecc alone (subscrip		pility may
Wildfong	WI .	1,2,3,4	2,4	M ² 4	M ² _{4,12}	ر2,8	м42	 apparent v flood haza perviousna soil drain 	ard ess class nage class						
Wallace Winters	WL WN	1,2,3,4	L ^{2,4}	м <mark>2</mark>	M ² 3,4,12	L ^{2,8}	M ² 4,8	rockiness	(>25 cm) cla class						
Wolverine	WO	1,2,3,4	L ^{2,4}	M42	L ^{2,3,12}	м <mark>2</mark>	L ^{2,8}								
Witta]	WT .	1,2,3,4	L ^{2,4}	L ^{2,4}	M ² _{3,4,12}	L ^{2,8}	M ² 4,8	 ground war mass mover deposit deposit 	ter contamina ment hazard epth swell potenti	al	-face instabi	lity			

Table 8 cont'd: Suitability of soils within the study area for selected engineering uses

.

1

4

,

-

The factors considered in compiling the above interpretations include the following:

- 1. seasonally high water table
- 2. flood hazard
- 3. perviousness class
- 4. soil drainage class
- 5. slope class
- 6. stoniness (>10" size) class
- 7. rockiness class
- 8. textural class or unified soil group
- 9. frost heave potential
- 10. depth to bedrock or impermeable layer
- 11. unsuitable overburden
- 12. groundwater contamination hazard
- 13. mass movement hazard
- 14. depth of deposit
- 15. shrink-swell potential
- 16. evidence of previous slope and surface instability

The guidelines and methodology utilized in determining the suitabilities are appended in Appendix 3.

A. Dwellings

Yantzie, Yvonne, and Yvonne series:calcareous variant on slopes of up to 9% are highly suited for dwellings (with and without basements).

Those soils which have medium potential suitability for dwellings with basements include Callaway, Chumley, Clausen, Cottingham and Cowell on slopes of less than 30%; and Farmer, Fougberg, Franks, Flichel, Frontier, Fotsch, Grundy, Guthrie, Yantzie:sv, Yvonne:shallow variant, Yantzie, Yvonne, and Yvonne:calcareous varient on slopes of between 9 and 30%. These soils are moderately limited by one or more of flooding hazard, steep slopes, excessive stoniness, excessive rockiness, shallowness to bedrock, mass movement hazard, and/or evidence of previous slope or surface instability. The remaining soils of the study area have low potential suitability for dwellings with basements due to severe limitations imposed by the above factors as well as seasonally high water tables, poor to very poor drainage, and/or unsuitable soil textures.

Soils having medium potential suitability for dwellings without basements include, those previously listed as being suitable for dwellings with basements as well as Collister and Cosulich soils on slopes of less than 30%; and Nairn Falls, Naylor, Nesuch, Newberry, Scobie, Shantz, Sister, Sangster, Summerskill, Scullard, Tenquille, Walden, Wheeler, Wuschke, Whitehead, Wildfong, and Wolverine series. These soils are moderately limited by excessive rockiness, shallow depth to bedrock and steep slopes, or by potential flood hazard, high ground water tables, and poor drainage.

B. Septic tank absorption fields

Yantzie, Yvonne and Yvonne:cv soils on less than 9% slopes have high potential suitability for septic tank absorption fields.

Those series having medium potential suitability are Callaway, Chumley, Clausen, Conroy, Cottingham, Cowell, Farmer, Fougberg, Franks, Grundy, Guthrie, Yantzie, Yantzie:shallow variant, Yvonne, Yvonne:calcareous variant, and Yvonne:shallow variant all on slopes of less than 30%, as well as Tenquille, Wildfong, Wallace, Winter, and Wittal series. The first group are moderately limited primarily by low perviousness, excessive slope, excessive stoniness, shallow depth to bedrock or impermeable layer and/or potential flood hazard and possible groundwater contamination hazard (i.e. Farmer, Fougberg, and Franks series). The second group are moderately limited by potential for flooding, unsuitable perviousness class, poor soil drainage, and/or some potential for groundwater contamination.

C. Sand and/or gravel sources

None of the soils in the study area are highly suited as sand and gravel sources. The soils most suited include Grundy and the Guthrie series, which are moderately limited by excessive stoniness. Giguere, Gilmore, Walden, Whitehead, Wuschke, Wheeler, and Farmer soils also have potential as sources of sand and/or gravel but are moderately limited by seasonally high water tables, and high potential for flooding during certain times of the year. The Callaway and Chumley soils are moderately limited primarily by mass movement hazard. Potential flooding hazard, excessive stoniness, and/or only moderately suitable textures moderately limit Fougherg, Franks, Flichel

and Frontier soils as sources of sand and/or gravel. Clausen, Conroy, Collister, Cosulich, Yantzie, and Yvonne series have some potential, but are moderately limited by only moderately suitable textures, excessive stoniness, shallow deposit depths, and steep slopes.

D. Shallow excavations

Conroy series soils on slopes of less than 9% have high potential suitability for the construction of shallow excavations. Clausen, Flichel, Frontier, Grundy and Guthrie soils are only moderately suited for shallow excavations due to moderate limitations of excessive stoniness and gravelly soil textures. Shallowness to apparent water table, potential flooding hazard, gravelly textures, and/or excessive slopes and excessive stoniness are moderately limiting to the construction of shallow excavations in the Farmer, Fougberg, Franks, Fotsch, Gates Lake, Giguere, and Gilmore soils. Tenquille, Wildfong, Wallace, Winters, and Wittal soils are moderately limited by occasional susceptibility to flooding, inadquate soil drainage, and/or sandy subsurface soil textures. The remaining soils of the study area have low potential suitability for shallow excavations.

6.3 Outdoor Recreational Carrying Capacity

A variety of environmental factors set limits beyond which increases in outdoor recreational use should not occur. If increases occur beyond these limits, excessive damage to the physical environment may result. The inherent ability of the landscape to sustain recreational use is its physical carrying capacity for outdoor receation (R.A.B., 1976). Detailed definitions of terms and methods used for determining recreational carrying capacity can be found in the Recreation Capability Inventory manual (R.A.B., 1976).

The recreation carrying capacity interpretations presented in the following sections apply mainly to spring, summer and fall recreational use since all of the data necessary to derive winter recreation carrying capacity interpretations is not available.

Generally, when outdoor recreation carrying capacity interpretations are made, wildlife, vegetation and climatic inputs are incorporated in order to broaden the scope of the interpretations. However, in this survey, detailed information of this nature is not available thus the interpretations in Table 9 are related directly to the inherent ability of the soils to sustain both intensive and extensive recreational use.

Soil Name	Map Unit	Slope Class	Recreational Class	Carrying Capacity Limitations*	Soil Name	Map Unit	Slope Class	Recreational Class	Carrying Capacity Limitations*
Callaway Chumley	CA CB	1, 2 3, 4, 5 6, 7, 8 8, 9, 10	5	SC3 SD2 Sm2 LP T53, T54, T\$5***	Giguere Gilmore	GG GI	1, 2 3, 4, 5	3 or 5	SC3 Sb2 TS1, TS2 Hi3
Clausen	cc	1, 2 3, 4, 5 6, 7, 8 8, 9, 10	2 to 5	cb3	Grundy Guthric	GR GU	1,2 3,4,5 6, 7,8 8,9,10	3 or 5	sc2 Sb3 TS1, TS2, TS3, TS4, TS5
Cloutier Combow	CD CW	1, 2 3, 4, 5 6, 7, 8 8, 9, 10	5	sc3 sb3 s ^{m2} ts1, ts2, ts3, ts4, ts5	Nairn Falls Naylor Newberry	NA NB NW	1, 2 3, 4, 5	3 to 4	Sf2 Sw3 So2 Ts1, Ts2
Collister	CE				Nesuch	NE	1, 2 3, 4, 5	3 to 4	SW3 So2 Ts1, TS2
		1, 2 3, 4, 5 6, 7, 8 8, 9, 10	3 to 5	S ^{r2} Sk3 S ^{m2} TS1, TS2, TS3, TS4, TS5	 Quamell Questt	QM QU	1, 2 3, 4, 5	3 to 4	Sf2 Sw3 Ts1, Ts2
Conroy	CF	1, 2 3, 4, 5 6, 7, 8 8, 9, 10	2 to 5	SK2 Sm2 T51, T52, T53, T54, T55	Ronayne Rivers	RA RB	1, 2 3, 4, 5	3 to 4	sc2 552 5w3 Ts1, Ts2
Cosulich	CG	1, 2 3, 4, 5 6, 7, 8 8, 9, 10	2 to 5	sr2 sk3, sk2 sm2 r51, r52, r53, r54, r55	Renville	RE	1,2 3,4,5	4	sf2 sw3 ts1, ts2 w13
Cottingham Cowell	CH CI	1, 2 3, 4, 5 6, 7, 8 8, 9, 10	3 to 5	sb2 La TS1, TS2, TS3, TS4, TS5	Regand Rutherford	RG RU	1, 2 3, 4, 5	3 to 4	Sf2 SW3 T\$1, T\$2 H ¹²
	:	7,8 8,9,10	,		Rivett Ranson	RI RN	1,2 3,4,5	4 to 5	sw3 Ts1, Ts2 Hi3
Farmer Fougberg	FA FB	1, 2 3, 4, 5	2 - 3	sc2 rs1, rs2 hi2	Sankey	SA	1 2		
Franks	FC	1, 2, 3, 4, 5	2 to 3	H ⁱ² T ^{s1} , T ^{s2}	Sinnes	SE SA:an SA:fv	1,2 3,4,5	3 to 4	sf2 sw3 Ts1 Ts2 Hi2
Flichel Frontier	FL FR	1, 2 3, 4, 5	2 or 3	sp3 ts1, ts2		SA:cd SA:cv			
Fotsch	FO	1, 2 3, 4, 5	3	Hi3 Ts1, Ts2	Scobie Shantz Sangster	SC SH SN	1, 2 3, 4, 5	3	SW3 Ts1 Ts2 Hi2
Gates Lake Gilmore:cd	GA GI:cd	1, 2 3, 4, 5	2 or 5	τs1, τs2 H ⁱ² , H ⁱ³	Sister Summerskill Scullard	SI SM SU	1, 2 3, 4, 5	3 to 4	Sf2 Sw3 Ts1, Ts2 Hi2

Table 9: Physical carrying capacity of soils in the study area to sustain use for most types of outdoor recreation

2

....

Limitations and class described on following page.

4

. .

Soil Name	Map Unit	Slope Class	Recreational Class	Carrying Capacity Limitations*	Symbol			
Tenquille	TN	1, 2	2	St5 Sm2	- United i		ation type	
Valleau Van Beem Viccars Vickberg	VA VB VC VI	1, 2	3	sf2 sw3 µ12	class	s ^{b2} limit	ation class	
Verlinden	VE	1,2	3	5 w3 H12	limitation ——————	-		
Walden Wheeler	WD WE	1, 2 3, 4, 5	3	Sw2 TS1 Hi3, TS2				
Wuschke Whitehead	WG WH	1, 2 3, 4, 5	3	sc3 sb3 sw2 fs1 Ts2 H12, Ts2	Recreational Carrying Capacity Classes 1 - Very high 2 - High 3 - Moderate	S - 9 L -	ations oil andform modifyi opographic	ing processes
Wildfong Wittal Wolverine	HI TH WO	1,2 3,4,5	2	5w2 Ts1, TS2 Hi3,	4 - Low 5 - Very low	н - 1	nydrologic	
Wallace Winters	w: WN	1, 2 3, 4, 5	2 to 3	sf2 Sw2 Ts1 Ts2 Hi2'	Limitation Type Sf - fine textured soil limitation S ^C - coarse textured soil limitation S ^b - coarse materials (> 7.5 cm size) S ^C - bedrock/rockiness			
Yantzie Yvonne	ҮА ҮV ¥∀:сv	1, 2 3, 4, 5 6 7, 8 8, 9, 10	1 to 5	τ ^{\$1} , τ ^{\$2} , τ ^{\$3} , τ ^{\$4} , τ ^{\$5}	S ^K - shallowness to bedrock S ^W - soil wetness S ^M - soil dryness S ^O - Surface organic accumulation L ^a - avalanching	Topographic limitations T\$1 T\$2 T\$3	Slope Class 1, 2 3, 4, 5	Percentage 0 - 2.59 2.5 - 16%
	YA:sv YV:sv YV:cv,sv	1, 2 3, 4, 5 6 7, 8 8, 9, 10	3 to 5	5k2 T\$1, T\$2, T\$3, T\$4, T\$5	LP - solifluction, cryoturbation, nivation TS - simple slope H ¹ - flooding	TS3 TS4 TS5	6 7,8 8,9,10	16 - 30 30 - 60 30 - 60 30
Zurbrugg Zurcher Zoltay Zaruba	ZA ZE ZO ZR	1, 2	4 to 5	2m3 203	Limitation Classes 1 - slight 2 - moderate 3 - severe			

۲

ł

Table 9 cont'd: Physical carrying capacity of soils in the study area to sustain use for most types of outdoor recreation

* Limitations listed are all of those which exist for each group of soils as they occur on various slope classes. On a map, only the most severely limiting factors would be indicated. These interpretations are meant to cover the range of limitations that occur for each soil mapped, depending on the map unit description.

** Where 2 or more limitation classes are noted for one group of soils, only 1 limitation class would be used on a map for each unit indicated on that map.

The carrying capacity classes for each map unit are based on the number and severity of physical soil limitations for a wide range of recreational uses, both intensive and extensive. They do not reflect social or economic factors nor do they consider present land ownership, lack of access, or distance from cities.

There are five carrying capacity classes. Class 1 indicates that high amounts of intensive recreational use can be sustained. The remaining four classes with their increasing number and/or severity of limitations reflect a decreasing ability to sustain intensive use.However, lower carrying capacity classes permit extensive use activities in certain landscapes.

Callaway, Chumley, Cloutier and Combow soils which occur on active talus slopes are rated as carrying capacity Class 5, severely limited by very coarse soil textures, active rock fall, and/or steep slopes. Clausen, Collister, Conroy, Cosulich, Cottingham, Cowell, Yantzie and Yvonne soil series range in carrying capacity from Class 2 to 5. They are restricted primarily by moderate to severe limitations of very coarse soil textures, excessive amounts of coarse fragments and stones, rapid drainage, and/or shallowness to bedrock. Increasing steepness of slopes results in a general reduction of the carrying capacity class. Soils occurring on a wide range of slopes also have a wide range of carrying capacities which are determined primarily by the slope class.

Renville, Rivett, Ranson, Zurbrugg, Zurcher, Zoltay and Zaruba soils generally are rated as Class 4 or 5 carrying capacity. The major limitations are poor to very poor soil drainage, fine soil textures or high organic matter contents and/or susceptibility to flooding.

Because of the high risk of periodic flooding, Gates Lake, Gilmore:coarse at depth, Giguere and Gilmore series are generally Class 5 improving to Class 3 in areas where the risk of flooding is minimal. Grundy and Guthrie soils are Class 3, becoming Class 5 where slopes are excessive.

The soil series in Class 3 to 4 include Fotsch, Nairn Falls, Naylor, Nesuch, Newberry, Quamell, Questt, Ronayne, Rivers, Regand, Rutherford, Sankey, Sinnes, Scobie, Shantz, Sangster, Sister, Summerskill, Scullard, Valleau, Van Beem, Viccars, Vickberg, and Verlinden. They are moderately limited, primarily by poor to very poor soil drainage and/or potential susceptibility to flood.

Walden, Wheeler, Wuschke, and Whitehead soils are rated Class 3 due to their gravelly textures and potential for flooding.

The few Class 2 soils include Farmer, Fougberg, Franks, Flichel, Frontier, Wildfong, Wittal, Wolverine, Tenquille, Wallace and Winters. The first five are limited primarily by gravelly or stony surface textures. The following three are limited mainly by susceptibility to occasional flooding and imperfect soil drainage. The remaining three are limited by fine surface textures, imperfect soil drainage, and/or susceptibility to occasional flooding.

On level slopes (<2%), Yantzie and Yvonne soils have Class 1 carrying capacity.

6.4 Wildlife and Fisheries

Although the report is mainly oriented toward description and use interpretations of the soils found within the study area, there are other resources which should be taken into consideration when any short or long range planning is envisaged. Wildlife and fisheries are two of these.

There is limited documented information available on wildlife and fisheries in the study area. However, by personal observation and through discussions with local residents, some general statements can be made.

Moose inhabit the upper reaches of the Lillooet River valley in the general area between North and South creeks and Meager Creek. Deer extensively utilize the steep southern aspect slopes in this same area as winter range. Deer also utilize the Birkenhead River, Gates River and Blackwater Creek valleys as winter range. Small bands of mountain goat occur in the mountainous areas adjacent to the study area.

Cutthroat and rainbow trout inhabit both the mainstem Lillooet River and the lower reaches of many small tributaries, where critical spawning and rearing areas are located. Of particular importance is Sampson Creek, which supports both trout and salmon (coho and sockeye). The Birkenhead River is a prime salmon spawning river which contributes substantially to the diet of the native Indians on the Mt. Currie reserve as well as contributing significantly to the Fraser River salmon fishery. The Gates River system also supports spawning salmon, enhancement of which has been attempted by artificial spawning channels at D'Arcy.

Both the provincial Fish and Wildlife Branch and the federal Fisheries and Marine Services have stressed the potential productivity of the Lillooet and Birkenhead river areas under proper management (M. Flynn and T. Richardson, 1977).

6.5 Forest Site Class - Soil Relationships

Forest cover maps, which have been compiled by the B.C. Forest Service, give an indication of the good, medium, poor or low forest site classes. These classes are defined for individual tree species on the basis of site index or height growth at a reference age. Detailed definitions of the site classes can be found in the Forestry Handbook for B.C.(U.B.C., 1971).

The lands of the Lillooet River valley from Lillooet Lake to Meager Creek are generally described as being medium site class for black cottonwood and western red cedar. Other species (including common paper birch, red alder, Sitka spruce, coast Douglas-fir, lodgepole pine and some western white pine) occur on the well drained soils of the North Creek fan which also has a southerly aspect. Coast Douglas-fir, western hemlock, and western red cedar are found largely on medium sites on northerly aspects, on the South Creek fan and on the flood plain of the Lillooet upstream from North and South Creeks. In this area, medium sites for western white pine also occur.

Coast Douglas-fir and lodgepole pine with limited amounts of western red cedar, western hemlock, common paper birch and red alder occur on poor sites in the uplands of the study area near Pemberton and Mt. Currie settlements. Western red cedar, western hemlock, and coast Douglas-fir in these areas are found on northeast aspects on well drained Yvonne series soils.

The Birkenhead River, Poole Creek and Birkenhead River canyon areas are poor forest site class lands. These areas support primarily Rocky Mountain Douglas-fir and lodgepole pine, with limited western red cedar, common paper birch, western hemlock and black cottonwood.

The Birkenhead Lake area, at the south end and on the west side of the lake has a significant proportion of medium and minor proportion of high forest site lands. The land at the south end of Birkenhead Lake supports lodgepole pine with some Rocky Mountain Douglas-fir. Land on the west side of the lake supports Rocky Mountain Douglas-fir with some western hemlock, western red cedar, common paper birch, black cottonwood and minor lodgepole and western white pine stands.

The Blackwater Creek valley is made up of land with poor forest site classes, and minor areas of medium forest site classes. The forest species found in this valley are Rocky Mountain Douglas-fir, western hemlock, and western red cedar, with some associated western white pine, common paper birch, black cottonwood, and Sitka spruce.

Rocky Mountain Douglas-fir and ponderosa pine are the major tree species found within the Gates River valley between Devine and Anderson Lake. These species are found generally on poor forest site class land. Other tree species in this area include western red cedar, lodgepole pine, common paper birch and alpine fir.

REFERENCES

REFERENCES

Agriculture Canada. 1978. The Canadian System of Soil Classification. Publ. 1646. Agriculture Canada, 1975. The Canadian Soil Information System (CanSIS) Manual for Describing Soils in the Field. Atkinson, H.J. et al. ed. 1958. Chemical Methods of Soil Analysis. Contribution 169 (Revised); Chemistry Division, Science Service, Canada Department of Agriculture. Atmospheric Environment Service. 1975a. Canadian Normals, Volume 1-SI, Temperature 1941 -1970. Environment Canada, Downsview, Ontario, 198 pp. Atmospheric Environment Service, 1975b. Canadian Normals, Volume 2-SI, Precipitation 1941 - 1970. Environment Canada, Downsview, Ontario, 333 pp. Black, C.A. 1965. Methods of Soil Analysis. Agronomy No. 9, American Society of Agronomy, Inc; Madison, Wisconsin, U.S.A. Bremner, J.M. 1960. Determination of nitrogen in the soil by the Kjeldahl method. Journal of Agricultural Science: Vol. 55 No. 1. B.C. Land Commission. 1974. Agriculture Land Reserve Maps. Maps numbered 92J/6, 7, 9, 10, 11. British Columbia Land Inventory (CLI). 1972. Climate Capability Classification for Agriculture. Climatology Report No. 1. Department of Agriculture. B.C. British Columbia Ministry of Agriculture, 1972. British Columbia Drainage Guide. Prepared by M. Driehuyzen and drainage subcommittee of the British Columbia Soil Science Lead Committee. British Columbia Ministry of Agriculture, 1977. Fertilizer Guide for the Lower Mainland prepared by Field Crops Branch. Conversion Factors for Metric System. British Columbia Ministry of Agriculture, 1978, unpublished. Soil test laboratory fertilizer guidelines. Personnel communication and mimeographed sheets. Cairnes, C.E.. 1924. Pemberton Area, Lillooet District, B.C. Geological Survey of Canada, Summary Report, 1924, Part A. Canada Department of Agriculture. 1950-1954. Reports of Activities under the Prairie Farm Rehabilitation Act. Lillooet Valley Reclamation Project. CANSIS. 1974. Canadian Soil Names File. Canada Soil Survey Committee. Carbon Analysis by Leco Analyzer. 1969. Leco Instruction Manual, for Induction Furnace and Carbon Analyzer. Laboratory Equipment Corporation; St. Joseph's, Michigan.

- Decker, F., Fougberg, M., Ronayne, M. 1977. Pemberton: The History of a Settlement. Pemberton Pioneer Women, Pemberton, B.C. Consultant and editor, G.R. Elliott.
- Department of Regional Economic Expansion, Canada. 1965. The Canada Land Inventory. Soil Capability Classification for Agriculture. Report No. 2.
- Faulknor, C.V. 1951. Pemberton Valley, Land Utilization Survey. Division of Land Utilization, Research and Survey, Lands Service, B.C. Department of Lands and Forests.
- Flynn, M. 1977. Personnal communication. Federal Fisheries Service, Environment Canada. 1090 W. Pender Street, Vancouver, B.C., V6E 2P1.
- Gilbert, R.E. 1973. Lacustrine Sedimentation, Lillooet Lake, B.C. Ph.D. thesis, University of B.C., Geography Department.
- Grewelling, T. and Peech, M. 1960. Soil Chemical Tests. U.S.D.A. Bulletin 960.
- Hall, R.M. 1959.

Fertilizer and Crop Studies in the Pemberton Valley of British Columbia, 1932-1956. Experimental Farm, Agassiz, B.C.

- Hemmerick, G.H. and Kendall, G.R., 1972.
 - Frost data 1941 to 1971. Atmosperhic Environment Service, Environment Canada; Downsview, Ontario.
- Hughes, E.C. 1978.

Personnal communication and files. Field crops specialist, B.C. Ministry of Agriculture, Surrey, B.C.

Holland, S.S. 1964.

Landforms of British Columbia: A Physiographic Outline. B.C. Department of Mines and Petroleum Resources, Bull. No. 48.

John, M.K. 1963.

Determination of Available Phosphorus. B.C. Department of Agriculture, Soil Survey Division. Modified from "Laverty, J.C., 1961 - The Illinois Method (Bray, P1) for determining available phosphorus in soil. Department of Agronomy, University of Illinois, Urbana, Illinois" to include ascorbic acid reduction.

John, M.K. 1970.

Colorimetric Determination of Phosphorus in Soil and Plant Materials with Ascorbic Acid. Soil Science, Vol. 109, No. 4.

- Johnson, C.M. and Nishita. 1970. Micro Estimation of Sulphur in Plant Materials Soils and Irrigation Waters. Anal. Chem. 21(4):736-42. Modified by Dean, A.G., Analyst 91(1085):530-532. Modified by Nyborg, M. A procedure for the extraction and determination of soluble S04-S in soils.
- Johnson, C.M., and Ulrich, A. 1959. Analytical Methods for use in Plant Analysis. California Agricultural Experimental Station, Bulletin 766.
- Krajina, V.J., Brook, R.C., eds. 1969-1970. Ecology of Western North America. Publ. by Department of Botany, University of British Columbia, Vancouver.
- Lambe, T.W. 1951. Soil Testing for Engineers. J. Wiley and Sons, Inc.

Luttmerding, H.A. and Sprout, P.N., 1969. Soil Survey of Delta and Richmond Municipalities. Preliminary Report No. 10 of the Lower Fraser Valley Survey. B.C. Department of Agriculture. pp. 86 - 93 inclusive.

- McKeague, J.A., ed. February 1976. Manual on Soil Sampling and Methods of Analysis. Subcommittee of Canada Soil Survey Committee on Methods of Analysis, pp. 74-78, pp. 61-62, pp. 101, pp.29.
- Read, P.B. 1977. Meager Creek Volcanic Complex, Southwestern B.C. Geol. Surv. Can. Paper 77-1A, Report of Activities Part A, Project 730067.
- Resource Analysis Branch. 1978. Climatic Capability Classification for Agriculture in British Columbia. Climate Division, Resource Analysis Branch, B.C. Ministry of Environment.
- Resource Analysis Branch, 1978, unpublished. Climate Data, B.C. Data File.
- Resource Analysis Branch (in process). Methods for the Assessment of Settlement Suitability. B.C. Ministry of Environment.
- Resource Analysis Branch. 1976. Recreation Capability Inventory. (1) Canada Land Inventory; (2) Resouce Analysis Unit. (Formerly the Resource Analysis Unit of the Environment and Land Use Committee Secretariat)
- Resource Analysis Branch. 1976. Terrain Classification System. (Formerly the Resource Analysis Unit of the Environment and Land Use Committee Secretariat).
- Richards, L.A., ed. 1954. Diagnosis and Improvement of Saline and Alkali Soils. U.S. Salinity Laboratory, U.S. Department of Agriculture. Hbk. 60, 160 pp.
- Richardson, T. 1977. Personnal communication. Fish and Wildlife Branch, B.C. Ministry of Recreation and Conservation, 4240 Manor Street, Burnaby, B.C. V5G 1V2.
- Roddick, J.A. and Hutchison, W.W. 1973. Pemberton (East Half) Map-Area, B.C. 92J (E 1/2). Geol. Surv. Can., Paper 73-17. Department of Energy, Mines and Resources.
- Roddick, J.A. and Woodsworth, G.J. 1975, 1977. Coast Mountains Project: Pemberton (92J West Half) Map-Area, B.C. Geol. Surv. Can. Paper 75-1, Part A, Report of Activities, Project 630016 and Paper 77-1A.
- Runka, G.G. 1973. Methodology: Land Capability for Agriculture. B.C. Land Inventory (CLI). Soil Survey Division, B.C. Department of Agriculture.

Slaymaker, O. and Gilbert, R.E. 1972. Geomorphic Process and Land Use Changes in the Coast Mountains of British Columbia: A Case Study. Les Congres et Collegues de L'Universite de Liege. Volume 67. Processus Periglaciaires Edudies Sur Le Terrain. Symposium International de Geomorphologie.

Surveys and Mapping Branch. 1976.

Air photos. Photograhs to cover study area from flight lines BC 7550, BC 7548, BC 7549, BC 7467, BC 7554, BC 5590. Base map. Uncontrolled air photo mosaic at a scale of approximately 1:20 000. B.C. Ministry of Environment.

Taylor, R.L. and MacBryde, B. 1977. Vascular Plants of British Columbia, a Descriptive Resource Inventory. Published by the University of British Columbia.

Teversham, J.M. 1973.

Vegetation Response to Fluvial Activity in the Lillooet River Flood Plain. M.Sc. Thesis, University of British Columbia, Geography Department.

- Tisdale, S.L., and Nelson, W.L., 1966. Soil Fertility and Fertilizers. Published by the Macmillan Company, Collier Macmillan Ltd., London.
- University of British Columbia, 1971. Forestry Handbook for British Columbia. Third Edition. Published by The Forest Club.

Van Beers, W.F.J. 1963.

The Auger Hole Method. A field measurement of the hydraulic conductivity of soil below the water table. Wageningen, The Netherlands. International Institute for Land Reclamation and Improvement Bulletin #1. Postbus 45, Wageningen, Holland. Published by H. Veerman and Zonen.

Walker, E., Chairman. 1974. Pemberton Valley Agriculture. Report: Pemberton Valley Production. Mimeographed copy. B.C. Department of Agriculture, Surrey, B.C.

Wedley, W.C. 1975.

Community and Corporate Development in the Pemberton Valley. A report prepared for the Pemberton Valley Labour Force Development Committee.

Williams, R. 1977 (unpublished). Climate capability for Agriculture rating map for Pemberton soil survey area. 1:100 000 scale, provisional copy. Resource Analysis Branch, Ministry of Environment.

Woodsworth, G.J. 1977. Geology: Pemberton (92J) Map Area. Geological Survey of Canada, Department of Energy, Mines and Resources.

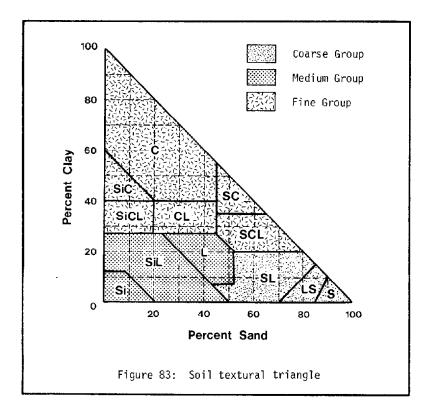
United States Department of Agriculture. 1971. Guide for Engineering Interpretations of Soils. Soil Conservation Service.

GLOSSARY OF TERMS

GLOSSARY OF TERMS

amorphous mineral

(i) A mineral that has no definite crystalline structure. (ii) A mineral that has a definite crystalline structure, but appears amorphous because of the small crystallite size.


apron(s)	A relatively gentle slope at the foot of a steeper slope, and formed by geological materials derived from the steeper upper slope.
braided channel	A stream channel pattern that repeatedly divides into branches that rejoin each other.
colour	Defined for soils by the Munsell colour system which specifies the relative degrees of the three simple variables of colour: hue, value and chroma. For example, 10YR 6/4 is the colour of a soil having a hue of 10YR, value of 6, and chroma of 4. These notations can be translated into several different systems of colour names.
consistence	(i) The resistance of a material to deformation or rupture. (ii) The degree of cohesion or adhesion of the soil mass. In engineering prac- tice "consistency" has essentially the same meaning as "consistence".
control section, soil	The vertical section on which the taxonomic classification of a soil is based. The control section usually extends to a depth of 100 cm in mineral materials and to 160 cm in organic materials.
exchangeable cations	Those cations which are absorbed to the exchanges sites of soil colloids which commonly include calcium, magnesium, potassium, sodium, ammonium, aluminum, iron, and hydrogen which are held by varying degrees of tenacity. The proportions of these cations present is determined in part by the nature and amount of the organic and mineral soil colloids.
fan	A fan-shaped form of unconsolidated geological material that can be likened to the segment of a cone, and possessing a perceptible gradient from apex to toe.
humid .	A soil moisture regime class which is defined for a soil which is not dry in any part as long as 90 consecutive days in most years.
hydrolysis	The process by which a substrate is split to form two end products by the intervention of a molecule of water.
mapping unit	A soil mapping unit is identified on a map by a symbol. A soil mapping unit that bears the name of a taxonomic unit consists of this defined taxonomic unit and sometimes inclusions.
modal	The site described is representative of the central concept of the soil series in question.
oxidation	The addition of oxygen to or the removal of hydrogen from an element.
perhumîd	A soil moisture regime class in which a soil remains moist all year and is seldom dry.
reaction, soil	The degree of acidity or alkalinity of a soil, usually expressed as a pH value.
semiarid	A soil moisture regime class in which the soil is dry in some parts when soil temperature is > 5 °C in most years. Moderately severe water deficits accur in the growing season.

slope classes	The slope c	lasses are defined	as follows:	
	slope <u>class</u>	percent slope	approximate degrees	terminology
	1 2 3 4 5 6 7 8 9 10	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	level nearly level very gentle slopes gentle slopes moderate slopes strong slopes very strong slopes extreme slopes steep slopes very steep slopes
solution, soil				utes consisting of ions les and of other soluble
structure, soil	particles, arranged in characteris	units, or peds. n the profile in tic pattern. The of size, shape, a	These peds may be such a manner as peds are character	particles into secondary , but usually are not, to give a distinctive rized and classified on cinctness into classes,
talus	Angular blo at the base		d material fallen fr	rom cliffs and collected
taxonomic unit	consists of condition o closely rel	F (1) a single mo f each property of	odal profile repreaded and soils in the cl	variation. Each unit senting the most usual lass, and (2) many other central concept within
texture, soil •	described b of the te adjectives The sand, s	y the classes of s xtural soil class when coarse fragm andy loam, and loar	oil texture shown i es may be modifi ents are present	separates in a soil as in Figure 83. The names ed by adding suitable in substantial amounts. subdivided on the bases present.

.

....

r

APPENDICES

Appendix 1: Factors for Metric Conversion

Source: British Columbia Ministry of Agriculture, 1977, Fertilizer guide for the Lower Mainland

Imperial Units	Approximate conversion factor	Results in:	
LINEAR			
inch foot yard mile	x 25 x 30 x 0.9 x 1.6	millimetre centimetre metre kilometre	(mm) (cm) (m) (km)
AREA			
square inch square foot acre	x 6.5 x 0.09 x 0.40	square centimetre square metre hectare	(cm ²) (m ²) (ha)
VOLUME			
cubic inch cubic foot cubic yard bushel	x 16 x 28 x 0.8 x 0.36	cubic centimetre cubic decimetre cubic metre hectolitre	(cm ³) (dm ³) (m ³) (h1)
WEIGHT			
pound short ton (2000 lb)	x 0.45 x 0.9	kilog r am tonne	(kg) (t)
TEMPERATURE			
degree fahrenheit	F -32 x 0.56 (or F -32 x 5/9)	degree Celsius	(C)
AGRICULTURE			
bushels per acre tons per acre pounds per acre	x 0.90 x 2.24 x 1.12	hectolitres per hectare tonnes per hectare kilograms per hectare	(hl/ha) (t/ha) (kg/ha)

Examples: 2 miles x 1.6=3.2 km; 15 bu/ac x 0.90=13.5 h1/ha

Appendix 2: Detailed morphological, chemical and physical descriptions of selected soil series within the study area, with instructions for retrieval of information on others including the location of soil sampling sites

The selected soil series for which detailed morphological, chemical, and physical data is included are:

Gates Lake Series	Sangster Series
Newberry Series	Scullard Series
Rutherford Series	Valleau Series
Sankey Series	Wildfong Series
Scobie Series	Wolverine Series
Sister Series	Zurcher Series

This type of detailed information for most of the remaining soil series described in this report is available from the B.C. Soil Data File by contacting:

Director

Resource Analysis Branch Ministry of Environment Parliament Buildings Victoria, B.C. V8V 1X4

Include in your request a geographical description of the area of interest, i.e. latitude and longitude or National Topographic mapsheet (NTS) number such as 92J/7. Additional useful information to be included in the request would be the name of the soil series for which information is required.

Figure 84 indicates the location of the detailed soil profile sampling sites.

PROJECT	GATES LAKE 92J -	NT	157 92J 7	R	ESDURCE ANALYS INISTRY OF ENV VICIUNIA,	IS BRANCH IRDNMENT U.C.		IMMARY DATE	: JULY 03+1979 1	PAGE: 0
*******	********	*******	*********	**********	*********	**** *****	*******	********	*****	******
				G	ATES LAKE	SERIES				
		SAM	TE OF SURVEY: Reing Purpos Dject Cude:	29 09 76 : 6: SEMI-DETAILE 92J	SURVEYUR: RH D SURVEY	VIC. RE	5. ANAL. DRCH M C	ŀFE		
	LDCATIO	-		CLASSIF.	CATION		SLOPE			
PHECIS ELEVAT	DE(N): UDE(W): IDN (SEC): IDN (M): OTOGRAPH:	50 1 122 4 BC7467	30 398 51AT	UC REGOSOL(1978 US: MODAL :			X IL TYPE: COM CLASS: NO ASPECT (DEG): 360 PROFILE SITE: MID LENGTH (M): 3 MICROTOPOGRAPHY:	PLEX RLY LEVEL	DVNDED	
PAREN	MATERIAL	& LANDFO	RM.							
UPPER	STRAT I GRAP	IC UNIT								
	CLASTIC 1: LLASIIC 1: C MAT.: E EXPRES.:	SINDY	CI DANEUTRAL							
RODTING	G DEPTH:	103	FL	EPAGE: ABSE DDD HAZARD: RARE ISTURE CLASS:	SUB-HUM1D	RU	RAINAGE: MUDERA UNOFF: SLUW FUNINESS: NON-ST ERVIDUSNESS: RAPID	TELY WELL (UNY	DRAINED	
	L NOTES									
BAR NO	ISTURE FOR	CGJ2=2.7	+2C=4.0.2C2=	1.2.						
*******	********		CHEMICAL ANA		********	********	******	*******	*******	
OFILE DI	ESCRIPTION									
	THICKNESS	RANGE	HORIZON	COLOUR 1						
	DEPTHICH)	ninto <u>E</u>	BOUNDARY	COLOON 1	TEX	TURE	STRUCTURE 1		STRUCTURE 2	
HIZON L		2- 4	BOUNDARY CLEAR SMUUTH	10.0793.072.0 MATRIX HOIST			STRUCTURE 1 MASSIVE		STRUCTURE 2 WEAK MEDLUM GRANULAR	
H 120N 1	DEPTHICH		BOUNDARY	10.0193.0/2.0) LDA	M E SANDY			WEAK	r
H 120N 1	0- 3	2- 4	BOUNDARY CLEAR SMUUTH CLEAR	10.0793.072.0 Matrix Hoist 2.574.072.0	D LDA Fjn Loa	M E SANDY	MASSIVE	1 см)	WEAK MEDIUM GRANULAR WEAK WEDIUM VEANGULAR BLOCKT PSEUDO WEAN COARSE SUBANGULAR BLOCKT	
н ы	Jертн(СМ) 0- з з- 6	2- 4 2- 6	BOUNDARY CLEAR SMUUTH CLEAR SMOOTH ABHUPT	10.0793.072. MATRIX MOIST 2.574.072.0 MATRIX MOIST 2.575.072.0 MATRIX MOIST	D LDA FIN LOA San	M E SANDY Dy LOAM E SANDY	MASSIVE MASSIVE MASSIVE	I (M)	NEAK MEDIUM GRANULAR WEAK DIEMAGULAR BLUCKT PSEUDO WEAK SUGANGULAH BLUCKT PSEUDO WEAK COATSE SUGANGULAR BLUCKT	,
сл5 рт 1 рт 1 г 1 г 1 г 1 г 1 г 1	0- 3 3- 6 6- 19	2- 4 2- 6 7- 24	BOUNDARY CLEAR SMOUTH CLEAR SMOOTH ABRUPT ABRUPT	10.0783.072. MATRIX MOIST 2.574.072.0 MATRIX MOIST 2.575.072.0 MATRIX MOIST 7 2.574.072.0) LOA FJN LOA FJNI LOA	M E SANDY Dy LOAM E SANDY	MASSIVE MASSIVE MASSIVE LAMINATED(<	1 CM)	NEAK MEDIUM GRANULAR WEAK MEDIUM JUGANULAR BLUCKT PSCUDO COARSE SUBANGULAH BLUCKT PSCUDO COARSE	,
с I с I р I н н	0- 3 3- 6 6- 19 19- 24	2- 4 2- 6 7- 24 0- 9	BOUNDARY CLEAR SHUUTH CLEAR SHOOTH ABHUPT BRUREN ABRUPT BRUREN DIFFUSE	10.0783.072. MATRIX MOIST 2.574.072.0 MATRIX MOIST 2.575.072.0 4.575.072.0 0 4.575.072.0 MATRIX MOIST 2.574.072.0 MATRIX MUIST 5.074.071.0) LDA FIN LDA SAN FIN LDA	M E SANDY Dy LOAM E SANDY H	MASSIVE MASSIVE MASSIVE LAMINATED(< MASSIVE	1 (M)	WEAK MEDIUM GRANULAR WEAK MEDIUM BEDIUM SUEANGULAR BLUCKY PSEUDO WEAK COARSE SUEANGULAR BLUCKY PSEUDO STRUCTURLLESS	,
с 1 с 1 с 1 с 1 с 1 с 1 с 1 с 1 с 1 с 1	0- 3 3- 6 6- 19 19- 24 24- 35	2- 4 2- 6 7- 24 0- 9 4- 14	BOUNDARY CLEAR SHUUTH CLEAR SMOOTH ABHUPT BRUREN BRUREN DIFFUSE SMOOTH	10.0793.072. MATRIX HOIST 2.574.072.0 MATRIX HOIST 2.575.072.0 MATRIX MOIST 7 2.574.072.0 MATRIX MOIST 5.074.071.0 MATRIX MOIST 5.074.071.0 MATRIX D.072	D LOA FIN LOA FIN LOA LOA	M E SANDY DY LOAM S SANDY HY SAND	MASSIVE MASSIVE LAMINATED (< MASSIVE MASSIVE	1 (M)	WEAK MEDIUM GRANULAR WEAK MEDIUM BEDIOM SUBANGULAR BLOCKY PSEUDO WEAK COMMSULAR BLOCKY PSEUDO WEAK COMMSULAR BLOCKY STRUCTURELESS	,
HIUUII H GJI GJ2 GJ2 GJ2 GJ2 GJ2 GJ2 GJ2 GJ2 GJ2 GJ2	0- 3 3- 6 6- 19 19- 29 28- 35 35- 56	2- 4 2- 6 7- 24 0- 9 4- 14 21- 21	BUUNDARY CLEAR SMUUTH CLEAR SMOOTH ABHUPT BRUKEN BRUKEN DIFFUSE SMOOTH SMOUTH GHADUAL	10.0783.072. MATRIX HOIST 2.574.072.0 MATRIX HOIST 2.575.072.0 MATRIX MOIST 7 2.574.072.0 MATRIX MOIST 3.574.072.0 MATRIX DRY 2.575.072.0 MATRIX NOTS	D LOA Fin Loa Loa Loa Loa Loa Loa	M E SANDY DY LOAM E SANDY HY SAND HY SAND	MASSIVE MASSIVE LAMINATED(< MASSIVE MASSIVE	I СМ)	NEAK MEALUM GRANULAR WEAL MEDIUM MEDIUM PSCDOO COARSE SUBANGULAR BLUCKI PSCDUO COARSE SUBANGULAR BLUCKI PSCDUO VEAK SUBANGULAR BLUCKI STRUCTURLESS SINGLE GRAIN STRUCTURLESS SINGLE GRAIN STRUCTURLESS	,
. C C 21 C 1 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2	0- 3 3- 6 6- 19 19- 24 24- 35 35- 56 56- 116	2- 4 2- 6 7- 24 0- 9 4- 14 21- 21 11- 36	BUUNDARY CLEAR SHUUTH CLEAR SHUUTH ABRUPT BRUKEN BRUKEN DJFFUSE SMOUTH GHADUAL SHOUTH CLEAR SHOUTH	10.0YH3.0/2. MATRIX MOIST 2.5Y4.0/2.0 MATRIX MOIST 2.5Y5.0/2.0 MATRIX MOIST 2.5Y4.0/2.0 MATRIX MOIST 2.5Y4.0/2.0 MATRIX MOIST 2.5Y5.0/2.0 MATRIX MOIST 2.5Y5.0/2.0 MATRIX MOIST 2.5Y5.0/2.0 MATRIX MOIST 10.0YH5.0/2.0	D LOA FIN LOA LOA LOA LOA LOA LOA	M SY LOAM SY LOAM SANDY MY SAND MY SAND MY SAND MY SAND	MASSIVE MASSIVE LAMINATED(< MASSIVE MASSIVE MASSIVE	1 (M)	NEAK AREDIUM GRANULAR WEAK MEDIUM DIUM DIUM DIUM DIUM DIUM SUBANGULAR BLUCKY PSCUDO VEAK COARSE SUBANGULAR BLUCKY SUBANGULAR BLUCKY STRUCTURLESS SINGLE GRAIN STRUCTURLESS SINGLE GRAIN STRUCTURLESS SINGLE GRAIN WEAK COARSE SUBANGULAR BLUCKY	,
C 6J2	0- 3 3- 6 6- 19 19- 24 24- 35 35- 56 56- 86 86- 93 93-103	2 - 4 2 - 6 7 - 24 0 - 9 4 - 14 21 - 21 11 - 30 0 - 8 8 - 32	BUUNDARY CLEAR SHUUTH CLEAR SHUUTH ABRUPT BRUKEN BRUKEN DJFFUSE SMOUTH GHADUAL SHOUTH CLEAR SHOUTH	10.0793.072. MATRIX HOIST 2.574.072.0 MATRIX MOIST 2.575.072.0 MATRIX MOIST 7 2.575.072.0 MATRIX MOIST 2.575.072.0 MATRIX MOIST 2.575.072.0 MATRIX MOIST 2.575.072.0 MATRIX MOIST 2.575.072.0 MATRIX MOIST 2.575.072.0	D LOA FIN LOA LOA LOA LOA LOA LOA	H SANDY DY LOAM SANDY HY SAND HY SAND HY SAND HY SAND	MASSIVE MASSIVE LAMINATED (< MASSIVE MASSIVE MASSIVE MASSIVE		NEAK MEAK MEDIUM GRANDLAR WEAK DIBANGULAR BLUCKN PSEUDO COARSE SUBANGULAR BLUCKN PSEUDO STRUCTURLESS SINGLE GRAIN STRUCTURLESS SINGLE GRAIN STRUCTURELESS SINGLE GRAIN WEAK COARSE SUBCLOCHAR SELOCKY PSEUDO STRUCTURELESS SINGLE GRAIN	, , ,
HIZUN L H GJ1 C GJ2 C GJ	0- 3 3- 6 6- 19 19- 29 24- 35 35- 56 56- 86 86- 93 93-103 	2 - 4 2 - 6 7 - 24 0 - 9 4 - 14 21 - 21 11 - 36 0 - 8 8 - 32	BUUNDARY CLEAR SMUUTH CLEAR SMUUTH BHUPI BHUPI BHUPE SMUTH GHADUAL SMUTH CLEAR SMUTH	10.0YH3.0/2. MATRIX HOIST 2.5Y5.0/2.0 MATRIX MOIST 2.5Y5.0/2.0 MATRIX MOIST 2.5Y5.0/2.0 MATRIX MOIST 2.5Y5.0/2.0 MATRIX MOIST 2.5Y5.0/2.0 MATRIX MOIST 2.5Y5.0/2.0 MATRIX MOIST 2.5Y5.0/2.0 MATRIX MOIST 2.0Y4.0/2.0 MATRIX MOIST	D LOA EJN EDA LOA LOA LOA LOA LOA	H SANDY DY LOAM SANDY HY SAND HY SAND HY SAND S	HASSIVE MASSIVE LAMINATED (< MASSIVE MASSIVE MASSIVE MASSIVE MASSIVE MASSIVE		NEAK HEAL GRANULAR WEAL HEDIUM GRANULAR BEDIUM PSEUDO WEAA COARSE SUBANGULAR BLUCKY PSEUDO WEAK COARSE SUBANGULAR BLUCKY PSEUDO STRUCTURLESS SINGLE GRAIN STRUCTURLESS SINGLE GRAIN STRUCTURLESS SINGLE GRAIN STRUCTURLESS SINGLE GRAIN STRUCTURLESS SINGLE GRAIN STRUCTURLESS SINGLE GRAIN	, , ,
HI20N L H GJ1 C C J2 C C GJ1 C C GJ2 C C GJ2 C C GJ2 C C GJ2 C C GJ2 C C GJ2	0- 3 3- 6 6- 19 19- 24 29- 35 35- 56 56- 86 86- 93 93-103 (SCR1PT 10N (HICKNESS	2 - 4 2 - 6 7 - 24 0 - 9 4 - 14 21 - 21 11 - 30 0 - 8 8 - 32	BUUNDARY CLEAR SMUUTH CLEAR SMUUTH BHUPI BHUPI BHUPE SMUTH GHADUAL SMUTH CLEAR SMUTH	10.0YH3.0/2. MATRIX MOIST 2.5Y4.0/2.0 MATRIX MOIST 2.5Y5.0/2.0 MATRIX MOIST 2.5Y4.0/2.0 MATRIX MOIST 2.5Y4.0/2.0 MATRIX MOIST 2.5Y5.0/2.0 MATRIX MOIST 2.5Y5.0/2.0 MATRIX MOIST 2.5Y5.0/2.0 MATRIX MOIST 10.0YH5.0/2.0	D LOA FIN LOA LOA LOA LOA LOA LOA	M SANDY SANDY SANDY MY SAND MY SAND MY SAND	MASSIVE MASSIVE LAMINATED(< MASSIVE MASSIVE MASSIVE MASSIVE MASSIVE		NEAK HEAL GRANULAR WEAL HEDIUM GRANULAR BEDIUM PSEUDO WEAA COARSE SUBANGULAR BLUCKY PSEUDO WEAK COARSE SUBANGULAR BLUCKY PSEUDO STRUCTURLESS SINGLE GRAIN STRUCTURLESS SINGLE GRAIN STRUCTURLESS SINGLE GRAIN STRUCTURLESS SINGLE GRAIN STRUCTURLESS SINGLE GRAIN STRUCTURLESS SINGLE GRAIN	, , ,
H H GJ1 GJ2 I C GJ2 I C	0- 3 3- 6 6- 19 19- 24 29- 35 35- 56 56- 86 86- 93 93-103 (SCR1PT 10N (HICKNESS	2- 4 2- 6 7- 24 0- 9 4- 14 21- 21 11- 30 0- 8 8- 32 CONSISTS SLIGHTLI SCOPTLI	BUUNDARY CLEAR SHUUTH CLEAR SHUUTH AUHUPT BRUKEN ABRUPT BRUKEN DJFFUSE SMOUTH GHADUAL SHOUTH CLEAR SHOUTH CLEAR SHOUTH CLEAR SHOUTH CLEAR SHUUTH CLEAR SHUUTH CLEAR SHUTH CLEAR SHUTH CLEAR SHUTH CLEAR SHUTH CLEAR SHUTH CLEAR SHUTH CLEAR SHUTH CLEAR SHUTH CLEAR SHUTH CLEAR SHUTH SHU	10.0YH3.0/2. MATRIX HOIST 2.5Y5.0/2.0 MATRIX MOIST 2.5Y5.0/2.0 MATRIX MOIST 2.5Y5.0/2.0 MATRIX MOIST 2.5Y5.0/2.0 MATRIX MOIST 2.5Y5.0/2.0 MATRIX MOIST 2.5Y5.0/2.0 MATRIX MOIST 2.5Y5.0/2.0 MATRIX MOIST 2.0Y4.0/2.0 MATRIX MOIST	D LOA EJN EDA LOA LOA LOA LOA LOA	M SANDY SANDY SANDY MY SAND MY SAND MY SAND	MASSIVE MASSIVE LAMINATED(< MASSIVE MASSIVE MASSIVE MASSIVE MASSIVE MASSIVE MASSIVE MASSIVE		NEAK HEAL GRANULAR WEAL HEDIUM GRANULAR BEDIUM PSEUDO WEAA COARSE SUBANGULAR BLUCKY PSEUDO WEAK COARSE SUBANGULAR BLUCKY PSEUDO STRUCTURLESS SINGLE GRAIN STRUCTURLESS SINGLE GRAIN STRUCTURLESS SINGLE GRAIN STRUCTURLESS SINGLE GRAIN STRUCTURLESS SINGLE GRAIN STRUCTURLESS SINGLE GRAIN	, , ,
GALZON L H GJ1 GJ2 L C L L C J L C GJ1 L C GJ2 L C GJ2	0- 3 3- 6 6- 19 19- 24 24- 35 35- 56 56- 46 86- 93 93-103 	2- 4 2- 6 7- 24 0- 9 4- 14 21- 21 11- 30 0- 8 8- 32 CONSISTS SLIGHTLI SCOPTLI	BUUNDARY CLEAR SMUUTH CLEAR SMUUTH CLEAR ABRUPT BRUKEN ABRUPT BRUKEN DIFFUSE SMOUTH GHADUAL SMOUTH CLEAR SMOUTH CLEAR SMOUTH CLEAR SMOUTH CLEAR SMOUTH CLEAR SMOUTH CLEAR SMOUTH CLEAR SMOUTH CLEAR SMUUTH SMU	10.0 YR3.0/2. MATRIX HOIST 2.5Y5.0/2.0 MATRIX MOIST 2.5Y5.0/2.0 MATRIX MOIST 2.5Y5.0/2.0 MATRIX MOIST 2.5Y5.0/2.0 MATRIX MOIST 2.5Y5.0/2.0 MATRIX MOIST 2.5Y5.0/2.0 MATRIX MOIST 2.5Y5.0/2.0 MATRIX MOIST 2.5Y5.0/2.0 MATRIX MOIST 10.0YH5.0/2.0 MATRIX MOIST MATRIX MATRIX MOIST MATRIX MOIST MATRIX MOIST MATRIX MOIST MATRIX MOIST MATRIX	D LOA EJN EDA LOA LOA LOA LOA LOA	M SANDY DY LOAM SANDY HY SAND HY SAND HY SAND HY SAND S S S S S S S S S S S S S S S S S S S	MASSIVE MASSIVE MASSIVE MASSIVE MASSIVE MASSIVE MASSIVE MASSIVE MASSIVE MASSIVE MASSIVE MASSIVE		NEAK HEAL GRANULAR WEAL HEDIUM GRANULAR BEDIUM PSEUDO WEAA COARSE SUBANGULAR BLUCKY PSEUDO WEAK COARSE SUBANGULAR BLUCKY PSEUDO STRUCTURLESS SINGLE GRAIN STRUCTURLESS SINGLE GRAIN STRUCTURLESS SINGLE GRAIN STRUCTURLESS SINGLE GRAIN STRUCTURLESS SINGLE GRAIN STRUCTURLESS SINGLE GRAIN	, , ,
H GJ1 GJ2 I C I I C GJ2 I	0- 3 3- 6 6- 19 19- 24 24- 35 35- 56 56- 86 86- 93 93-103 	2- 4 2- 6 7- 24 0- 9 4- 14 21- 21 11- 30 0- 8 8- 32 CONSISTS SLIGHTLI SLIGHTLI SLIGHTLI SLIGHTLI	BUUNDARY CLEAR SHUUTH CLEAR SHUUTH CLEAR ADHUPT BRUKEN ADHUPT BRUKEN DIFFUSE SMOOTH DIFFUSE SMOOTH CLEAR SMOUTH GHADUAL SMOUTH CLEAR SMOOTH CLEAR SMOOTH CLEAR SMOUTH SMOUTH	10.0YR3.0/2. MATRIX HOIST 2.5Y5.0/2.0 MATRIX MOIST 2.5Y5.0/2.0 MATRIX MOIST 2.5Y5.0/2.0 MATRIX MOIST 2.5Y5.0/2.0 MATRIX MOIST 2.5Y5.0/2.0 MATRIX MOIST 2.5Y5.0/2.0 MATRIX MOIST 2.5Y5.0/2.0 MATRIX MOIST 10.0YH5.0/2.0 MATRIX MOIST 10.0YH5.0/2.0 MATRIX MOIST 10.0YH5.0/2.0 MATRIX MOIST 10.0YH5.0/2.0 MATRIX MOIST PUOTS 1 ADUNDANT FINE EX FED PLENT IFUL EX FED PLENT IFUL VERTICAL	D LDA FIN LDA SAN LDA LDA LDA LDA LDA LDA LDA LDA LDA	M SANDY SANDY SANDY SANDY MY SAND MY SAND MY SAND SAND MOIS	MASSIVE MASSIVE MASSIVE MASSIVE MASSIVE MASSIVE MASSIVE MASSIVE MASSIVE MASSIVE MASSIVE MASSIVE MASSIVE MASSIVE		NEAK HEAL GRANULAR WEAL HEDIUM GRANULAR BEDIUM PSEUDO WEAA COARSE SUBANGULAR BLUCKY PSEUDO WEAK COARSE SUBANGULAR BLUCKY PSEUDO STRUCTURLESS SINGLE GRAIN STRUCTURLESS SINGLE GRAIN STRUCTURLESS SINGLE GRAIN STRUCTURLESS SINGLE GRAIN STRUCTURLESS SINGLE GRAIN STRUCTURLESS SINGLE GRAIN	, , ,

~

.

	ATES LAKE				RESOURC	E ANALYSIS Y OF ENVIRU CTURIA, B.(ł					
ROJECT: 9			92J 7								DATE: JULY		PAGE: 0
				**********	********	********			******	********	*******	********	******
1 C 1	24- 35	NON STICKI LOUSE NONPLASTIC	2	PLENTIFUL MEDIUM DBLIQUE IN PED			мо	151					
1 (2	35- 56	NON STICKY LOOSE NÚMPLASTIC		VERY FÉW VERY FINE DBLIQUE In Ped			MO	(51					
1 C 3	56- 66	NON STICKY LUUSE NONPLASTEC		FEN MEDIUM Horizontai In Ped	L		MD	157					
1 C GJI	86- 93	NON STICKY VERY FRIAD NONPLASTIC	5.E	PLENTIFUL MEDIUM Horizontai In PFD	COMM MED1 L PRON S-07	UN UM INENT R4-0/6-0	MO	157					
1 C GJ2	93-103	NUN STICKT LOUSE NONPLASTIC		FEW MEDIUM HORIZONTAI IN PED	FEN Fine L Phon Jo.oy	INENT 85.076.0	MO	15T					
*******	*******	*********	******	**********	********	********	*****	******	******	********	*******	* * * * * * * * * *	******
HYSICAL 6	CHEMICAL	DATA											
		SAMPLE #	PH SAM			PH 2							
ORIZON~DE	етнесм.)	SAMPLE A	51A		VALUE	SAMPLE	METH	D VAL		DRGANIC Cardon %	NI TROGEN		
н 6J1	0⊷ 3 3- 4	761456	2	2	5+3	2	4	4.		2.92	•50		
eis	6- 19 19- 29 24- 35	761457 761458 761459	222	1	5.3	2	4	4.	7	•16 •21	•01 •01		
	36	761459 761460 761461	2	1	5.4 5.2 5.2	2222	4	4.	5	.05 .04 .02	.00 .01 .01		
I C GJ2 I C GJ1 I C 3 I	56- 86 86- 93 93-103	761462 761463	222	1	5.5	22	4	4.1 4.1	5	•02	•01		
		EXCHANGE	ABLE CATI	DNS BUFF.(NE	/1006)	ς. ε. ς.							
UR1ZON-DE	етнсси	CA	NG	NA	ĸ	DETERMINE	c	PI PPM	S PPM.	6 PP M .	BULK DENSIT	Y	
н 6 Ј 1	0- 3 3- 6	5.33	1.11	-06	.26	11.0		2.5	4.0	• 3			
GJ2	6- 19 19- 24	.87 1.36	.24 .28	.07	.07	1.7		3.0	1.5	.3			
	24- 35 35- 56 56- 86 86- 93	•66 •28 •48	.11	•06 •03 •07	.07 .04	1.3 1.4 1.5		2.0	1.0	.3			
1 C I 1 C 2 1 C 3 1 C 6J1 1 C 6J2	86- 93 93-103	-53 -72	•09	.07 .05 .03	.08	1.3		2.5	+2		1.64		
-													
		HOISTURE		PART. SIZE		ASSING)					PARTICLE	51ZE(X)	
DR1ZON-DE		1/3 848. 8	15 BAR.			10 #2	-	#45	#6 0	#17 0	TOTAL	50~2 U	
	0- 3	044.									SAND	5167	
н 6-13 6-12	3- 6 9- 19 19- 24	5.3	1.4										
	24~ 35 35- 56	8.5	1.7										
ICI IC2 IC3 IC3 IC6J1 IC6J2	56- 86 86- 93			99.90 99									
1 C GJ2	93~103			99.90 99	.20 97.	00 90.7	J 5	9.20	5.40	3+20	90	ы	
		PARTICLE	512E(%)										
		20 CLAY											
DRIZON-DE H	0- 3	TUTAL							РН МЕТН 1Н2U	005. CODES	-		
GJ1	3- 6 6-19								2H2U	1:5 SATUKATIO	N		
6.J2 1 C 1	19- 24 24- 35								4(AC 5KCL	L2			
	35- 56 56- 86 86- 93								DNAP				
Ç 615	93-103	2											
*******	*** ** * * * * * *	*****	********	********	*******	******	*****	*******	******	*********	* ** * * * * * * * *	********	** * * * * * * *
м	ETHODS												
LELD SAME	PLING	SITE SELEC	TION		SAMP	LE PRÉPARAT D'PH THUGEN		IR DRY W	ITH GRI	NDING			
ACID DI	CARBON CHRUMATE L	IGESTION, F	ESDA TITR	ATION	ELEC	TRIÇAL CUND	uct.						
CACUS E	DUIVALENT	WEIGHT GAI			-11	NSTRUMENT	S	ATURATED	ITY CEL	L - CAP E ACID FLU	(19105		
ULK DENSI -SAMPL -RETHL	- CL	DVEN DRY VOLUMETER	METHOU		AVA1	ABLE PI ABLE PE ACTABLE CU ACTABLE ZN		RAY 2 ERCHLORI			DRIDE		
TTERBERG PLASTIC -SAMPL	LIMITS LIMIT				ti ti	ACTABLE ZN	e	FRCHLORI	C ACTO	E N CHLORIDE			
		DVEN DRY Evaporatio	N		MN SAND	. SILL. AND RUER OF MAT	CLAY	.1 MOLAR	CALCIU	N CHLORIDE			
	LINIT LE STATE	DVEN DRY Evaporatio	N		~0	WER OF MAI	00	ARBUNATË Rganic m	5 ATTER				
ATIONS(BU	UFFERED) S	NHAAC, PH	7.0DIS	PL. DIST.	-p	ISPERSION	5	ALTS		HDSPHATE			
-ANAL Y F	ICAL PROCA	ATOMIC AU	SURPTION		SPEC	THOD IFIC GRAVIT FURE STATUS AMPLE PREP	Y P	YCNOMETE					
					MD15 -5	FURE STATUS Ample Prep. Ample State	5	ROUND AN	D SIEVE	υ			
					- 14	ETHOD NKAGE LIMIT	P	RESSURE	PLATE				
							· ·	VEN DRY					
					- M	STHOD SUFFERED	E	VAPORATI HAAC . PH	ON C				

,

,

501L: N	ENGERRY					********* ANALYSIS BRA DF ENVIRONNE DR IA. B.C.		******	************	************	******
PROJECT: 5			5: 92J /							TE: JULY 03+1979	PAGE: 01
*********									·		
					NEWBEI	RRY SERIE	9				
		SAMP	. ОР БОКУЕТ 2.ING РОЖРО Лест Code:	: 18 10 76 SE: SEMI-DETAIL 92J	SURVEYOR: ED SURVEY	RB VIC.	RES. ANAL	L. BRCH.	. NOFE		
	LOCATIO			CLASS1	FICATION			SLOPE			
LATITUL LONGITU PRECISI ELEVATI AIR PHO	DE(N): JDE(V): ION (SEC): ION (M): JTUGRAPH:	60 21 122 51 BC7549-	1 00 REG 30 213 STA	D GLEYSOL(1978) TUSI NODAL SEI PEATY	SOIL		X TYPE: CLASS Aspec Profi Lengi Micro	: 5: CT (DEG) 1LE SITE TH (H): DTOPOGR/	1:0 COMPLEX NEARLY LEVEI 1: 360 1: Lower Slope 403 Phy: Slightly	MOUNDED	
PARENT	AATERIAL	& LANDFOR	M								
UPPER S	TRAT LGRAP	HIC UNIT									
SPEC+ C	LASTIC I LASTIC I LASTIC I LASTIC I LASTIC I LASTIC I KAT.:	SANDY	NI CAL LU (H INEHAL) LI D/NEUTHAL								
ROOTING	0EPTH:	47	F1 GF	LUUD HAZARDI RA Roundwater Dep	ESENT RE TH: .8 M ND: APPAR AQUI	RENT	DRAINAGE RUNOFF1 STUNINES PERVIDUS	551 N	(ERY POORLY DR) (ERY SLOW (ON-STONY SLOW	AINED	
********	******	********	******		********	**********	* * * * * * * * * * *	******	******		********
PROFILE DE	SCRIPTION	!									
TH HORIZON DE	PTH(CM)	RANGE	HORIZON BOUNDAÑY	COLOUR 1		TEXTURE		STRUCTU	IRE I	STRUCTURE 2	
ОМ	20- 0	10- 30	ABRUPT IRREGULAR	10.0YR2.0/2. MATRIX MOIST	0	PEATY					
C 61	0- 12	8- 10	CLEAR SMOOTH	5.075.0/3.0 NATRIX MDIST 10.0782.0/3. MATRIX DRY	o	SANDY LUAM	,	MASSIVE		WEAK Médium Angular Blocky Pseudd	
C 65	12- 37	23- JO	ABRUPT SMOOTH	5.0Y5.0/2.0 MATRIX MOIST		SANDY LOAM	•	ASSIVE		WEAK Medium Subangular bloc Pseuod	ĸY
11 C G1	47- A7	A- 14	ABRUPT SMUUTH	2.544.072.0 Natural Wet/	REDUCED	SILT LOAM		ASSI VE		WEAK COARSE PLATY PSEUDO	
11 C G2	47- 57			5.045.0/2.0 NATURAL WET/	REDUCED	SILT LOAM	•	44551VE			
TH HORIZON DE	11CKNESS PTH (CN)	CONSISTEN	KC L.	ROOTS J	PORES I	м	OTILES		MDISTURE AT SAMPLING		
0 M	20- 0			ABUNDANT MEDIUN DHLIQUE	ABUNDANT MEDJUM RANDOM IN PED CONTINUC OENDRITI TUBULAR	ous.			M01\$T		
C 61	0- 12	NON STICK Very Fria Slightly	HLE	PLENTJFUL Medium UBLique IN PEO	PLENTIFU FINE OBLIQUE IN PED CONTINUC DENDRITI TUBULAR	ous			MOIST		
C 62	12- 37	NON STICK Very Fria Slightly	IY BLË PLASTIC	PLENTIFUL Medium Vertical In Ped	PLENTIFU FINE VERTICAL IN PED CONTINUO DENDRITI TUBULAR	. 0 2	EW DARSE ISTINCT •574•0/4•0	•	KU15T		
11 C GI	37- 47	SL IGHTLY PLASTIC	STICK¥	PLENTIFUL FINE HORIZONTAL IN PED	PLENTIFU FINE HORIZONT IN PED CONTINUC DENDRITI TUQULAR				NET		
11 C G2 ********	47- 57	*******	********	*********	*******	*******	*******		WET ***********	****	*****

-

-

OTC: ROJECT:	NFWIM RRY 92J -	NT	5: 92J7		RE: Mi	SOURCE ANALYSI NISTRY OF ENVI VICTORIA. D	S DRANC RUNMENT •C•	н		SUMMARY	DATE:	JULY 03,19	79 PAGE
*******	* * * * * * * * * * * * *	********	*******	** * * * * * * * *	** * * * * * *	*********	******	********	********	*******	*****	********	*********
	& CHEMICAL	DATA											
		SAMPLE	и рн	1		PH 2							
08120N-1	DEPTH(CM+)	LAU SAMPLE		IPLE METH	DD VAL	UE SAMPLE STATE	METHU	AD VALUE	URGA CARB	NIC DN X	NITROG	EN	
M G1 G2 I C G1 I C G2	20- 0 0- 12 12- 37 37- 47 97- 57	761637 761638 761639 761640 761640 761641	2222	2 1 1 1	4 5 5 5	2 2 3 2 3 2	4 4 4 4 4	4.2 4.5 4.7 4.6 4.6	16.7 1.8 .7 1.5 1.7	5 4 4	1.00 .11 .05 .09 .10		
YSICAL	& CHEMICAL												
				DNS BUFF.(*		C. E. C.						ATTERBURG	
RIZON-D	EPTH(CM+)	CA.	MG	NA	ĸ	DETERMINE	נ	P1 PPM.	S PPN -	BULK DENSIT		PLASTIC LIMIT	LIGUID
M G1 G2 C G1 C G2	20- 0 0- 12 12- 37 37- 47 47- 57	13,98 3,50 2,60 3,97 4,59	1,05 +16 +13 +20 +25	•13 •18 •18 •21	•40 •19 •11 •19 •23	51.2 8-9 5.6 10.5 11.7		3.9 6.4 6.3 J2.6 14.6	3+8 1+6 2+6 3+3	•58		31+3	34,0
			ZE ANALY.	(X PASSING)		 PA	 	 51ZE(%)					
A120N-0	EPTR(CM.)	#25	#45	#60	#170	#200 TO SAU		50-2 U S1LT	20 CLAY TOTAL				
M G1 G2 C G1 C G2	20- 0 0- 12 12- 37 37- 47 47- 57	99.90	99.70	99+50	9.20	99•00 I		78	21				
**** * * *	*****	*******	******	** * * * * * * * * * *	******	*********	******	********	*******	******	******	********	*********
1H20 2H20	115 SATURATIUM												

-

\$

PRDJECT: *******			S: 92J 7	******	RESOURCE ANALY VINISTRY OF ENV VICTORIA.	8.0.	******		E: JULY 03+1979	PAGE: 01
					UTHERFORD					
			E OF SURVEY PLING PURPO	: 14 10 76 SE: SCMI-DETAIL(92J	SURVEYOR: RB	VIC, RES. A	NAL+ BRCH++ H	MOFE		-
	LOCATION			CLASSI	ICATION		SLOPE			
ELEVA	TUDE(N): (TUDE(W): (SIGN (SEC): STIGN (M): STIGN (M): PHOTOGRAPH:	50 2 122 5 9C7549	213 STA	YED REGOSOL(1978 TUS: MODAL			PE: ASS: PECT (DEG): Ofile Site: I NGTH (A): CROTOPÓGRAPH	I+0 COMPLEX NEARLY LEVEL 360 Lower Slope 403 Y: Slightly M	10 UNDED	
	INT MATERIAL	& LANDFO	RH							
UPPEH	STRATIGRAP	IC UNIT								
PHYSI CHEMI SPEC. COMM. GENET SURFA	CLASTIC 1: CLASTIC 1: FIC MAT+:	SILTY	MY AND FINE CID/NEUTHAL	SILTY						
RUUTI	ING DEPTHE	66	F G	EEPAGE: PRE LOOD HAZARD: RAF ROUNDWATER -DEPT -KIN OISTURE CLASS:	in: "9 N	DRAIN RUNAF Stuni Pervi	AGE: VER FI VER NFSSI NUN OVSNESSI SLOV	Y POORLY DHAI Y SLOW -STONY N	NED	
	AL NOTES									
	OISTURE FOR									
			*********	••••••••••••••••	***********	***********	*********	**********	***********	********
	DESCRIPTION				********			• • • • • • • • • • • • • • •	***********	*******
ROFILE		RANGE	HURIZON BUUNDARY	COLOUR I	TEXI		STRUCTURE		STRUCTURE 2	******
ROF ILE	DESCRIPTION		HURIZON		TEX			1		******
ROFILE DRIZON GI	DESCRIPTION THICKNESS DEPTH(CM)	RANGE	HUR I ZON BOUNDARY ABRUPT	COLOUR 1	TEXI	ſURÊ	STRUCTURE	1	STRUCTURE 2 VEAK MEDJUM PLATY	
ROFILE GI GI G2 G3	DESCRIPTION THICKNESS DEPTHICK) 0- 25 25- 45 45- 60	RANGE 23- 28 18- 23 20- 23	HOR I ZON BUUNDARY ABRUPT SHOUTH CLEAR SHOUTH ABRUPT SHOUTH	COLOUR 1 2.575.0/2.0 NATRIX MOIST 5.076.0/2.0 NATRIX MOIST 5.075.0/2.0 MATRIX MOIST	TEX1 51() 51() 51()	TURE	STRUCTURE MASSIVE	1	STRUCTURE 2 VEAK MEDIJM PLATY PSEUDO WEAK COARSE SUBANGULAR BLOC	
ROFILE GRIZON GI GZ G3 G4	DESCRIPTION THICKNESS DEPTHICM 0- 25 25- 45 45- 60 66- 75	RANGE 23~ 20 18- 23 20- 23 8- 10	HOR I ZON BOUNDARY ABRUPT SHOUTH CLEAR SHOUTH ABRUPT SHOUTH	COLOUR 1 2.575.0/2.0 RATRIX MOIST 5.076.0/2.0 MATRIX X015T 5.075.0/2.0 MATRIX M015T 2.575.0/2.0 NATURAL WET/F	TEXI SILI SILI SILI REDUCED SILI	TURE T LUAM T LOAN TY CLAY	STRUCTURE MASSIVE MASSIVE	1	STRUCTURE 2 WEAK MEDIUM PLATY PSEUDO MEAK COARSC SUBANQULAN BLOC VEAK COARSE PLATY	
ROFILE DR12ON G1 G2 G3 G4 F B	DESCRIPTION THICKNESS DEPTHICK) 0- 25 25- 45 45- 66 66- 75 75- 78	RANGE 23~ 28 18- 23 20- 23 8- 10 2- 5	HOR JZON BOUNDARY SHOUTH CLEAR SHOUTH ABRUPT SHOUTH ARRUPT SHOUTH	COLOUR 1 2.575.0/2.0 NATRIX MOIST 5.076.0/2.0 NATRIX MOIST 5.075.0/2.0 MAIRIX MOIST 2.575.0/2.0 NATURAL WEI/F 10.07N4.0/220 NATURAL WEI/F	TEX SILT SILT SILT REDUCED SILT	TURE T LUAM T LOAM TY CLAY TY CLAY	STRUCTURE MASSIVE MASSIVE MASSIVE MASSIVE	1	STRUCTURE 2 WEAK HEDIJW PSEUDO WEAK COARSE SUBANUULAN BLOC PSEUDO WEAK COARSE PSEUDO WEAK COARSE PSEUDO WEAK COARSE PSEUDO	
ROFILE DR12ON G1 G2 G3 G4 F B	DESCRIPTION THICKNESS DEPTHICM 0- 25 25- 45 45- 60 66- 75	RANGE 23- 28 18- 23 20- 23 8- 10 2- 5 13- 16	HUR IZON BUUNDARY ABRUDT SHOOTH CLEAR SHOOTH ABRUPT SHOOTH ABRUPT ABRUPT	COLOUR 1 2.575.0/2.0 RATRIX MOIST 5.076.0/2.0 MATRIX X015T 5.075.0/2.0 MATRIX M015T 2.575.0/2.0 NATURAL WET/F	TEX SILT SILT SILT REDUCED SILT	TURE T LUAM T LOAN TY CLAY	STRUCTURE MASSIVE MASSIVE MASSIVE	1	STRUCTURE 2 VEAK MEDIUM PLATY PSEUDO MEAK COARSE SUBANQULAN BLOC VEAK COARSE PLATY PSEUDO VEAK COARSE PLATY PSEUDO	
ROFILE GI GI GJ GJ GJ GJ GJ GJ G G G G G G G G	DESCRIPTION THICKNESS DEPTHICM 0- 25 25- 45 45- 66 66- 75 75- 78 78- 93	RANGE 23~ 28 18- 23 20- 23 8- 10 2- 5 13- 16	HOR I ZON BOUNDARY ABRUPT SMOOTH CLEAR SMOOTH ABRUPT SMOOTH ABRUPT SMOOTH ABRUPT	COLOUR 1 2:575.0/2:0 MATRIX MOIST 5:076:0/2:0 MATRIX HOIST 5:075:0/2:0 MATRIX HOIST 2:575:0/2:0 NATURAL WEI/S 10:07N4:0/2:0 NATURAL WEI/S 5:074:0/1:0 NATURAL WEI/S	TEXI SILI SILI SILI REDUCED SAND	TURE T LUAM T LUAM TY CLAY TY CLAY TY LUAM	STRUCTURE MASSIVE MASSIVE MASSIVE MASSIVE	1	STRUCTURE 2 WEAK NEDIUM PLATY PSEUDO WEAK COARSE SUBANUULAN BLOC PSEUDO WEAK CUARSE PLATY PSEUDO WEAK CUARSE ANGULAR BLOCKY	
ROFILE GI GI GJ GJ GJ GJ GJ C G	DESCRIPTION THICKNESS DEPTHICM 0- 25 25- 45 45- 66 66- 75 75- 78 78- 93	RANGE 23- 28 18- 23 20- 23 8- 10 2- 5 13- 16	HOR I ZON BOUNDARY ABRUPT SMOOTH CLEAR SMOOTH ABRUPT SMOOTH ABRUPT SMOOTH ABRUPT	COLOUR 1 2.575.0/2.0 NATRIX MOIST 5.076.0/2.0 NATRIX MOIST 5.075.0/2.0 MAIRIX MOIST 2.575.0/2.0 NATURAL WEI/F 10.07N4.0/220 NATURAL WEI/F	TEX SILT SILT SILT REDUCED SILT	TURE T LUAM T LOAM TY CLAY TY CLAY	STRUCTURE MASSIVE MASSIVE MASSIVE MASSIVE	1	STRUCTURE 2 WEAK NEDIUM PLATY PSEUDO WEAK COARSE SUBANUULAN BLOC PSEUDO WEAK CUARSE PLATY PSEUDO WEAK CUARSE ANGULAR BLOCKY	
ROFILE G1 G1 G2 G3 G4 F B 3 C G 	DESCRIPTION THICKNESS DEPTHICM 0- 25 25- 45 45- 66 66- 75 75- 78 76- 93 THICKNESS DEPTHICM 0- 25	RANGE 23~ 28 18- 23 20- 23 8- 10 2- 5 13- 16	HOR I ZON BOUNDARY SHOUTH CLEAR SHOUTH ABRUPT SHOUTH ABRUPT SHOUTH ABRUPT SHOUTH ABRUPT SHOUTH	COLOUR 1 2.575.0/2.0 MATRIX MOIST 5.076.0/2.0 MATRIX MOIST 5.075.0/2.0 MATRIX MOIST 2.575.0/2.0 MATURAL WET/F 10.07N4.0/1.0 NATURAL WET/F NATURAL WET/F	TEXI SILI SILI SILI REDUCED SAND	TURE T LUAM T LUAM TY CLAY TY CLAY TY LUAM	STRUCTURE MASSIVE MASSIVE MASSIVE MASSIVE 1 M01 AT 1 M01	1 ISTURE SAMPL ING	STRUCTURE 2 WEAK NEDIUM PLATY PSEUDO WEAK COARSE SUBANUULAN BLOC PSEUDO WEAK CUARSE PLATY PSEUDO WEAK CUARSE ANGULAR BLOCKY	
ROFILE G1 G2 G3 G4 F B G4 F C G G4 F C G G4 F C G G G G G G G G G G G G G G G G G G G	DESCRIPTION THICKNESS DEPTHICM 0- 25 25- 45 45- 66 66- 75 75- 78 78- 93 THICKNESS DEPTHICK	RANGE 23~ 28 18- 23 20- 23 8- 10 2- 5 13- 16 COMSISTE SLIGHTLY	HOR I ZON BOUNDARY SHOUTH CLEAR SHOUTH ABRUPT SHOUTH ABRUPT SHOUTH ABRUPT SHOUTH ABRUPT SHOUTH	COLOUR 1 2.575.0/2.0 MATRIX MOIST 5.076.0/2.0 MATRIX HOIST 5.075.0/2.0 MATRIX HOIST 2.575.0/2.0 NATURAL WET/F 10.07N4.0/1.0 NATURAL WET/F 5.074.0/1.0 NATURAL WET/F 5.074.0/1.0 NATURAL WET/F 5.074.0/1.0 NATURAL WET/F 5.074.0/1.0 NATURAL WET/F 5.074.0/1.0 NATURAL WET/F 5.075.1 PLENTIFUL FODIUM	TEX SILT S	TURE	STRUCTURE MASSIVE MASSIVE MASSIVE MASSIVE L MOI T TA+0 MOI	1 ISTURE SAMPLING IST	STRUCTURE 2 WEAK NEDIUM PLATY PSEUDO WEAK COARSE SUBANUULAN BLOC PSEUDO WEAK CUARSE PLATY PSEUDO WEAK CUARSE ANGULAR BLOCKY	

-

DJECT		NTS:	92J 7	*******	v	CE ANALYSIS RY OF ENVIR ICTORIA. B.	с.					LY 03,1979 **********	PAGE:
: 64	68 - 7 5	SLIGHTLY ST Friable Plastic	1CKY		MED OBL1 IN F CUNT DENI	NTIFUL IUM IQUE PED TINUQUS DRITIC ULAR			٩E	r			
F ti	75- 78				PLEI MED OBL IN CONI DENI TUB		ΨE	r					
1 C G	75- 93				F 1 NI OGL 1 N (CON) DENI	NTIFUL E Ique Ped TINUQUS DHITIC ULAR			₩E.	т			
******	*********	*********	********	********	*******	*********	******	********	*******	******	*******	*********	*******
HYSICAL	& CHEMICAL												
	UEPTH(CM+)	SAMPLE # Laû Sample #	PH 1 SAMPLE State	METHOD	VALUE	PH 2 Sample State	METHOD	VALUE	CARI	NIC SON X	NI TRUGEN	ı	
61 62 63 64 IF 8 I C 6	0- 25 25- 45 45- 66 66- 75 75- 78 75- 78	761590 761591 761592 761593 761593 761595	2 N A A A N	2 1 2 2 1	5.1 5.3 5.4 5.1 5.0 5.0	52200	4 4 4 4 4	4.4 4.6 4.6 4.9 4.2	4.5 .0 18.	97 55 17	.32 .07 .06 .32 .81		
						C. E. C.		-			 NDIS1	URE STATUS	
		CA	LE CATIONS MG	NA NA	к	DETERMINE	`	P1	5 PP M .	8	173	15	
1083209-4 61 62 63 64 95 8 11 C G	0~ 25 25- 45 45- 66 66- 75 75- 78 78- 93	4+18 3+89 3+81	1.06 1.03 1.19	•18 •22 •18	*56 *32 *33	20.4 14.4 11.1		PPM. 13.9 19.2 13.3 6.1 12.4	3+7 3+4 2+9 10+6 9+4 2+0	РРИ. .8 .3 .3	BAR. 66.0 44.0 44.0	848. 26.3 11.5 11.5	
									 D 49				
IOR I ZON-	DEPTH(CM+)	ATTERBURG PLASTIC LIMIT	LIQUIO LIMIT	#25	#45	#60	● 170	# 200		AL	50-2 U SILT	20 CLAY TOTAL	
G1 G2 G3 G4	0- 25 25- 45 45- 80 66- 75 75- 78								1		78 80 45 1	22 20 54	
De B II C G	78- 93	35.9	39.9	99.50	98.70	98+10	97.20	93.90	55		37	ė.	
******	*********	*******	*********	********	*******	********	*******	*******	*******	******	*******	*********	*******
1H2 2H2	0 115 0 SATURATIC												

ς.

.

******	r: 92J -		5: 92J 7	RE SOURC Ministr Vi	E ANALYSIS BR Y OF Environm Gtoria, B.C.	ANCH ENT	SUMMARY DAT	E: JULY 03,1979 PAGE:
					KEY SERIES		**************	**********
		DATE	E OF SURVE					
		SAM	LING PURP	DSE: SERI-DETAILED SURVE	DR: R8 VIC. Y	1 RE5. ANIAL.	BRCH N OF E	
				CLASSIFICATIO	Ł	56	0PE	
LUNG	TUDE(N): ITUDE(V): ISION (SEC) ATION (M):	50 21 122 50	>00 не/ Э0	50 GLEYSOL(1978)		¥ TYPE:	1+0	
AIR	ATION (H): Photografh:	807549-	213 ST/ - 25	NTUS: MODAL SDIL		CLASS: ASPECT PROFILE LENGTH	COMPLEX NEARLY LEVEL (DEG): 360 Site: Upper Slope (M): 403 Pography: Slightly	MITH (MA SE2)
PAR	ENT MATERIA		IM 					
OPPE	R STRATIGRA	PHIC UNIT						
PRYS CHEM SPEC COMM GENE	HERINGI ICAL CUMP.: ICAL COMP.: . CLASTIC J . CLASTIC J . CLASTIC I TIC MAT.: ACE EXPRES. RIPTOR 1:	FINES	NCAL NY AND FINE 107NEUTRAL	SILTY				
ROUT	ING DEPTH:	85	F G	EEPAGE: PRESENT LOOD HAZARD: HARE ROUNDWATER -DEPTH: 1.2 -KIND: APP DISTURE CLASS: HU	M Arent Mid	DRAINAGE: RUNOFF: STON INESS: PERVIOUSNES	PDORLY DRAINED Vert 5LOW Non-Stony 55: Slow	
	NAL NOTES							
		ATUS FOR AP			******	*****	*****	********
	DESCRIPTION							
ORIZON	THICKNESS DEPTH(CM)	HANGE	HORIZUN Boundary	COLOUR 1	COLOUR	2	TEXTURE	STRUCTURE 1
P	0- 9	6- 11	CLEAR Smuoth	MAIRIX MUIST			SILTY CLAY Lûam	MASSIVE
Gl	9- 37	26- 30	ABRUP 1 WAVY	2.575.0/2.0 Matrix Moist			SILTY CLAY LOAM	MASSIVE
62	37~ 50	10- 15	CLÉAR SMDUTH	5-075-0/1-0			SILTY CLAY	
			SHOUTH	MATRIX MOIST			LOAR	MASSIVE
63	50- 83	31- 36	ADRUPT SMOOTH	MATRIX MOIST			SILTY CLAY	MASSIVE
63 G4	50- 83 83- 94	31- 36 9- 18	ADRUPT	MATRIX HOIST 5.075.0/1.0 MATRIX MOIST 5.075.0/1.0 MATRIX MOIST			LUAM SILTY CLAY LOAM SILTY CLAY	
			ADRUPT SMOOTH	MATRIX MOIST 5.045.0/1.0 MATRIX MOIST 5.045.0/1.0 MATRIX MOIST 5.044.0/1.0			LUAR SILTY CLAY LOAM	MASSIVE
G4	83- 94	9- 18	ADRUPT SMOOTH ADRUPT SMUUTH ABRUPT	MATRIX HOIST 5.075.0/1.0 MATRIX HOIST 5.075.0/1.0 MATRIX HOIST	S.OYS.O/3 Natural Ne	5.0 TZREDUCED	LUAR SILTY CLAY LOAM SILTY CLAY LOAM	MASSIVE MASSIVE MASSIVE MASSIVE
G4 1 C G 11 C G DRIZON	83- 94 94-102	9- 18 5- 13 STRUCTURE	AGRUPT SMOOTH ADRUPT SMOUTH AGRUPT SMOUTH	MATRIX MOIST 5.045.0/1.0 MATRIX MOIST 5.045.0/1.0 MATRIX MOIST 5.044.0/1.0 MATRIX MOIST 5.045.0/2.0 NATURAL WET/REDUCED	S.0Y5.0/3 NATURAL WE	PORES 1	LOAR SILTY CLAY LOAM SILTY CLAY LOAM SANDY LOAN SILTY CLAY LOAN	MASSIVE MASSIVE MASSIVE
G4 1 C G 11 C G DW IZON P	83- 94 94-102 102-117 THICKNESS DEPTH(CN) 0- 9	9- 10 5- 13 STRUCTURE WEAK TU MO COARSE GRANULAR	AGRUPT SMOOTH ADRUPT SMOUTH AGRUPT SMOUTH	MATRIX MOIST S-0Y5-0/1.0 MATRIX MOIST S-0Y5-0/1.0 MATRIX MOIST S-0Y4-0/1.0 MATRIX MOIST S-0Y5-0/2.0 NATURAL WET/REDUCED	NATURAL WE		LUAR SILTY CLAY LUAM SILTY CLAY LUAM SANUY LUAN SILTY CLAY LUAM PEATY MUTTLES 1	MASSIVE MASSIVE MASSIVE MASSIVE HOISTURE
G4 1 C G 11 C G DH IZON P GJ	83- 94 94-102 102-117 Thickness Deptm(cm) 0- 9 9- 37	9- 10 5- 13 STRUCTURE WEAK TO MO COARSE GRANULAR WEAK MEDIUM TU SUBANGLAR PSEUDO	AGROPT SMOUTH ADROPT SMOUTH AGROPT SMOUTH SMOUTH 2 2 DERATE COARSE GLOCKY	MATRIX MOIST 5.075.071.0 MATRIX MOIST 5.074.071.0 MATRIX MOIST 5.074.071.0 MATRIX MOIST 5.074.072.0 MATURAL WET/REDUCED CONSISTENCE STICKY VERY FRIALLE	NATURAL WE	PORES 1 PORES 1 PLENTIFU MEDIUN DULIQUE IN PEO CANTINUCO DENDRITIC	LOAR SILTY CLAY LOAM SILTY CLAY LOAM SANDY LOAN SILTY CLAY PEATY MUTTLES 1 MUTTLES 1 MUTTLES 1 SS	MASSIVE MASSIVE MASSIVE MASSIVE AT SAMPLING MOIST MOIST
G4 1 C G 11 C G DH IZON P	83- 94 94-102 102-117 Thickness Deptm(cm) 0- 9 9- 37	9- 16 5- 13 STRUCTURE WEAK TO MO GRANULAR WEAK TO MO SUBANGULAR FINE TO MEL SUBANGULAR SUBANGULAR	AGROPT SMOUTH ADROPT SMOUTH AGROPT SMOUTH 2 2 2 DERATE COARSE BLOCKY	MATRIX MOIST S.0YS.0/1.0 MATRIX MOIST S.0YS.0/1.0 MATRIX MOIST S.0YS.0/2.0 NATRIX MOIST S.0YS.0/2.0 NATURAL WET/REDUCEO CONSISTENCE STICKY FRIANLE	NATURAL WE	PORES 1 PORES 1 PLENT IFUL MEDIUM DBL DUE IN PEO CONTINUOU DENDRITICULAR PLENT IFUL PINE DUE DDI DUE CONTINUOU DENDRITICUL	LOAR SILTY CLAY LOAM SILTY CLAY LOAM SANDY LOAN SILTY CLAY LOAM PEATY MDTTLES 1 MDTTLES 1 MDTTLES 1 S COMMON MEDIUM DISINCT 2.5Y4.0/4. COMMON MEDIUM DROM(MENT S	MASSIVE MASSIVE MASSIVE MASSIVE MOIST MOIST

•

~

********	*******	*********	*****		*******	*********	******	*******	******	*******	****	******	******
	ANKEY				RESOURC MIN1STR	CÉ ANALYSIS E Ry de Enviru Leturia, Bac	RANCH						
PROJECT: 9	2J -	NTS:			vi	ICTURIA, 8+C		*******					1979 PAGE: 02

5 69	63- 94	WLAK COARSL PLATY Laminatédik	1 CM)	STICKY FRIABLE PLASTIC				PLENTIF MEGIUM HORIZON IN PED CONTINU DENORIT INTERST	FAL 305 1C	ret Fine Prominer 2.544.07	NT ∕4.0	м	0 3 5T
11 C G	94 -1 02	WEAK Fine tù medi Subangular û Pseudd	UM LOCKY	NDN STIC VERY FRI SLIGHTLY	ABLE			PLENTIF MEDIUM UHLIQUE IN PED CONTINU DENDRIT TUBULAR	ous Ec			M	J IST
111 C G	102-117	WEAK CDARSE Platy Laminated(<		SLIGHTLY PRIABLE PLASTIC				PLENTIF MEDIUM HORIZON IN PED CONTINU DENDRIT INTERST	TAL 0US 31 171 AL				ΞT
*******	*********		*******	*******	*******	**********	******	*******	** * ** * * *	*******	****	******	*************
PHYSICAL I	S CHENICAL	SAMPLE #	РН 1			PH 2							
HDR120N-08	EPTH (CR+)	LAB SANPLE #	SAMPLE STATE	METHOD	VALUE	SAMPLE STATE	ME THOO		CAR	ION X	I TROG	EN	
A P C 61 C 62 C 63 C 64 t1 C 6 111 C 6	0- 9 9- 37 37- 50 50- 83 83- 94 94-102 102-117	761540 761541 761542 761543 761544 761544 761545 761546	2 ~ 2 ~ 2 ~ 2	1 1 2 1 2	4.9 5.7 5.2 5.0 4.9 4.9	~~~~	44444	4.0 4.0 4.3 4.3 4.3 4.4	3.	72 48 78 10 67	28 04 05 14 03 34		
		EXCHANGE A	LE CATIONS		 (100G)							MOISTU	RE STATUS
HOR 120N-0	EPTH(CM-)	CA	MG	NA	ĸ	DETERMINE	,	P1 PPM+	5 1994.	BULK DENSITY		BAR.	15 BAR.
A P C G1 C G2 C G3 C G9 II C G III C G	0~ 9 9~ 37 37- 50 50- 83 83- 94 54-102 102-117	5.59 3.25 2.78 3.06	1.96 1.60 1.85 1.73	•14 •20 •20 •20	•88 •38 •28 •28	54.0 7.6 7.1 7.7		16.0 6.3 7.1 8.2 12.4 10.0 11.2	21.3 8.5 35.3 14.5 18.2 23.1 55.2	1 • 18		42.3 42.3 42.3	10.0 10.0 10.0
*******	*********	***********	*******	*********		**********	*****	*******	*******	********	****	******	************
1H20 2H20	SATURATI												
********	******	*********	********		*******	**********	******	*******	******	*******			** *** * * * * * * * * * * *

01L: R0JE(7:	92J -	NT 5	5: 92J 7	RESOUR MINIST	CE ANALYSIS BR. Ry of Environm 'Ictoria+ B+C+	ANCH ENT	STREADY OF	
						**********		: JULY 03:1979 PAGE: (*********
				SCO	DBIE SERIES			
		SAMP	OF SURVEY: Ling Purpas Dect code:	: 19 IO 76 SURVE SE: SEMI-DETAILED SUR 92J	YDR: RB VIC VEY	, RES. ANAL. BRC	M., M OF E	
	LOCAT			CLASSIFICATI	0N	SLOPE		
PRECIS ELEVAT	JOE(N): TUDE(W1: SLDN [SEC] TUN [M): HOTUGRAPH:	90 28 122 55 : DC7548-	- 30 229 - STAT) GLEYSOL(1978) (VS: MODAL SOIL		X TYPE: CLASS: ASPECT (DE PROFILE SI Length (Mi Microtupog	I.0 COMPLEX Gently Undula (3):360 Te: Upper Slope :403 Raphy: Slightly M	
PAREN	IT MATERIA	L & LANDFOR	м					
UPPEA	STRAT IGRA	PHIC UNIT						
SPEC. CUMM. GENETI SURFAC	RING: AL COMP.: AL LOMP.: CLASTIC I CLASTIC I C MAT.: E EXPRES. PTOR 1:	SANDY ETNES	ICAL ID/NEUTHAL					
ROOTIN	IG DEPIHI	96 (FL	EPAGE: ABSENT OOD HAZARD: RARE ISTORE CLASS: I	PERHUNID	DRAINAGE: RUNDEF; Stoniness; PERVIDUSNESS;	PDORLY DRAINED SLOW NON-STONY MODERATE	
DITIONA	L NOTES							
BAR MU	STURE FD	R CG1=11.9.0	262=5.9,CGC	AH8=12.2.CG3=4.9.CG4	₽4.7.			
						***********	*************	************
. Bir dia ian filip ilanggi gir	ESCRIPTIO	-						
	THICKNESS DEPTH(CN)	RANGE	HOR LZUN BOUNDARY	COLDUR 1	COLOUR	2 T	EXTURE	STRUCTURE I
н	5-0	0- 6	ABRUPT	5.076.0/2.0				
61	0- 6	о- в	ABRUPT	S.DYS.D/2.0 Matrix Moist		5	ILT LOAM	MASSIVE
62	0- 14	6-12	ABRUPT WAVY	2.575.0/2.0 Matrix Mdist	10.0VR2.0 Matrix Mo		INE SANDY DAM	MASSIVE
G T AHB	14 - 23	6- 11	ABRUPT WAVY	2.5Y5.0/2.0 MATRIX NOIST		F	INE SANDY	MASSIVE
63	23- 45	16- 31	ABRUPT WAVY	5.075.0/1.0 Matrix Moist		s	ANDY LOAM	MASSIVE
G 4	45- 61	13- 20	AGRUPT WAVY	2.5Y5.0/2.0 Matrix Muist		F	INE SANDY UAM	MASSIVE
65	61- 70	5- 15	ABRUPT SMDOTH	5.045.0/1.0 WATRIX MOIST		F	INE SANDY	MASSIVE
C 61	70- 91	19- 23	ABRUPT	2.575.0/2.0 MATRIX MUIST				MASSIVE
GO	91- 98	5- U	AURUPT	2.545.0/2.0 MATRIX MOIST		F	INE SANDY Dan	MASSIVE
C 62	98-108							MASSIVE
FILE DE	SCRIPTION	<u>!</u>						
1120N D	THICKNESS DEPTH(CM)	STRUCTURE	2	CONSISTENCE	ROOTS 1	PORES 1	MOTTLES 1	MOISTURE
4	5- 0				ABUNDANT NEDIUM Obligue In Ped			AT SAMPLING Moist
-1	0- 6	VEAK MEDIUM Angular bli Pseudu	UCKY	SLIGHTLY SŤICKY FRIABLE PLASTIC	PLENTIFUL MEDIUM NORIZONTAL IN PED	PLENTIFUL FINE RANDUM In PED CONTINUQUS DENDRITIC INTERSTITIA	FEN FINE PROMINENT 10+0yr4+076	M0157
		WEAK		SLIGHTLY STICKY Friable Slightly plastic	PLÊNTIFUL Medium Dûlique In Ped	PLENTIFUL VERT FINE RANDDM IN PED CONTINUOUS	FEW Medtum Prominent 10.0484-075.	MOIST
	6- 14	CDARSE PLATY PSEUDD				DENDRITIC INTERSTITIA	L	
52 ++AHB	0- 14 14- 73 23- 45	PLATY		SLIGHTLY STICKY FRIACLE PLASTIC SLIGHTLY STICKY VERY FRIADLE	PLENTIFUL Medium Horizontal In Ped	DENDRITIC	COMMON Medium Prominent 10.0yr4.0/6/	MO1ST

•

/

*******	*****	******	********	******
501L: SCOM1E PROJECT: 92J -	NTS; 92J 7	RESOURCE ANALYSIS BRANCH Ministry of Environment Victoria, B.C.	SUMMART DATE: JULY 03,1979 P	AGE: OZ
*******************	*******	***********************************	***********	******

C 64	45- 61	WEAK Medium Angular H Pseudd	LUCKY	SL IGHT FRIABL PLASTI	LY STICKY E C	FE F1 DB IN	II NË LIQUE PED		PLENTIF FINE OBLIQUE IN PED CONTINU DENDRIT TUBULAR	ious 11c		UN SE 1 NENT R4=0/6=0	MOIST
C 65	61- 70	WEAK Medium Angular d Pseudo	ŁÜCKY	FRIABL	LY STICKY E Ly plasti	C 08	W NE LIQUE PED		PLENTIF VERY FI OGLIQUO IN PED CONTINU DENDRIT TUBULAR	NE.	COMM CDAR Fain Rasy	SE	MOIST
11 C G1	70- 91	WEAK LUAHSE PLATY LAMINATEU	IK 1 (M)	NDN ST VERY F SLIGHT	ICKY RIABLE Ly plasti	FE FI C HO IN	W NE RIZONTAL PED	-	PLENTIF VERY FI OBLIQUE IN PED CONTINU DENDRIT TUBULAF	INE JOUS	FEW COAR Prom 2.5y	5E Inent 4 •0/4 •0	M0151
C 66	91- 98	WEAK MEDIUM PLATY PSEUDO		FRIABL	LY STICKY E LY PLASTI	с FI с но	NE RIZONTAL PED	-	PLENTIF FINE OBLIQUE IN PED CONTINU DENDRIT TUBULAR	nus TC	MANY COAR Prom 7.54	SE INENT R4.0/4.0	MOIST
11 C G2	98~108	WEAK HEDIUM Platy Pseudo		NON ST VERY F SLIGHT	ICKY RIABLE Ly plasti	c			PLENTIF FINE HORIZON IN PED CONTINU DENDRIT TUBULAH	TAL	FEW CDAR Prom 10.0y	SE INENT Ra+0/6+0	NCLEST
********	********	*******	********	* * + * * * * * * * *	*******	******	******		** * * * * *	*****	*******	* * * * * * * * * * * * * *	*****
PHYSICAL L	CHEMICAL						_						
		SAMPLE	SAM		D VALUE	рн 5 а м		: THUD	VALUE		JRGANIC	NITROGEN	
HOR I ZON-DE		SAMPLE				STA	TE			<	CARDON X	×	
LFH C G1 C G2 C G4AHB C G3 C G4 C G3 C G3 C G5 11 C G1 C G2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	761669 761669 761670 761671 761672 761673 761674 761675 761676 761677	202022222222	5 8 8 1 1 3 1 3 1	6.1 5.0 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4	<u>a n n n n n n n n</u>	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		522 554 554 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2	24.43 +94 +40 1.22 +23 +35	1.09 .06 .02 .07 .01 .01	
		CA	MG	ONS BUFF.(M NA	E2100G) K	C. E. DETER			P1	s	8	BULK	
HORIZON-DE				••					РРН.	PPN.	PPM.	DENSITY	
LFH C G1 C G2 C G4AHB C G4 C G4 C G5 L1 C G1 C G6 L1 C G2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	38+45 3+92 2+90 3+69 1+41 1+45	7.68 3.19 .77 1.22 .44 .66	+10 +02 +03 +05 +04 +05	1.78 .34 .34 .34 .34 .18 .22	73+8 6+9 4+2 8+7 2+9 4+1			18+9 7+1 5+9 4+7 3+0 5+2 5+2 5+2 5+3	1.9 1.6 .2 .2 .8 .7 .5 1.1	•3 •4 •3	1.15 1.15 1.15 1.15	
		 MOISTUR	E STATUS	PART. 5176	ANALY.(3	PASS ING	 >	 P,	ANTICLE	5128(3	 ()		
HORIZON-DE	PTHICHAL	LZJ BAR.	15 BAR.	#45	#60	#170	#200	Ť	DTAL	50-2 51L	U 2UC		
LFH C G1 C G2 C G4AHB C G4 C G4 C G5 II C G1 C G6	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	22.0 13+8 20.0 7.3 10-8	7.4 3.6 8.6 3.0 3.0					3		5.2		1	ETHODS, CODES: H20 1:1 H20 1:5 H20 Saturation Cacl2 KCL NAF
C 66 11 C 62	98-108 98-108			99.40 9	4.20 3	8.90	22.40	8	4	14	2		
*******	********	*******		• • • • • • • • • • • • •	*******	• • • • • • • •	• • • • • • • •	****	******	*****		********	*********

		*********	*********				******	***********
SOIL: PROJECT:	SISTER 92J -	NTS:	42J10	RESOUR	CE ANALYSIS Ry of Enviro Ictor14+ B.C	BRANCH NMENT	SUMMARY DAT	E: JULY 03.1979 PAGE: 01
	********							******
				SIS	TER SERIE	S		
		SAMPL	OF SURVEY: ING PURPOSE CT CODE:	: SEMI-ORTAILED SUR	YOR: RU Y YEY	TC, RES. ANAL.	SRCH M OF E	
	LOCATIO	IN		CLASSIFICATI		SL	096	
LONGIT PRECIS ELEVAT	DDL(N): LUDE(N): SIUN (SEC): TION (N): TOTOGRAPH:	50 30 122 58 2 8C7546-2	00 REGU 30 244 STATU	GLEYSOL(1976) S: MUDAL SUIL		X TYPE: CLASS: Aspect Profile Length Nichoto	I.O CUMPLEX NEARLY LEVEL (DEG): 360 Site: Upper Slove (M): B06 Pugraphy: Level	
PAREN	RT MATERIAL	LANDFORM	<u> </u>					
UPPER	STRATIGNAP	HIC UNIT						
WEATHE PHYSIC CHEMIC SPEC. SPEC. GENETI SURFAC DESCRI	AL LOMP.: AL COMP.: CLASTIC 1: CLASTIC 2: CLASTIC 1: CLASTIC 1: CL	WEAK CHEMI STRATIFIED MEDIUM ACI SILTY SANDY FLUVIAL LEVEL INACTIVE	CAL MINEHAL F DANEUTRAL					
RODTIN	IG DEPTH:	64 (CM+ FLD NOI	DO HAZARD: RARE STURE CLASS:	AQUIC	DRAINAGE: RUNOFF: STONINESS: PERVIOUSNE	PUORLY DRAINED VERY SLOW NON-STONY SS: MUDEHATE	
ADDI TI UNA	L NOTES							
I BAR NO	DISTURE FOR	AP1,LG=33.	0+2061=5.7.					
** * * * * * * *	*********	********	******	************	*********	***********	******	*****************
PROFILE D	DESCRIPTION	1						
RURIZUN	THI CKNESS DEP TR(CM)	RANGE	HUR IZON BUUNDARY	COLDUR 1	COL	10UR 2	TEXTURE	STRUCTURE 1
A P	0- 25	22- 30	AORUPT SMODTH	10.07R4.0/3.0 Mairix Muist			SILT LOAM	VERY BEAK Cdanse Subangular blucky
6	25- 36	10~ 15	ABRUPT Smooth	5.045.0/2.0 Matrix Moist			SILT LOAM	NEAK Medium Granular PSLidd
11 6 63	36 - 64	23- 33	CLEAR WAVY	2.574.0/2.0 MATRIX MOIST			LUARY SAND	MASSIVE
11 C G2	64-76	11- 15	ABRUPT SMDOTH	2.574.0/2.0 MATRIX MOIST			LOAMY SAND	MASSIVE
111 C CI	76- 91	14- 17	ABRUPT	5.0Y5.0/1.0 MATRIX HOIST			SILTY CLAY	MASSIVE
111 C G2	91-106			5.075.0/1.0 MATRIX MOIST	LO.CYR Matrix	2.0/2.0 Muist	SILT LUAM	MASSIVE
	THICKNESS DEPTH(CA)	STRUCTURE	2	CONSISTENCE	R0015 1	PORES 1	MOTTLES	1 (LAY FILMS 1
К Р	0- 25	WEAK FINE ANGULAR HL	DCKY	SLIGHTLY STICKY FRIABLE Plastic	PLENTIF FINE Random In Péd	UL PLENTIF FINE RANDUM IN PED CUNTINU DENDRI TUBULAS	FINE PROMINEN 5+0YR3+0 10US	47
ς ς	25- 36	WEAK FINE Granular Pseudo		SLIGHTLY STICKY Friagle Plastic	FEW FINE DOLIDUE In PED	PLENTIF FINE URLIQUE IN PÉO CONTINU DENDRIT TUBULAR	FINE PROMINEN 5+0YR3+0 IC	NT 1/4+0
11 C G1	36- 64	VERY WEAK Medium Subangular Pseudu	BLOCKY	NON STICKY VERY FRIABLE NONPLASTIC	VERY FE Fine DBL1QUE In Peo	FINE	COARSE PROMINEN 2.519.07 IC	4T 15 - 0
[] C G2	64- 76	VERY WEAK MEDIUM Subangulan Pséudu	I BLUCKY	NON STICKY VERY FRIAHLE NUNPLASTIC		PLENT IF FINE RANDUM IN PED CONTINU DENDRIT INTERST	MEDIUM PROMINEN 10.04R3.0 10	IT 1/6.0

•

•

ROJECT: 92		NT 5:	92310	*****		URCE ANALY ISTRY OF EN VICTORIA			*****		DATE: JULY	03,1979 PAGE:
11 C G1	76- 91	VEAK Medium Platy Pseudd		STICKY FRIABLE PLASTIC				PLENTIF FINE OBLIQUE IN PED CONTINU DENDRIT	005 1C	COMMO CDARS PROMI 10+07R	N E Nent 4.0/6.0	FEW VERY THIN IN VOIDS AND OR CHANNELS UNLY
11 C 62	91-106	WEAK CDARSE Platy Pseudd		STICKY FRIABLE PLASTIC				TUBULAR PLENTIF FINE OBLIQUE IN PED CONTINU SIMPLE TUBULAR	UL OUS			
ROFILE DES	CRIPTION											
тн Эягар эе	ICKNËSS PTH(LM)	NOISTURE	NG									
در در	0- 25	MOIST										
G	25- 36	NDIST										
(C G)	36-64	MOIST										
C 62	64 - 76	MOIST										
1 C G1	76- 91 91-106	MOIST										
				*********					*****			******
WSICAL &												
		SAMPLE #				PH 2						
DRTZUN-DEP	TH(CM.)	LA8 SANPLE		E METHOD	VALU	E SAMP STAT	LE NETH E	OD VALUE	e c	ARBON X	NI TROGEN	
P	0- 25	761728	2	1	4.9	2	4	4.7 4.8		1.71	-14	
1 C G 1	36-64 64-76	761728 761729 761730 761731 761731 761732	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1	5.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4	4.9		. 10	.07	
P G G G G G G G G G G G G G G G G G G G	0- 25 25- 36 36- 64 64- 76 76- 91 91-106	761732 761733	22	1	4,9 5,5 5,5 5,5 4,9	2	4	4.9 4.7 4.7 4.3		2.22		
		EXCHANGE CA	ABLE CATION MG	IS BUFF . (ME	/100G) K	C. E.		P1	5	NO1ST	URE STATUS	
DR120N-DEP							11120	PPM+	PPH.	BAR.	BAR.	
6	83 - 0 85 - 25	5+65 5+51 1+09	1.76	•30 •24 •09	•31 •20 •09	14.2 1J.4		8.9 3.1	1.4	41.6 41.6 7.9	11.0	
P G I C G1 I C G2 II C G1 II C G2	0-25 25-36 36-64 64-76 76-91 91-106	1.09	+42	.09	•09	2.6		4.2 11.0 13.2 10.7	•1 •5 1•1 8•1	7.9	2.9	
			 ZE ANALY.()	PASSING)			PARTICLE	51ZE(%)				
IOR # ZON-DE	РТН(СЙ+]	#25	#45	#60	#170	#200	62-2 U SILT	20 CLAY				
A P C G I C G A I C G 2 I I C G 1 I I C G 2	0- 25 25- 36 36- 64 64- 76 76- 91											
.11 C G1 11 C G2	76- 91 91-106	99.20	98.10	97+40 98	60	96.40	79	21				
******	*****	****	*********	*********	******	*********	******	********	*****	*******	•••••	*****
РН МЕТНО	SS. CODES											
1H2U 2H2U 3H2O 3H2O 5KCL 5KCL 6NAF	III NIS SATURATIC 2	ю										

	SANGS TER			**************************************	ANALYSIS BRANC Y OF ENVENDMENT CTORIA, D.C.					
	92J - *********		12 92J 7	***************************************						/79 PAGE: 0
					STER SERIES					
		DATE	DF SUNVEY:			ES. ANAL. B	RCH P	LOFE		
			ECT CODE:							
	LOCATIO			CLASSIFICATIO	<u>-</u>	510	PC			
CONGI1 PRECIS	DE (N) : UDE (N) : JON (SEC) JON (M) : DTOGRAPH:	50 10 122 45	30 198 STAT	GLEYSOL()978) US: MODAL SOIL		TYPE: CLASS: .		1.0 COMPLEX HEARLY LEVEL		
AIR PH	OTOGRAPH:	BC 7487-	-115			ASPECT (PROFILE LENGTH (MICROTOR	DEGI: 3 SITE: 4 M): DGRAPHY	HEARLY LEVEL 160 1000ER SLOPE 300 1: SLIGHTLY 1	NUUNDED	
PAREN	* MATERIA	E LANDER	N .							
JPPER	STRAT IGRA	HIC UNIT	_							
VEATHE PHYSIC SPEC: SPEC: COMM. GENETI SURFAL DESCRI	RING: AL COMP.: AL COMP.: LLASTIC 1 LLASTIC 2 CLASTIC 2 CLASTIC 2 C MAT.: E EXPRES. PTOR 14	HEAK CHEN STRATIFIE MEDIUM AC SANDY SALIY FINES FLUYIAL LEVEL INACTIVE	NICAL DOMINERALS SIDANEUTRAL							
	G DEPTH:			EPAGE: ABSENT DOD MAZARD: RARE (STURE CLASS: P		DRAINAGE: RUNDEF: STONINESS:	POOR	LY DRAINED		
			×Ο	LSTURE CLASS: P	ERHUNID	STON INESS: PERVIOUSNES	NON-	TATE		
	L NOTES									
				2=9.5.2CG2=30.0.						
	escriptio		** * * * * * * * * * * * * *	******************	**************					
	HICKNESS	HANGE	HOR IZON HOUNDARY	COLOUR 1	COLOUR 2		TEXTUR		STRUCTURE	ı
	0- 21	20- 23	CLEAR SHOOTH	10.07R3.073.0 MATRIX MOIST			FINE SA	NHO Y	WEAK Mediun Subangular Pseudu	BLUCKY
C 61	23- 32	9- 13	GRADUAL SMOUTH	5±0Y5±0/2±0 Matrix Moist	LO.OYR2.0/2. MATRIX NDISI	°	51L1 LC	04H	WEAK CDARSE SUBANGULAR PSEUDO	BLOCKY
1	J2- 42	6- 13	CLEAR SADOTH	2.575.0/2.0 HATRIX MOIST			PINE SA		WEAK CDARSE Sugangular PSEUDD	BLOCKY
C 62	42- 53	7- 12	GLEAN SMDOTH	2.594.0/2.0 MATRIX MOIST			SILTY (LUAM		WFAK COARSE Sudangular PSLUDD	BLUCKY
2	51- 56	4- 6	GRADUAL SMDOTH	2.5Y5.0/2.0 MATRIX MOIST			FINE 5/	NOV	WEAK NED1UM SUBANGULAR PSEUDD	9L, UC, K.Y
C GJ	56- 6J	5- 8	GRADUAL WAYY	5.045.0/2.0 MATRIX MUIST			SILT L	HAC	WEAK COARSE Subangular Pseudo	BLOCKY
63	63- 71	6- 12	CLEAR SHOOTH	2.575.072.0 Matrix Hoist			FINE SA LOAM	NDY.	WEAK COARSE Subangular Pseudo	HLOCKY
C 64	71- 76	4- 6	CLEAR SMDUTH	5.045.072.0 Matrix Muisi			51L7 L0	DAH	WLAK MEDIUM SUBANGULAH PSEUDO	BLOCKY
4	70- 79	2- 4	CLEAR SMOOTH	2.545.072.0 Natrix Moist			SANDY (-0AH	NEAK COARSE Subangular Pseudo	
	79- 87	6- 10	CLEAR SHOOTH	5.095.072.0 Hatrix Moist			51LT U	DAM	WEAK COARSE	BLOCKY
6 65	87- 97	9-11	GLEAR 580078	5.0¥5.0/2.0 Matrix Muist			FINE S LOAM	ANDY	VEAK COARSE SUBANGULAH PSEUDO	BLUCKY
				5.095.073.0 Natrix Moist			51LT LI	DAM	VEAR COARSE SUBANGULAR PSEUDD	BLOCKY
55	97-127									
55	97-127									
.5 C 66		-								
65 C 66 		STRUCTURE		CONSISTENCE	ROOTS 1	PORES 1		MOTTLES J	AU1 AT	SAMPLING
00416 D		-	 : k	CONSISTENCE SLIGHTLY STJCKY FRIADLE SLIGHTLY HARD SLIGHTLY PLASTIC	RDOTS 1 PLENTIFUL MEDIJUL DBLIDUL IN PLO	PLENTIFUL MEDIUM OBLIQUE IN PED CONTINUDI	16	MOTTLES 3	MU]; AT MG];	SAMPLING
65 1 C 66 	ESCHIPTIO HICKNESS EPTHICH)	STRUCTURE		SLIGHTLT STICKT	PLENTIE/A.	PLENTIFUL MEDIUK	15	COMMON MOTTLES J COMMON MEDIUN PROBLEMI 10.07R3-07	HG I HG I HG I	SAMPL ING

-

~

.

***********	*******	******
SOIL: SANGSTER	RESOURCE ANALYSIS BRANCH Ministry of Environment	
PROJECT: 92J NTS: 92J 7	VICTORIA, Dec.	SUMMARY DATE: JULY 03,1979 PAGE: 02
***************************************	*******************************	****

		-												
11 C G2	42~ 51	WEAK FINE SUBANGULAR PBEUDO	WLUCKY	STICKY FRIABLE SLIGHTL PLASTIC	Y HARD	PLE MED Ver In 1	NTIFUL 1UM TICAL PED	ABUNDA MEDIUM OGLIGU IN PEC CONTLA DENDRI TUBULA	E 10005 71C	FEW Fine Disti 10.078	NCT 4.0/6.(DIST	
C 62	51~ 50	YEAN Meditum Granular Pseudo		SLIGHTL' VERT FR SOFT SLIGHTL'	Y STICKY IARLE Y PLASTI	PLEP NEU OBL C IN F	NTIFUL IUNI IUNIE PED	ABUNDA FINE 09L10L IN PEO CONTIN DENDRI TUBULA	NT E NOUS TIC	CDMMO COARS DISTI 10.0YR	N E NCT 5+0/4.0		0157	
11 (ن	20~ 63	NEAK FINE Subangular Pseudo	BLOCKY	SLIGHTLY VERY FRI SLIGHTLY PLASTIC	Y STICKY LABLE Y MARD	PLEI MEDI Obli In F	NTIFUL IUN IQUE PED	ABUNDA FINE OBLIGU IN PEO CONTIN DENDRI TUQULA	e uous TIC	MANY COARS DISTI 10+DYR	E NCT 5.0/6.0		VIST	
C 63	63- 71	WÉAK MEDEUM Granular Pseudo		SLIGHTL' VERY FR SOFT SLIGHTL'	ABLE	MEDI	NTIFUL IUM IQUE PEO	PLENTI Fine Oblight In Ped Contin Oendri Tubula	E.	COMMO COARS DISTI JO.OYR	N E NCT 5.0/4.0		0151	
[] C G4	71- 76	NEAK FINE Subangular Pseudo	BLOCKY	SL IGHTLT VERY FR: SL IGHTLT PLASTIC	ABLE MARD	VERT FINE OBLI IN F	GUE PED	PLEMTI FINE OBLIGU IN PEO CONIIN DENDRI TUBULA	FUL E DUUS TIC	MANY MEDIU PROMI 10.0YR	# NENT 4.0/4.0		0157	
C 64	76- 79	FINE FINE Subangular Pseudo	ВL ОСКУ	HUN STIN VERY FRI SDFT NUNPLAST	ABLE	VER Pind OBLI IN F	ΓΕ ν Ιουε Ρεο	PLENT I F INE OHL I QU IN PEO CONT IN DENDR I TUBULA	FUL. E VOUS TLC	FEN Mediu Promi 10.07r	M NENT 3+076+0		DIST	
[[C G5	79- BT	WEAK FINE Suuangular Pseudo	BLOCKY	SLIGHTLY VERY FRI SLIGHTLY PLASTIC	ABLE MARD			PLENTI FINE OBLIQU IN PEU CONTIN DENDRI TUBULA	FUL E UDUS TIC	HANY NFO LU PROMI LD. DYR	M Nent 9.0/6.0		0157	
C 65	87- 97	VEAK FINE SUBANGULAR PSEUDO	BLOCKY	SE IGHTET FRIABLE SLIGHTET SEIGHTET	STICKY HARD PLASTI	c		AGUNDA MEDIUM OBLIGU IN PED CONTIN DENDRI TUBULA	NT C	MANY COARS Promi 10+0yr	E NENT 4.076.0		0157	
11 C G6	97-127	NEAR FINE SUDANGULAR PSEUDU	6LDCKY	SLIGHTLI YERY FRI SOFT SLIGHTLI	ABLE			PLENTI MEDIUM OBLIGU IN PED CONTIN DENDRI INBULA	FUL E VOUS	COMMO CUARS Promi 10+044	N E HENT 4+0/6+0		01 \$7	
******	********	**********	**********	********		********	******			*******	•••••	******	**********	***
PHYSICAL		DATA												
HURIZON-D	ЕРТНСКАЗ	SAMPLE # LAU SAMPLE #	PH 2 SAMPLE STATE	NETHOD	VALUE	PH 2 SAMPL STATE	E MET	HOD VALU	E OR	GANIC RBON X	NI TROG	έN		
	0- 21 21- 32	761564	2	1	5+5 5+9	2	1	5.0	1	.54	:13			
A P 11 C G1 C G2 C G2 11 C G3	32- 42 42- 51 51- 56	761565 761565 761566 761567 761568 761568 761569 761570 761570	222	1	6.1 6.2 6.1	222		5-5 5-5 5-6 5-6 5-6	•	•43 •34 •66	.14 .13 .04 .09			
	56- 63 63- 71	761569 761570	22	1	0.4	2 2 2 2		2+0 5+4 5+0		.20	.05			
11 C G4 C G4 II C G5 C G5	0- 21 21- 32 32- 51 51- 50 50- 71 73- 76 74- 87 87- 97	761571 761572 761573 761574	~~~~~	1	6.2 6.3 6.4	2 2 2 2 2	1	5.6 5.5 5.5 5.6						
11 č 68	97-127						-							
			BLE CATIONS			C. E. C							NF STATUS	
H0A120N-0		C.A.	HG	NA	ĸ	DETERME	NED	P1 PPM.	S PPN+	DENSI	tγ	1/3 BAR.	15 BAA.	
A P T1 C 61 C 61 T1 C 62 C 62 T1 C 63 C 63	0- 21 21- 32 42- 51 51- 56 55- 71 71- 76 76- 79 70- 87	4+85 8+59 3+64 7+46	+57 •75	•05 •11 •07 •12	.26 .32	13.9		6.3 3.7 3.7	1+8 0+4 0-0	2.52		19.9	4.8 9.1 3.1 8.5	
11 C G2 C G2 [1 C G3	42- 51 51- 56	2.74	-24 -73 -20	-12 -09 -10	.32 .19 .25 .19	13.9 4.3 10.0 3.9 5.0		3.0	0.1			15.8	8.5	
C 63 11 C 64	6.1- 71 71- 76	2.14	0E+	.08	.14	3.5		3.7 3.7 3.7	0+1 8-7 0+3					
C 63 11 C 64 C 64 11 C 65 C 65 C 65 LI C 66	79- 87 87- 97 97-127							3.7 4.2 3.0	0+3 0+0 0+7 0+4					
														_
.PHYSECAL	-													
		PART. 512 #25	E ANALY.(X F		170		PARTICLE TOTAL	51ZE(%)						
HORIZON-DI	6- 21						SAND	5167	20 CL TOTA	c'		рн вел	ODS. CODES:	
	21- 32 32- 42											1H2	D 111 D 175 D SATURATION	
1 2 63	51- 50 56- 63											3H2 4CA 5KCI 6NA	SATURATION	
11 °C G4	63- 71 71- 76 76- 79											6NA		
A P 11 C G1 C G1 13 C G2 C G2 11 C G3 C G3 11 C G4 C G4 11 C G5 11 C G6 11 C G6	0- 21 21- 32 32- 42 42- 50 56- 63 63- 76 76- 79 87- 97 97-127	99.40	99.60 99.	20 92.	00 8	9.60	22	74	•					
		*********	**********	********						********	******	*****		***

******** SOIL: PRDJECT:	SCULLARD		51 92J 7		RESOURCE ANA			******		E: JULY 03,1979 PAGE: 01
********	*********	*****	*********	*******				*******	*****	******
					SCULLAR					
			E OF SURVEY ALING PURPU JECT CODE:	: 6 10 76 SE: SEM1-DETAILI 92J	SURVEYOR: ED SURVEY	RB VIC+	RES. ANAL	BRCH	M OF E	
	LOCATIC	-		CLASSI	FICATION			SLOPE		
PRECIS	DETNJ: UDE(W): ION (SEC): ION (M); UTOGRAPH:	50 2. 122 52 8C7549-	200 RÉG 30 213 STA	U GLEYSUL(1978) TUS: MODAL	50H.		X TYPE: CLASS ASPEC PROFI LENGI MICRC	: 1 (DEG): 1 = Site; 1 = (M):	1.0 COMPLEX NEARLY LEVEL 360 UPPER SLOPE 403 HY: LEVEL	
PAREN	T MATERIAL	G LANDFOR	2M							
UPPER	STRATIGRAF	HIC UNET			MIDDLE STRA	TIGRAPHIC	TINU			
VEATHER PHYSIC CHEMIC SPEC. COMM. GENETI GENETI DESCRI	AING: AL COMP.: AL COMP.: CLASTIC 1: CLASTIC 1: C MAT.: E EXPRES.: PIOR 1:	WEAK CHEP STRATIFIS MEDIUM AC SILTY FINES FLUVIAL LEVEL INACTIVE	ALCAL D (AINEBAL) D /NEUTRAL		NEATHERING PHYSICAL CO CHEMICAL CO SPEC. CLASI COMM. CLASI GLNETIC MAI SURFACE EXP DLSCRIPTOR	[]C]: SAND []C]: FINE	Υ 5	NERAL) EUTRAL		
			5 F M	EEPAGE: AD LUGU HAZARU: HA GISTURE CLASS:	SENT KE SUB-AG	DUTC	DRAINAGE HUNUFF: STONINES PERVIOUS	56	ORLY DRAINED UW N-STONY DERATE	
	ISTURE FOR		.3.21G=20.6	• ***********	*******		******		*********	• * * • • • • • • • • • • • • • • • • •
PROFILE DE	SCRIPTION									
TH HORIZON O	HICKNESS EPTH(CM)	RANGE	HORIZON BOUNDARY	COLDUR I	т	EXTURE		STRUCTOR	E 1	STRUCTURE 2
а Р	0- 17	16- 19	GRADUAL SHOOTH	2.514.0/2.0 Matrix Moist	S	GAM	м	ASSIVE		WEAK MEDIUM TO COARSE
C G	t7- 47	23- 36	CLEAR WAWY	2.575.0/2.0 Matrix Moist	S	ILTY CLAY UAM	м	A551VE		SUGANGULAR BLOCKY REAK TO MUDERATE Coarse Subangular Blocky PSEUDU
II C GL	47- 60	7- 23	CLEAR WAVY	2+5Y4+0/2+0 MATRIX MOIST	L	MAD.	м	ASSIVE		WEAK Cuarse Subangular Blucky
II C 62	60- B4	16- 30	GRADUAL WAVY	2.574.072.0 Matrix Moist	Ę	INE SANDY UAM	м	ASSIVL		PSEUDD WEAK TO MODERATE MEDIUM TO CUARSE Subangular blocky Pseudu
11 C G3	89-11 4				s	SILT LUAM	H	ASSIVE		MEAR MEDIUM TO COARSE Subangular Blocky PSLUDU
TH HORIZON DE	HICKNESS EPTH(CM)	CONSISTEN	ICE	ROGTS 1	PORES 1	но	TTLES 1	M	OISTURE T SAMPLING	
ΑP	0- 17	STICKY FRIABLE PLASTIC		PLENTIFUL MEDIUM UBLIQUE IN PED	PLENTIFUL FINE OBLIQUE IN PEO CUNTINUDUS DENDRITIC TUBULAR	i		м	0157	
ς ω	17- 47	STICKY FRIABLE PLASTIC		PLENTIFUL FINE OBLIQUE IN PED	PLENTIFUL FINE OBLIQUE IN PEO CONTINUOUS DENDRITIC TUBULAR	2.	₩ 0#]NENT 5¥5+0/6+0		UJSY	
11 C Gi	47- 50	SLIGHTLY VERY FRIA SLIGHTLY	STICKY BLE PLASTIC	PLENTIFUL Fine Oblique In Ped	PLENTIFUL FINE OBLIQUE IN PEO CONTINUOUS DENDRITIC TUBULAR	ME PR Se	MKON DJUM OMENENT GYR4+076+		0157	
II C G2	60- B4	SLIGHTLY VERY FRIA PLASTIC	STILKY Əle	PLENTIFUL FINE Vertical In Ped	PLENTIFUL MEDIUM URLIQUE IN PEO CONTINUOUS DENDRITIC IUBULAR	ME PR	MMON Dium Gminent Gyrq.076.		UIST	
E5 3 11	89-114	SLIGHTLY VENY FRIA SLIGHTLY	STICKY HLE PLASTIC	PLENTIFUL Fine Ventical In PED	PLENTIFUL MEDIUM UKLIQUE IN PEO CONTINUOUS UENDRITIC TVOULAR	PR 10.	H ARSE DMINENT OYR3.074.		0157	
*******	•••	••••	*********	* ** * * * * * * * * * * * * * * * *	*******	******	*******	******	**********	

~

~

OIL: RUJECT:	SCULLARD 923 -	NTS:	92J 7		MINI	VICTORIA. B	C.							AGE
******	********	********	**********	*******	******	*******	********	******	*********	******	******	*****	*******	*****
HYSECAL	& CHEMICAL	DATA												
		SAMPLE #	PH 1			PH 2								
08120N-1	EPTH(CM+)	LAÐ SAMPLE #	SAMPLE STATE	METHOD	VALUI	SAMPLE STATE	METHOD	VALUE	DRGAN CARDO		NITROGE X	N		
р 6 1 с 61	0- 17 17- 47 47- 60	761518 761519 761520	22	2	5.5 5.5 5.5	222	4 4 4	4.8 4.8 4.6	1.61 1.03		•13 •09 •05			
I C 63	60- 84 84-114	761521 761522	2	1	5+4 5+P	2	4	4.6						
		EXCHANGEA	HLE CATIONS	BUFF.(ME)		 C. E. C.						MOISTU	RE STATUS	s
UR1ZON-)EPTH(CM+)	(4	MG	NA	ĸ	DETERMENE		1 PH•	S PPM+	BULK DENSIT	۲	1/3 5AR.	15 BAR.	
P (ČGI	0- 17 17- 47 47- 60	3.85 2.85 1.35	+78 +50 +34	•09 •14 •15	•85 •50 •18	10.7 9.6 6.3	-	4.5 4.9 5.0	3.4 1.0 1.4	1.10		44.7 53.0	12.0 12.0 8.9	
1 C G2 1 C G3	60- 84 84-114							3.1	1.6	1.07				
		 PAR1. SIZ	E ANALY.(* F	A551NG)			 PA		51ZE (%)					
ORIZON-I	ертн(см.)	#10	#25 f	45 /	60	#170 #2	00 TO Sai	TAL NU	50-2 U \$1LT	20 CLA TOTAL		1	H20 1:1	
4 6 1 C 61	0- 17 17- 47 47- 60											، ه ه گ	H20 SATU CACL2 KCL	JRATIO
1 C G2 1 C G3	60- 84 84-114	98.90	98.70 98.	10 97	40	89.90 85.0	0 29		65	6		0		

-

******	****	*********	*******	*******	*************	********	**********	*********
5011:	VALLEAU			RESOURCE	ANALYSIS BRANC	н		
PROJECT:			3: 92J7	V1C	TORIA, B.C.			TE: JULY 03.1979 PAGE: 01
		*********				*********	************	**********
				VALLE	AU SERIES			
				2 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				
		SAMP	DF SURVEY:	6 10 76 SURVEYO E: SEMI-DETAILED SURVE	R: RB VIC, R Y	ES, ANAL. E	BRCH., M OF E	
		PROJ	ECT CODE:	92J				
	LOCATI	ION		CLASSIFICATION		SLO	PE	
LATIT	UDE (N) =	50 22						
PRECI	TUDE(W): SION (SEC) TION (M):	1 2	00 HEGD 30 213 STAT	GLEYSDL(1978) US: MODAL SOIL		TYPE:	1.0 COMPLEX	
ALR P	HOTOGRAPH	867549-	115	US. HOUAL SULL		CLASS: ASPECT	NEARLY LEVE	L
						LENGTH	DEGJ: 360 SITE: TOE M): 403 OGRAPHY: SLIGHTLY	
PARE	NI MATERIA	L & LANDFOR	-					
UPPER	STRATIGRA	PHIC UNIT						
WEATH	ERING:	WEAK CHEN	ICAL					
CHENI	CAL COMP.	STRATIFIE MEDIUM AC	ICAL DEDRGANIC E ID/NEUTRAL	NINERAL }				
COMM.	CLASTIC I	FINES						
GENET	IC NAT.:	FLOVIAL						
DESCR	IPTOR 1:	INACTIVE						
			SEI	EPAGE: PRESENT	r	DRAINAGE:	POORLY DRAINED	
			MOL	DOD HAZARD: RARE ISTURE CLASS: PE	RHUMIU S	RUNDFF: STUNINESS:	PONDED NON-STONY	
					•	PERVIQUENES	S: SLUW	
ADDITION	AL NOTES							
CLASSIFI	CATION PHA	SE IS CUMUL	16	1 7.662-40 1 DENN-102	,			
				1.3.CG2=49.1.OF81=102.				
*******	********	********	*******	********************	********	*********	**********	********
PROFILE (DESCRIPTIO	N						
	THICKNESS	RANGE	HUR 12 ON	COLDUR 1	COLOUR 2		TEXTURE	
	DEPTH(CA)		BOUNDARY	COLDOR I	COLOOR 2		LEXIONE	STRUCTURE 1
4 4	0- 15	13- 19	CLEAR	2.5Y5-0/2.0 Matrix Moist			LOAM	MASDIVE
C 61	15- 35	17- 23	SHOUTH CLEAR	5+046+0/2+0			SILTY CLAY	MALETVIE
			WAVY	MATRIX MDIST			LOAM	MASSIVE
C GZ	35- 45	7-17	CLEAR WAVY	10.0YR3.0/2.0 MATRIX MDIST	2.575.072.0 MATHIX MOIST		SILT LOAM	MASSI VE
0 F61	45- 01	13- 22	GRADUAL SAUDTH	7.5YR3.0/2.0 MATRIX MO1ST			PEATY	MASSIVE
U FBZ	61- 70	6- 10	CLEAR SMOOTH	10-0482-0/2-0 Matrix Moist			PEATY	HASSIVE
11 C G	70-100		SACOTA	5+0GY4+0/1+0	5.0GY5.0/1.0	`	SILTY CLAY	MASSIVE
				NATURAL WET/REDUCED	NATURAL WETZ	DX IDIZED	LOAN	LAMINATED(< 1 CM)
	THICKNESS	STRUCTURE	9	CONCLETE 157	ROOTS L	00050		
HORIZON (SEPTH(CM)	STRUCTURE	2	CONSISTENCE	ROOTS	PORES 1	MOTTLES	L MOISTURE AT SAMPLING
AP	0- 15	WEAK		SLIGHTLY STICKY	PLENTIFUL	PLENTIFUL	COMMON	HOIST
		FINE TO HEL	BLOCKY	FIRM PLASTIC	FINE	FINE	F INE PROMENENT	r
					IN PED	IN PEO CONTINUOU	10.0164.0/	°0+0
						DENDRITIC TUBULAR		
C 61	15- 35	WEAK Coarse		STICKY Friable Plastic	PLENTIFUL Fine	PLENTIFUL	MANY	NOIST
		SUBANGULAR PSEUDU	BLOCKY	PLÁSTIC	OBLIQUE IN PED	MEDIUM OBLIQUE IN PEO	MEDIUN PROMINENI 5+0484+07	· 4 • 0
						CONTINUOU DENDRITIC	5	
C 62	35- 45	WEAK		SLIGHTLY STICKY	PLENTIFUL	TUBULAR		40167
	32- 43	MEDIUM TO O	CUARSE	FRIABLE PLASTIC	PLENTIFUL FINE OBLIQUE	PLENTIFUL FINE OBLIQUE	FEN MEDIUM PROMINENT	NOIST
		PSEUDD		- 100 - 10	IN PEO	IN PED	5.0YR3.0/	4+0
						DENDRITIC TUBULAR	-	
U FBL	45- bl							MOIST
0 F82	61- 70							MOIST
11 C G	70-100	WEAK MEDIVA TU (UARSE	SLIGHTLY STICKY		ABUNDANT		MOIST
		PLATY		PLASTIC		PINE ORLIQUE		
						DENDRITIC	5	
*********	********	******		*****		TUBULAR		

~

220

HOJE: HOJECT:	VALLEAU 92J ~	NTS:	92 , 7		MINIS	RCE ANALYSIS TRY UF ENVIR Victoria, N.	RONMENT.	н		SUMMARY DAT	F1 JULY 0.	1.1979 PAGE:
******	********	*******	** *********	*******	*******	***********			********	*******	*******	************
YSICAL	6 CHENICAL	DATA										
		SAMPLE #	PH 1			PH 2						
DRIZON-	DEPTHICM.)	LAB Sample #	SAMPLE STATE	METHOD	VALUE	SAMPLE State	метно	YALUE	URGAI CARBI		RUGEN X	
G1 G2 FB1 FB2 I C G	0- 15 15- 35 35- 45 45- 51 61- 70 70-100	761523 761524 761525 761526 761527 761528	ม ณ ม พ	1 2 2 2 2 2	5+4 5+2 4+9 4+3 4+9	2222	a 4 a 4 4 4 4 4 4	4.8 4.5 4.5 4.0 4.0	1.6 2.0 8.0 20.7 41.2 3.3	1 5 5 2 1	11 15 51 98 56	
	S CHEMICAL	DATA										
		EXCHANGEA	BLE CATIONS	BUFF. (ME/	(100G)	C. E. C.					MUISTU	RE STATUS
JR1ZON-L	DEPTH(CH+)	ÇA	MG	NA	×	DETERMINED		Р1 РРМ.	S PPN.	BULK	173 BAR.	15 BAN.
P G2 F81 F82 I L G	0- 15 15- 35 35- 45 45- 61 61- 70 70-100	4.22 6.14 11.05 7.48	1.18 1.81 J.15 2.33	.08 .13 .17 .13	•56 •40 •44 •27	10.0 12.9 31.0 58.2		7.1 4.9 4.3 3.2 2.2 15.3	1.1 32.3 J5.5 54.9	•93 •93	30+3 39+8 66+0	7+6 8-8 25+7 61+9
		ATTERBURG		 PART, S	SIZE ANAL	 Y.{X PASSING	 ;)		PART	 ICLE SIZE(X	·····	
DRIZON-I	DEPTH(CM.)	PLASTIC	LIQUID	#25	145	#60	#170	#200	50-2 SIL			
μ 61 52 FBI F52 ICG	0- 15 15- 35 35- 45 45- 61 61- 70 70-100	68+9	31.6	94=60	87.70	83+30	77.30	75.70	65	34		
	*********	*********	*********	*******	*******	*********	*****	** ** *****	******	•••••	********	***********
PH MET	HODS, CODES	:										
1H2 2H2 3H2 9CA 5KC	0 115 0 Saturatio CL2 L	N										

	etestette V1LDFONG	******	** ** * * * * * * * *		OURCE ANAL	YSIS BRANCH	***********	*********	*************
PROJECT:			92J 7		VICTORIA	. 9 .Ç.			E: JULY 03,1979 PAGE: 0
							*******	·~ • # • # # # # # # # # # #	******
					ILDFONG				
		SAMPL		21 10 76 - SU Semi-detailed 92j	RVEYOR: R SURVEY	B VIC, RES	• ANAL• DRCH••	NOFE	
	LOCATION			CLASSIFIC	ATION		SLOPE		
LATITU LONGIT PRECIS	DE(N): UDE(W): ION (SEC): ION (M):	50 29 122 58	00 GLEYEI 30	REGDSOL(1978)			X TYPE:	1.0 COMPLEX	
ELEVAT AIR PH	10N (H): Otugaaph:	2. BC7546-1	29 STATUS 93	S: MODAL SO	IL.		CLASS: ASPECT (DEG): PROFILE SITE: LENGTH (M): AICROTUPUGRAP	NEARLY LEVEL 360 UPPER SLOPE 403 PHY: SLIGHTLY	NDUNDE D
PAREN	T MATERIAL	5 LANDFORM							
UPPER	STRATIGRAPH	IC UNIT							
WEATHER PHYSIC CHEMIC SPEC SPEC COMM GENETI SURFACE DESCRIP	AL COMP+: AL COMP+: CLASTIC I: CLASTIC 2: CLASTIC 1: C MAT+: E EXPRES+:	WEAK CHENI STRATIFILD MEDIUM ACH SANDY Silty Fines Fines Flovial Level Inactive	(MINERAL)						
ROOTIN	G DEPTH:	113 6	M. SEEF FLOO MOIS	AGE: ABSEN 3D HAZARD: RARE STURE CLASS:	IT HUM10	RUI	AlNAGE; IN NOFF: VE DNINESS: NO RVIDUSNESS: MO	PERFECTLY DRA RY SLOW N~STUNY DERATE	INED
AUDITIONA	LNOTES								
		P=15.4.CGJ	=5.6.2CGJ=.44	5.2.3C6J1=8.1.3C	GJ2=16.4.				
						********	• • • • • • • • • • • • • • • •	•••••	****
PROFILE D	ESCHIPTION								
10R1ZON	THICKNESS DEPTH(CH)	RANGE	HOR1ZON BOUNDARY	COLOUR 1		TEXTURE	STRUCT	URE I	STRUCTURE 2
P	0- 16	13- 20	ABRUPT WAVY	2.544.0/2.0 Matrix Moist		FINE SANDY LUAM	VERY WE Cuarse Granula		WEAK FINE GRANULAR
C GJ	16~ 24	0~ 11		5.075.0/2.0 Matrix Mdist		SANDY LOAM	MASSIVE		VÉAK MEDIUA SUBANGULAR BLOCKY PSEUDO
11 C GJ	24- 32	5- 12	ABRUPT SMOOTH	5:0Y5:0/3:0 Matrix Moist		SILTY CLAY Luam	MASS IVE		VEAK TO NODERATE Medium Subangular Blocky Pseudo
111 C GJI	<u>32- 42</u>	7- 12	ABRUPT	2.574.0/4.0 Matrix Mdist	i	FINE SANDY Loam	MASSIVE		WEAK Medium Angular Blucky Pseudd
TTT C GJ2	42- 63	16- 23	AGRUPT WAVY	2.574-0/4.0 MATRIX MOIST		SILT LOAM	MASSIVE		WEAK MEOIUA Angular Blúcky Pseudo
III C GJ3	63- 73	8- 11	ABRUP T SMOUTH	2.595.072.0 Matrix Moist	:	SILT LOAM	MASSIVE		WEAK Medium Platy Pseudo
III C GJ4	73-113			2.594.0/2.0 Matrix Mdist		SANDY LOAM	MASSIVE		WEAK CGARSE PLATY PSEUDD
HOR LZON	THICKNESS	CUNSISTE	NCE	R0015 1	PORES 1	MOT	TLES 1	MOISTURE AT SAMPLING	
P	0- 16	SLIGHTLY VERY FRI SLIGHTLY	STICKY ABLE PLASTIC	PLENTIFUL MEDJUM HORIZONTAL IN PED	PLENTIFUL FINE RANDOM IN PED DISCUNTINI DENDRITIC ENTERSTIC	UDUS		M0157	
5 61	16- 24	NON STIC VEHY FAL SLIGHTLY	ABLE	PLENTIFUL MEDIUM Horizontal In Ped	PLENTIFUL VERY FINE HANDOM IN PED DISCONTIN DENDRITIC INTERSTIT	FEW FINI PRO1 10+0 UOUS	Ë MINENT YR4.0/4.0	H015T	
11 C 6J	24- J2	STICKY Firm Plastic		PLENTEFUL NEUTUM Hort2Untal In PEU	PLENTIFUL FINE OHLIQUE IN PEO CONTINUOUS DENDRITIC TUBULAR	10.0	ASE 41NENT 4R9+074+0	MDIST	

.

••

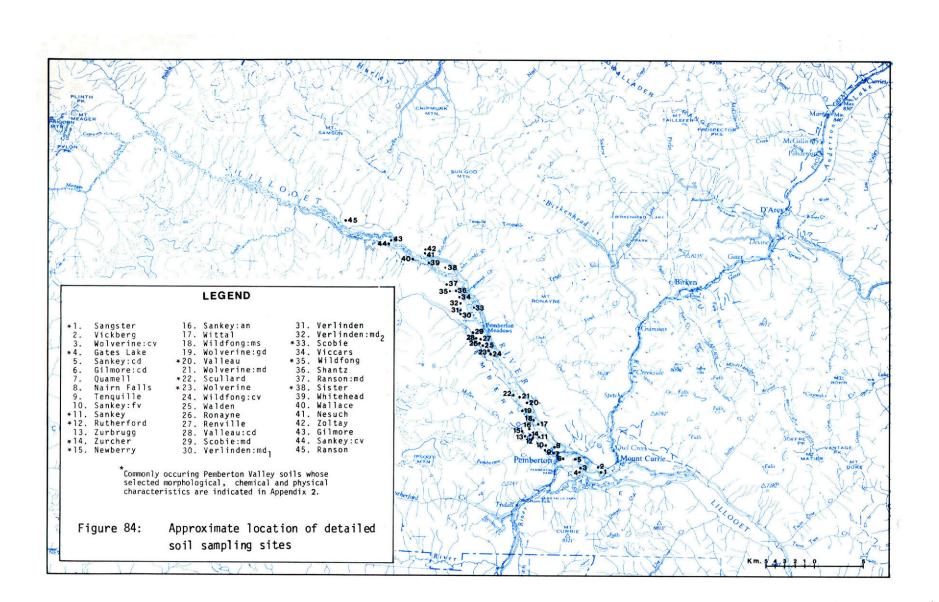
SOIL: WI	LOFONG				RESOURC		F######### 3NANCH						
PROJECT: 92		NTS: 9	257		MINISTR	E ANALYSIS I Y OF ENVIRON CIORIA, B.C.	MENT			SUMMARY DI	16: 34	K-Y 03.	1979 PAGE: 0
********	******	*********	******	*******				*****	*****	********	*****	******	**********
111 C GJI	32- 42	SLIGHTLY ST VERY FRIAUL SLIGHTLY PL	F	PLENTIFUL NEDIUM Oblique In Ped	VER RAN IN DIS DEN	NTIFUL NOM PED COMTINUOUS IDNITIC ERSTITIAL	FEW MEDIU OISTI 10.04R	M NCT 9.0∕4.0		MOIST			
111 C 6JS	42- DJ	SCIGHTLY ST FRIABLE PLASTIC	ICKY	PLENTIFUL Medium Oblique In Ped	PLE FIN RAN IN CON DEN	INTIFUL IE DOM PED ITINUOUS IDRITIC JULAR	FEW MED10 D1ST1 10.0YA	M NCT 4+076+0		NOFST			
111 C 6J3	63- 7 3	SLIGHTLY ST FRIABLE PLASTIC	ICKY	PLENTIFUL MEDIUM Obligue In Ped	PLE FIN OBL IN CON DEN	NTIFUL	FEW COARSI DISTN 10.0YR	E NCT 5.0/6.0		MOIST			
181 C GJ4	73-113	SEIGHTLY ST FRIABLE PLASTIG	ICKY	PLENTIFUL Fine Oblique In Ped	FIN 08L 1N CON	NTIFUL E Igue Ped Tinuqus DRITIC	COMMO FINE DISTI 10-0 YR4			MUIST			
					TUB	ULAR							
		**************************************	*******	********	TUB	ULAR	********	*****	*****	********	*****	******	******
			****тттт Рн ј	K*** *** ****	TUB	ULAR	********		****	********	*****	******	*****
HYSICAL C	CHENICAL D	ATA			TUB	ULAR **********	*********** M£ Thgd	VALUE	c	PRGANIC ARBON X	NITROG		******
HYSICAL C	CHENICAL D	SANPLE #	PH 1 SAMPL		7UB *******	ULAR *************** PH 2 SAMPLE			c	DRGANIC			
HYSICAL C	CHENICAL C TH(CH.) 0- 16 16- 24 24- 32 32- 42 42- 63 63- 73	DATA SAMPLE # LAU SAMPLE # 761703 761703 761703 761705 761706 761706 761708	РН 1	E METHOD 1 1 1 1 1 1 1 1	TUB ********* VALUE 6-5 6-3 5-7 5-7 5-7 5-7	ULAR PH 2 SAMPLE STATE 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	м£ Т НВД 4 4 4 4 4 4 4 4	VALUE 5.9 5.7 5.2 5.0 4.6 5.0	c	DRGANIC CARBON X 1-11 -30 1-19 -37	N1 TROG X • 06 • 01 • 08 • 03	ił N	
MYSICAL & MORIZUN-DEP GJ II C GJ II C GJ II C GJ3 II C GJ3 II C GJ4 	CHEMICAL C THICH.) 0-16 16-24 24-32 32-42 42-63 63-73 73-113	DATA SAMPLE # LAU SAMPLE # 761703 761703 761706 761706 761706 761708	РН 1	E METHOD 1 1 1 1 1 1 1 1	TUB ********* VALUE 6-5 6-3 5-7 5-7 5-7 5-7	ULAR ************************************	ME THBD 4 4 4 4 4 4 4 4 4 4 4	VALUE 5.9 5.7 5.2 5.0 4.8 5.0 5.0		URGAN LC AR60N X 1-31 -30 -37 -42 	N1TROG x •06 •08 •03 •03	 M01STU	RE STATUS
HORIZON-OEP HORIZON-OEP A P IGJ IGJ II C GJ II C GJ3 II C GJ4 	CHEMICAL C THICH.) 0-16 16-24 24-32 32-42 42-63 63-73 73-113	CATA SANPLE # LAD SANPLE # 761702 761703 761703 761706 761706 761706 761708	PH J SAMPLI STATE 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	E METHOD 1 1 1 1 1 1 1 5 BUFF • (ME/	TUB ************************************	ULAR PH 2 SAMPLE STATE 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	M£ THOD 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	VALUE 5.9 5.7 5.2 5.0 4.6 5.0	c	DRGAN1C ARBON X 1.31 1.59 1.37 .37 .42	N1TROG x •06 •08 •03 •03	 M01STU	
MYSICAL 2 10001200-020 10001200-020 110001100-020 11100-020 11100-020	CHEMICAL C 	DATA SAMPLE * LAD SAMPLE * 761702 761703 761703 761706 761706 761706 761706 761708 CA EXCHANGEABL CA S+35 227 6+42 1+98 2+45	PH 1 SAMP. STATE 2 2 2 2 2 2 2 2 2 2 2 2 2	E METHOD 1 1 1 1 1 1 1 1 1 1 1 1 1	TUB VALUE 6-5 6-3 5-9 5-7 5-7 5-7 5-7 (1006) K -22 -22 -22 -25 -25 -25 -27	ULAR PH 2 SAMPLÉ STATE 2 2 2 2 2 2 2 2 2 2 2 2 2	M£ THOD 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	VALUE 5.9 5.7 5.0 4.0 5.0 5.0 5.0 .0 .0 .1 .8 .2	SPPM. 1.200 0.00 0.00	URGANIC ARBON X 1.11 .30 .77 .77 .72 .72 .05	N1TROG x •06 •08 •03 •03	 M01STU 1/3 HAR 20-3 9-4 42-2	RE STATUS 15 BAR. 5-4 2-5 Ja-3 3-6
HURIZUN-OEP HURIZUN-OEP A P II C GJ II C GJ II C GJ3 II C GJ3 II C GJ4 HURIZON-OEP C GJ II C GJ3 II C GJ3 II C GJ3 II C GJ4 II C C GJ4 II C C GJ4 II C C C C C C C C C C C C C C C C C C	CHEMICAL C TH(CH.) 0 - 16 10 - 24 10 - 24 32 - 42 42 - 63 73 - 113 TH(CH.) 0 - 16 10 - 24 24 - 32 32 - 42 45 - 73 73 - 113 	DATA SAMPLE * LAD SAMPLE * 761703 761703 761706 761706 761706 761706 761708 EXCHANGEABL CA 5+35 2+27 6+42 1+96 2+45	PH 1 SAMP. STATE 2 2 2 2 2 2 2 2 2 2 2 2 2	E METHOD 1 1 1 1 3 1 1 1 1 5 BUFF.(ME/ NA 03 04 03 04 05 05 05 05 05 05 05 05 05 05	TUB VALUE 6-5 6-3 5-9 5-7 5-7 5-7 7100G) K -24 -24 -22 -55 -24 -27 PARTICLE PARTICLE	ULAR PH 2 SAMPLE STATE 2 2 2 2 2 2 2 2 2 2 2 2 2	M£ THOD 4 4 4 4 4 4 4 4 4 7 2U CLAY	VALUE 5.9 5.7 5.0 4.0 5.0 5.0 5.0 .0 .0 .1 .8 .2	SPPM. 1.200 0.00 0.00	URGANIC ARBON X 1.11 .30 .77 .77 .72 .72 .05	N1TROG x •06 •08 •03 •03	 M01STU 1/3 HAR 20-3 9-4 42-2	RE STATUS 15 BAR. 5-4 2-5 Ja-3 3-6
PHYSICAL C HORIZUN-OEP A P II C GJJ II C GJJ <t< td=""><td>CHEMICAL C TH(CH.) 0 - 16 10 - 24 10 - 24 32 - 42 42 - 63 73 - 113 TH(CH.) 0 - 16 10 - 24 24 - 32 32 - 42 45 - 73 73 - 113 </td><td>DATA SAMPLE * LAD SAMPLE * 761703 761703 761706 761706 761706 761706 761708 EXCHANGEABL CA 5+35 2+27 6+42 1+96 2+45</td><td>PH 1 SAMP. 2 2 2 2 2 2 2 2 2 2 2 2 2</td><td>E METHOD 1 1 1 1 3 1 1 1 1 5 BUFF.(ME/ NA 03 04 03 04 05 05 05 05 05 05 05 05 05 05</td><td>TUB VALUE 6.5 6.5 5.9 5.7 5.7 5.7 5.7 (1006) K .22 .22 .22 .22 .22 .22 .22</td><td>ULAR PH 2 SAMPLÉ STATE 2 2 2 2 2 2 2 2 2 2 2 2 2</td><td>ME THOD</td><td>VALUE 5.9 5.7 5.0 4.0 5.0 5.0 5.0 .0 .0 .1 .8 .2</td><td>SPPM. 1.200 0.00 0.00</td><td>DRGANIC ARBON X 1-11 -30 -37 -42 UULK DENSIT 1.05 I-18 </td><td>NI TROC 7 06 01 003 03 03 03 03 03 03 03 03 0</td><td>HOISTU HAR. 20.3 94 422 27.1 27.1</td><td>RE STATUS 15 BAR. 5-4 2-5 3-6 5-5 </td></t<>	CHEMICAL C TH(CH.) 0 - 16 10 - 24 10 - 24 32 - 42 42 - 63 73 - 113 TH(CH.) 0 - 16 10 - 24 24 - 32 32 - 42 45 - 73 73 - 113 	DATA SAMPLE * LAD SAMPLE * 761703 761703 761706 761706 761706 761706 761708 EXCHANGEABL CA 5+35 2+27 6+42 1+96 2+45	PH 1 SAMP. 2 2 2 2 2 2 2 2 2 2 2 2 2	E METHOD 1 1 1 1 3 1 1 1 1 5 BUFF.(ME/ NA 03 04 03 04 05 05 05 05 05 05 05 05 05 05	TUB VALUE 6.5 6.5 5.9 5.7 5.7 5.7 5.7 (1006) K .22 .22 .22 .22 .22 .22 .22	ULAR PH 2 SAMPLÉ STATE 2 2 2 2 2 2 2 2 2 2 2 2 2	ME THOD	VALUE 5.9 5.7 5.0 4.0 5.0 5.0 5.0 .0 .0 .1 .8 .2	SPPM. 1.200 0.00 0.00	DRGANIC ARBON X 1-11 -30 -37 -42 UULK DENSIT 1.05 I-18 	NI TROC 7 06 01 003 03 03 03 03 03 03 03 03 0	HOISTU HAR. 20.3 94 422 27.1 27.1	RE STATUS 15 BAR. 5-4 2-5 3-6 5-5

RUJECT:			5: 92J 7		ESOUNCE ANALYS INISTRY OF ENV Victoria.		*********		TE: JULY 03.1979 PAGE: -
•••••					VOLVERINE				
			E OF SURVEY: PLING PURPUS JECT CODE:	18 10 76 56: SENI-DETAILE 92J	SURVEYOR: RB D SURVEY	VIC. RES.	ANAL. BRCH	MOFE	
	LUCATIO	N 	. 00	CLASS1F	ICATION		SLOPE		
LONGI1 PRECIS	UDE(W): ION (SEC): ION (M): IOTUGAAPH:	122 5 0C7549	9 00 GLE 30 213 STAT	YED REGOSOL(1978 TUS: MODAL			YPE: LASS: SPECT (DEG): ROFILE SITE: Ength (M): NCROTOPOGRAPH	1.0 COMPLEX NEARLY LEVEN 360 UPPER SLUPE 457 17: LEVEL	L
PAREN	T MATERIAL	E LANDED	HM						
UPPER	STRATIGRAP	HIC UNIT							
SPEC. COMM. GENETI SURFAC	RING: AL COMP.: AL CUMP.: CLASTIC I: CLASTIC I: CLASTIC I: E EXPRES.I PTOR I:	VEAK CHEI SANDY MEDIUM AN SANDY FINES FLUVIAL LEVEL INACTIVE	CID/NEUTRAL						
ROOTIN	IG DEPTH:	52	FL	EPAGE: ABS DOU HAZARD: RAR DISTURE CLASS:	ENT E HUNTO	RUNO	FF: ME(PERFECTLY DR DIUM N-STONY DERATE	AINED
DITIONA	L NOTES								
******	********	*******	1=3.3.C2=2.;		* * * * * * * * * * * * * * * *	******	*****		****
	HICKNESS	RANGE	HURLZUN	COLOUR I	TEXT	(IBF	STRUCTUR	F 1	STRUCTURE 2
18120N 0	DEPTH(CA)	RANGE	HUUNDARY						
P	0- 11	10- 12	AURUPI Smooth	2.5Y4.0/2.0 MATRIX MOIST	F INE LOAM	SANDY	MASSIVE		WEAK MEDIUM Angular blucky
1	11- 23	8- 19	ABRUPT SMOUTH	2.5Y5.0/2.0 MAIRIX MOIST	SANO	Y LOAM	MASSIVE		VERY NEAK Medium Platy Pseudo
2	23- 46	20- 24	ABRUPT SHOOTH	2.5¥5.0/2.0 MATRIX MOIST	LOAN	Y SAND	MASSIVE LAMINATED	(< 1 CM)	VENY WEAK F3ne Subangular Blocky Pseudo
671	46- 52	4- 8	ABRUPT SMOGTH	2.5Y4.0/2.0 MATRIX MOIST	LOAM		MASSIVE		WEAK Medium Angular blocky Pstudù
GJ2	52- 61	6- 12	ABRUPT SMOOTH	2.5Y5.0/2.0 Matrix Muist		Y LOAM	MASSIVE LAMINATED	(< 1 ¢M≯	VERY WEAK Fine Platy Pseudu
613	61-83	18- 26	ABRUPT SMODTH	2.575.0/2.0 MATRIX MUIST 5.075.0/2.0		Y LOAN	MASSIVE MASSIVE		VERY WEAK Medium Platy Pseudu Wéak
GJA	83-113			MATRIX MOIST	34NU			(< 1 CM)	MEDIUM SUBANGULAR BLOCKY PSEVDO
ROFILE	DESCREPTION	•							
·····	THICANESS DEPTH(CM)	CONSISTE	NCE	ROOTS I	PORES 1	ROTTLES	51 M A	UISTURE T SAMPLING	
Ą	U- 1)	SEIGHTEY FRIABLE SEIGHTEY	Y STICKY Y PLASTIC	PLENTIFUL MEDIUM DBLIQUE IN PED	PLENTIFUL FINE RANDOM IN PEO CONTINUOUS DENDRITIC TUBULAR	COMMON FINE PROMINS 10+04R44	ENT	0151	
L	11- 23	NON STIC VERY FRI SLIGHTLY	KY ABLE PLASTIC	FEW MEDIUM UBLIQUE IN PED	PLÉNTIFUL FINE RANDOM IN PED CONTINUOUS DENDRITIC INTERSTITIAL		м	0151	
2	23- 40	NON STIC VERY FRI SLIGHTLY	KY AULE Plastic	FEW Medium Dulique In Ped	PLENTIFUL Fine Random In PED		н	0151	

~

OJECT	WOLVERINE 192J ~	NTSI	92J 7		RESOUR MINISI	RCE ANALYSIS TRY OF ENVIRO VICTORIA, B.O	BRANCH INNENT			SUMMARY	DATE :	JULY 03	
	*********	*********	*******	*********	********	**********	******	*******	** * ** **	********	*****		
GJ 1	46- 52	SLIGHTLY 5' FRIABLE PLASTIC	T1CKY	VERY FEW MEDIUN DBLIQUE IN PED	FIN HOR IN CON DEN	IZONTAL	COMMO MEDIO PROMI 7.570	DN JM [NENT {4=0/4=0	мс	9157			
12	52- 61	NUN STICKY Friable Slightly Pi	LASTIC		PLEI FIN HOR IN CON DENI	NTIFUL	FEW NEDIU Promi 10.0yf	JM (NENT 74+076-0	MQ	1157			
iJB	P1- 93				F IN RANI IN CDN	DOM	FEW COARS DISTI 2.5YS	SE INCT 5.0/4.0	ML	9121			
i Ja	83-113				FIN NAN IN CUN DEN	DOM	FEW CDAR: PROMI 2.5YS	SË INENT 5.0/6.0	MC	DIST	,		
	****************		********	********	*******	***********	******	*******	******	******	*****	******	********
÷ P		SANPLE #	PH 1 SAMP		VALUE	PH 2 Sample	METHOD	VALUE		SANIC	NI TRUG	EN	
	HUEPTH(CH.)	SAMPLE #	STAT	Ē		STATE 2	4		CAF	100N %	* •01		
1	0- 11 11- 23 23- 46	761646	2	1	5.7	2	4	5.2		37	+02		
2 GJ1 GJ2 GJ3 GJ4	23- 46 46- 52 52- 61 61- 83 83-113	761647 761648 761649 761650 761651 761651 761052	22222	1 1 1 1	5.9 5.9 5.9 5.9 5.9	2222	4 4 4 4	5+1 5+2 5+1 5+1 5+2		12	10. 10. 50.		
2 GJ1 GJ2 GJ3 GJ4	46- 52 52- 61 61- 83	761648 761649 761650 761650 761651 761652	2 2 2 2	i 	5.9 5.9 5.9	2	4	5+2 5+1 5+1		18	+01	MUISTO	 JRE STATUS
	46-52 52-61 61-83 83-113	761648 761649 761650 761650 761651 761652	2 2 2 2	ĩ	5.9 5.9 5.9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	• • • •	6.2 5.1 5.2 		 BULK		1/3	15
 P 1 GJ1 GJ2 GJ3	46- 52 52- 61 61- 83	761648 761649 761650 761651 761651 761052	2 2 2 8 6LE CATIO	1 NS BUFF+(ME	5.9 5.9 5.9 (100G)	2 2 2 	• • • •	5+2 5+1 5+1 5+2	 5				
P 1 2 GJ1 GJ2 GJ3	46- 52 52- 61 61- 83 83-113 	761648 761649 761650 761651 761651 761652 761652 761652 761652 761652 761652 761652 761652 761652 761652 761652 761648 761648 761648 761648 761648 761649 761649 761649 761649 761649 761649 761649 761649 761649 761649 761649 761649 761650 761600 761600 761600 761600 761600 761600 761600 761600 761600 761600 761600 761600 761600 761600 761600 761600 76160000000000	2 2 2 6LE CATIO MG .21 .00 .10 .12 .10	1 NS BUFF+(ME NA -04 -04 -04 -04 -05	5.9 5.9 5.9 7(00G) K .24 .16 .09 .16	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	• • • •	5.2 5.1 5.1 5.2 PPM. 4.2 3.0 4.4	S PPN. .6 .2 .0 .2	BULK DENSI 1,19		1/3 8AR. 12.1 5.5 3.0	15 BAR. 2.3 1.7 1.7
P 2 3 4 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	46-52 52-61 61-83 63-13 6-11 11-12 73-40 52-61 52-61 52-61 83-13	761648 761649 761650 761651 761651 761652 761652 761652 761652 761652 761652 761652 761652 761652 761652 761652 761648 761648 761648 761648 761648 761649 761649 761649 761649 761649 761649 761649 761649 761649 761649 761649 761649 761650 761600 761600 761600 761600 761600 761600 761600 761600 761600 761600 761600 761600 761600 761600 761600 761600 76160000000000	2 2 2 6LE CATIO MG .21 .00 .10 .12 .10	i N5 BUFF.(ME NA .04 .04 .05 .05 .04	5.9 5.9 5.9 5.9 5.9 5.9 5.9 7(100G) K .16 .16 .16 .16 .13 PARTICLE	2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.2 5.1 5.1 5.2 PPM. 4.2 3.0 4.4	S PPN. .6 .2 .0 .2	BULK DENSI 1,19	 тү рн ме	1/3 BAR. 12.1 5.5 3.0 11.8	15 BAR. 2.3 1.7 1.7 3.7
P 1 2 GJ1 GJ2 GJ3 GJ4	46- 52 52- 61 61- 83 83-113 	761048 761049 761050 761050 761050 761052 761052 82051 82052 1007 2005 1007 2005 1007 2005 1007 2005 1007 2005 1007 2005 1007 2005 1007 2005 1007 2005 1007 2005 1007 2005 1007 2005 1007 2005 1007 2005 1007 2005 1007 2005 1007 2005 1007 1007 1007 1007 1007 1007 1007 1	2 2 2 60LE CATIO MG .00 .10 .10 .10 .10 .10 .10 .10 .10 .12 .10	i NS BUFF.(AE NA .04 .04 .05 .05 .05 .04 .04 .04	5.9 5.9 5.9 7(100G) K .16 .13 PARTICLE	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	• • • • •	5.2 5.1 5.1 5.2 PPM. 4.2 3.0 4.4	S PPN. .6 .2 .0 .2	BULK DENSI 1,19	 TY PH ME 1H	1/3 BAR. 12.1 5.5 3.0 11.8 THODS, 20 11:5 20 11:5 20 5ATU ACL 20 5ATU	15 BAR. 2+3 1+7 1+7 3+7 3+7

N.


********		*******	********	********	********		*********	******	******	• • • • • • • • • • • • • • • • • • • •
SOIL: PROJECT:	ZURCHER 92J –	NT	SI 92J 7		RESDURCE A MINISTRY (VICTO	NALYSIS (DF ENVIRO) RIA+ B+C	HANCH NAENT *		SUMMARY DA	TE: JULY 03.1979 PAGE: 01
*******	*****	********	** * * * * * * * * * *	******	*******	******	********	******	**********	*******
					ZURCH	ER SER	IES			
		SAN	E OF SURVEY PLING PURPO JECT CODE:	: 7 10 76 SE: SEMI-DETAIL 92J	SURVEYOR: ED SURVEY	: 89 V	IC. RES. AN	AL. BRCH	•• M OF E	
	LDCATI			CLASSI	FICATION			SLOPE		
LONGIT PRECIS ELEVAT	IDE(N): UDE(W): 10N (SEC): 10N (A): 10TOGRAPH:	50 2: 122 5: 8C7549-	1 00 TEA 30 213 STA	RIC FIBRISOL(19 TUS: RODAL			ASF PRO	SS: ECT (DEG File SIT KTH (M):).0 COMPLEX NEARLY LEVEN 1: 360 E: TDE 403 APHY: SLIGHTLY	
PAREN	T HATERIA	L LANDFO	HM							
	STRATIGRA									
HEATHE PHYSIC Chemic Spec. Comm. Organ I Geneti Surfac Descri	RING: AL COMP.: AL COMP.: CLASTIC 1: CLASTIC 1: C: C MAT.: E EXPRES: PTON 1:	WEAK CHEJ STRATIFIA MEDIUM AN SILTY FINES FIBRIC FLUVIAL LEVEL INACTIVE	NICAL ED (ORGANIC CID/NEUTRAL	G MINERAL)						
ROUTIN	IG DEPTH:	70	См. 5 Г G	LOOD HAZARD: RA ROUNDWATERDEP	ESENT RF TH: 1.0 M ND: APPAR	ENT	DRAINA RUNDEF STONIE	1	VERY POORLY DR SLOW NON-STONY	A INED
	ISTURE FO		.UF2=69.4.C		********	******		******		
PROFILE D	ESCRIPTIO	-								
I HOR1ZON D	HICKNESS EPTH(CM)	RANGE	HOR I ZON BOUNDARY	COLOUR 1		TEXTURE		STRUCT	URE B	STRUCTURE 2
0 #1	48- 16	30- 33	GRADUAL SMOOTH	10.0YR2.0/2. Matrix Moist	0	PEATY				
0 F2	10- 0	14- 18	GRADUAL SHOUTH	10.0YR2.0/2. MATRIX NOIST	0	PEATY		MASSIVE		WEAK Cuarse Platy
C 61	0- 22	17- 28	CLEAR Smooth	2.5Y3.0/2.0 Matrix Mdist		SILT LO	AH	MASSIVE		PLATY WEAK Coanse Subangular Blocky Pseudo
C 62	22- 35	11- 16	CLE AR SMOOTH	10.0YR3.0/1. Matrix Moist	0	SILT LU Peaty	AM	MASSIVE		WEAK Medium to cdaase Platy Pseudo
C 63	35- 52	15- 20	CLEAR Smooth	5.075.0/2.0 Natural Wet/	REDUCED	SILTY C LOAM	LAY	MASSIVE		WEAK Medium to coarse Subangular blocky Pseudd
A 118	52- 57	4- 9	GRADUAL SMOOTH	2.5Y3.0/2.0 Natural Wet/	REDUCED	SILT LO PEATY	AM	MASSIVE		WEAK Medium tu coarse Platy Laminated(< 1 cm)
0 F8	57- 66			10.0YR3.0/2. Natural Wet/	0 REDUCED	PEATY		MASSIVE		WEAK Medium to coarse Platy
PROFILE D	ESCHIPTIO	<u>-</u>								
HORIZON D	HICKNESS	CONSISTER	NCE	ROUTS 1	PDRES 1		MOTTLES I		MOISTURE AT SAMPLING	
0 F1	48- 10			PLENTIFUL Medium Ublique In Ped	PLENTIF NEDIUM OBLIQUE IN PED CONTINU DENDRIT INTERST	ius Ic			MOIST	
ų F2	10- 0			PLENTIFUL MEDIUM Oblique In Ped	PLENTIFU MEDIUM OBLIQUE IN PED CONTINU(DENDRITI INTERSTI	JL DUS			MOJST	
C 61	0- 22	SEIGHTEY FRIABLE PLASTIG	STICKY	PLENTIFUL FINE DBLIQUE IN PED	PLENTIF MEDIUN VERTICAL IN PED CONTINUO DENDRIT TUBULAR	-)us	FEW MEDIUM PROMINENI 10.07R3.0/	6+0	MOIST	
С 12	22- 35	SLIGHTLY FRIABLE PLASTIC	STICKY		PLENTIFI MEDIUM OBLIQUE IN PED CONTINUE DENDRITI INTERST	JUS			MOIST	

~

.

...

11:	ZURCHER				RESOUP	RE ANALYSIS	BRANCH							
OVECT		NT5:				ICTORIA, B.	G					JULY 03		AGE
******	*********	********	*******	*******	*******	*********		*******	********	******	*****	*****	*****	*****
G3	35- 52	STICKY FRIABLE PLASTIC			MED 3 OBL 1 IN F CDN1	IQUE PED INNUDUS DRITIC			VET					
нВ	52- 57	SLIGHTLY STI Friable Plastic	CKY		MEDI OBLI IN F CONT DEND	QUE			WET					
FB	57- 66								WET					
	*********	**********	********	*******	*******	**********	******	******	********	******	*****	******	*******	****
IYSICAL	6 CHENICAL	DATA												
		SANPLE A	РН 1			PH 2								
	DEPTH(CH+)	LAU SAMPLE #	SAMPLE STATE	METHOD	VALUE	SAMPLE STATE	NETHDO		ORGAN CANBO	N X	NITROG S	EN		
F1 F2 G1 G2 G3 H8 F8	48~ 16 16- 0 0- 35 35- 52 52- 57 57- 66	761534 761535 761536 761537 761538 761538 761539	2222	2 2 1 2 1 2	4.3 4.2 4.5 4.5 4.9 4.8	42 2 Z Z Z	4 4 4 4 4 4	4.0 3.8 4.0 4.1 4.4 4.4	33.01 21.37 2.74 9.87 1.61 16.07		2.10 1.09 .14 .49 .07 .95			
		EXCHANGEAB		 BUFF+{WE/	1006)	 C. E. C.						MOISTU	RE STATUS	 }
RIZON-	рертн(см.)	CA	MG	NA	к	DETERMINED		Р1 РРМ.	5 PPM.	BULK DENSIT	Y	1/3 BAR.	15 BAR.	
F1 F2 G1 G2 G3 H8 F0	48- 16 16- 0 0- 22 22- 35 35- 52 52- 57 57- 66	21.19 7.17 2.11 8.09 3.33 11.73	3.46 1.71 .59 1.12 .35 1.43	•15 •15 •10 •22 •16 •31	•39 •31 •15 •29 •30 •52	104.4 65.0 11.8 31.1 9.5 59.7		1+1 2+1 5+2 2+6 3+7 1+6	23.3 40.1 39.9 88.4	•63		88.2 39.1	85.0 37.8 11.5	
	************	**************************************	********	*******	*******	********	*****	*******	*******	******	******	* ** * * * * *	********	r *** *
1H2 2H2	0 1:1 D 1:5 0 SATURATII CL2 L													

ł

Appendix 3: Methods: Settlement Suitability Interpretations

A. RATING SYSTEM

The suitability rating system is based on the presumption that all units have a HIGH potential for use until a factor which limits this use is noted. The extent to which a rating for a particular unit is downgraded is dependent on the number and severity of the limiting factors within the suitability rating. Knowledge of the limiting factor(s) enables the user to readily relate to the types of limitations found with a map unit for a particular use.

Ratings are generally conservative to ensure that the unit is suited for an intended use and that the limiting factors are identified where the suitability of that unit is MEDIUM or LOW.

The reliability of the interpretations is determined by the reliability of the mapping and the applicability of the guidelines used in making the interpretations. An indication of the reliability of the mapping is shown in the "Accessibility map" in the text.

B. DEFINITION OF TERMS

Н	HIGH POTENTIAL	- no limitations for the specific use interpretation.
M #	MEDIUM POTENTIAL	 severe Limiting Factor #, I or none (superscripted). some limitations for the specific use interpretations; these limitations need to be recognized, but can be overcome with good management and design.
. L		- moderate Limiting Factor #, 3 or less (subscripted).
5		 severely Limiting Factor #, 2 or more alone (super scripted)
:L # #	LOW POTENTIAL	 enough limitations to make use questionable. However, with careful planning and management, the limitations may be overcome, but economic feasibility may then become limiting.
ſ		 moderate Limiting Factor #, 3 or more alone sub- scripted).

C. ASSUMPTIONS:

1. Dwellings

In the interpretations of soil suitability for dwellings, buildings of more than three stories and other buildings requiring a foundation load in excess of that of a three story dwelling have not been included. More detailed information than that supplied by this type of survey would be required for interpretations which would fit larger structures.

Properties which affect foundation support are bearing strength and settlement under load. These properties are determined by soil properties such as soil density, wetness, susceptibility to flooding, slope, plasticity, texture, and shrink-well potential. Properties influencing the amount and ease of excavation are wetness, slope, depth to bedrock, stoniness and rockiness.

The major differences between ratings for dwellings with basements and without basements are in the depth to water table, soil drainage, and the depth to bedrock or impermeable layer. In some cases, areas which have been rated LOW or MEDIUM for buildings with basements may be rated MEDIUM or HIGH for buildings without basements.

SOIL LIMITATION FOR DWELLINGS (WITH BASEMENTS)

¥	Item Affecting Use	Degree o None to Slight	a f Soil Limitation Moderate	Severe
1	Apparent Water Table	Below a depth of 1.5 meters	Between 0.75 and 1.5 meters depth	Above a depth of 0.75 meters
Z	Flooding	None	None	Rare, occasional or frequent
4	Soil Drainage Class ^b	Very rapidly, rapidly, well drained	Moderately well drained	Imperfectly drained, poorly drained, very poorly drained
5	Slope	0-8%	8-30%	More than 30%
6	Stoniness Class ^b	1	2 and 3	4 and 5
7	Rockiness Class ^{b,f}	0	1	2,3,4 & 5
8	Unified Soil Group	GW, GP, SW, SP, GM, GC, SM, SC, CL, with PI ^d less than 15	ML, CL, with PI ^d 15 or more	CH, MH, OL, OH
9	Potential Frost Action ^e	Low	Moderate	High
10	Depth to Bedrock	More than 1.5 meters	1-1.5 meters	Less than 1 meter
14	c Inferred Shrink-Swell Potential	Low	Moderate	High
15	Evidence of Previous Slope or Surface Instability	None	None	Rare, occasional, frequent

Limiting Factor Number used in the HIGH MEDIUM LOW SYSTEM

^a Some soils given limitation ratings of moderate or severe may be good sites from the standpoint of aesthetics but require more preparation or maintenance.

^b For class definitions see <u>CanSIS Manual for Describing Soils in the Field</u>, 1975.

^CSee Guide for Interpreting Engineering Uses of Soils U.S.D.A. (1971) pages 14, 15 and 58.

^dPI means plasticity index.

^e Use this item only where frost penetrates to assumed depth of footings and where soil is moist during freezing weather. See <u>Guide for Interpreting Engineering Uses of Soils</u>, U.S.D.A.(1971) pages 48 and 49.

When bedrock is soft enough so that it can be dug out with light power equipment, such as backhoes, the limitations have been reduced by one class.

SOIL LIMITATION RATINGS FOR DWELLINGS (WITHOUT BASEMENTS)

Limiting Factor Number used

2		Degree of S	oil Limitation ^a	
<u> </u>	Item Affecting Use	None to Slight	Moderate	Severe
1	Apparent Water Table	Below a depth of 0.75 meters	Below a depth of 0.5 meters	Above a depth of 0.5 meters
2	Flooding	None	None	Rare, occasional or frequent
4	Soil Drainage Class ^b	Very rapidly, rapidly well, moderately well drained	imperfectly drained	poorly drained, very poorly drained
5	Slope	0-8%	8 - 30%	More than 30%
6	Stoniness Class ^b	1	2 and 3	4 and 5
7	Rockiness Class ^b	0	1	2,3,4 and 5
8	Unified Soil Group	GW, GP, SW, SP, GM, GC, SM, SC, CL with PI ^d less than 15	ML, CL with PId 15 or more	СН, МН, ОL, ОН
9	Potential Frost Action [®]	Low	Moderate	High
10	Depth to Bedrock ^f	More than 1 meter	0.5-1 meter	Less than 0.5 meter
14	C Inferred Shrink-Swell Potential	Low	Moderate	High
15	Evidence of Previous Slope and Surface Instability	None	None	Rare, occasional or frequent

a Some soils given limitation rating of <u>moderate</u> or <u>severe</u> may be good sites from the standpoint of aesthetics but require more preparation or maintenance.

^b For class definitions see <u>CanSIS Manual for Describing Soils in the Field</u>, 1975.

 $^{\circ}$ See Guide for Interpreting Engineering Uses of Soils USDA (1971) pages 14, 19 and 58

^d PI means plasticity index.

^e Use this item only where frost penetrates to assumed depth of footings and where soil is moist during freezing weather. See <u>Guide for Interpreting Engineering Uses of Soils</u>, U.S.D.A. (1971) pages 53 and 49.

 $^{\rm f}$ When bedrock is soft enough so that it can be dug out with light power equipment, such as backhoes, the limitations have been reduced by one class.

2. Septic Tank Absorption Fields

The ratings of suitability of soils for septic tank absorption fields are designed to predict the performance of an area for sewage disposal through a surface tile system. Effluent is considered to be reasonably uniformly distributed into the natural soil.

Rapid permeability is considered to be a severe limitation due to the potential in some places for groundwater contamination. Shallow depths to bedrock or impermeable layers may prevent effluent distribution and cause concentration or channelling of effluent allowing the effluent to travel long distances and possibly contaminate groundwater elsewhere.

Flooding and seasonally high water tables may interfere with the filter field operation. Slope and stoniness influence construction and successful operation of an absorption field.

		Deg	ree of Soil Limitation	
•	Item Affecting Use	None to Slight	Moderate	Severe
1	Apparent Water Table Depth	More than 1.8 meters	1.2 to 1.8 meters	Less than 1.2 meters
2	Flooding	None	Rare	Occasional or frequent
3	Perviousness Class ^a (implies permeability and percolation)	Upper end of moderate	Lower end of moderate	Rapid, slow
4	Soil Drainage ^a	Well, moderately well	Imperfect	Very rapid, rapid, poorly, very poorly
5	Slope	0.8%	8-30%	More than 30%
6	Stoniness Class ^C	1	2 and 3	4 and 5
7	Rockiness Class ^C	0	1	2,3,4, and 5
10	Depth to Hard Rock, ^b Bedrock, or Other Impervious Materials	More than 1,8 meters	1.2-1.8 meters	Less than 1.2 meters
12	Ground Water Contaimination Hazard	Slight	Moderate	Severe

SOIL LIMITATION RATINGS FOR SEPTIC TANK ABSORPTION FIELDS

^a Class limits are the same as those suggested by the <u>CanSIS Manual for Describing Soil in the Field</u> (1975) The limitation ratings should be related to the permeability of soil layers at and below the depth of the tile line to a depth of 1.2 meters.

 $^{\rm b}$ Based on the assumption that tile is a depth of 0.6 meters.

^C For class definition see <u>CanSIS Manual for Describing Soils in the Field</u>, 1975.

3. Sand and Gravel Source

۰.

Determination of the suitability of a soil as a sand and/or gravel source is dependent primarily on the textural class or particle size distribution of the soil.

Depth to apparent water table and flood hazard are included to determine the yearround suitability of a deposit.

Mass movement hazard potential indicates any potential instability which could result should a deposit be used.

Unsuitable overburden and deposit thickness are included to indicate buried gravel and/or sand resource and the extent of these deposits.

٦		Degree of Deposit Limitation		
	Item Affecting Use	None to Slight	Moderate	Severe
1	Depth to Apparent Water Table	Not present	Between 1 and 5 meters from the surface	Within 1 meter of the surface
2	Flood Hazard	None	Rare	Occasional or frequent
8	Textural Limitation (Unified Soil Group)	SW, SP, GW, GP	SW-SM, SP-SM, GP-GM, GW-GM	SM, SM,SW-SC, GM, GP-GC, GW-GC, all other groups
11	Unsuitable Overburden	Not located	Less than 1 meter	More than 1 meter

SUITABILITY RATINGS FOR MATERIALS AS SOURCES OF SAND and/or GRAVEL

4. Shallow Excavations

Shallow excavations require excavating or trenching to a depth of 1.5 or 2 m. The limitation ratings for shallow excavations alone, though highly relevant, are insufficient for interpretations for ultimate uses, such as for dwellings with basements, sanitary landfills, cemetaries, and underground utility lines (sewers, pipelines, and cables). Additional soil features must be considered in evaluating soils for those uses. For example, additional interpretations concerning shrink-swell potential and corrosivity are needed for giving ratings for the ultimate use of soils for pipelines. Backfilling is required in most uses except basements or open ditches.

In soils used for shallow excavations, desireable characteristics are: good workability, moderate resistance to sloughing, gentle slopes, absence of rock outcrops and large stones, and no flooding hazard.

	Degree of Soil Limitation				
4	Item Affecting Use	Slight	Moderate	Severe	
1	Seasonal Water Table	Below a depth of 1.5 m	Between depth of 0.75 and 1.5	Above a depth of 0.75 m	
2	Flooding	None	Rare	Occasionally or frequent	
4	Soil Drainage Class	Excessively drained, somewhat excessively drained, and well drained	Moderately well drained	Somewhat poorly drained, poorly drained, and very poorly drained	
5	Slope	0 - 8%	8 - 15%	More than 15%	
6	Stoniness Class ^f	0 and 1	2	3, 4, and 5	
7	Rockiness Class ^f	0	1	2, 3, 4, and 5	
8	Texture of Soil to Depth to be Excavated ^{a.b.g}	fs], s],], si], sic], sc]	si, cl, sc; all gravelly types	c ^d , sic ^d , s, ls; organic soils; all very gravelly types	
10	Depth to Bedrock ^e	More than 1.5 m	1 to 1.5 m	Less than 1 m	

SOIL LIMITATION RATINGS FOR SHALLOW EXCAVATIONS

-Limiting Factor Number used in

 $^{\rm a}$ Texture is used here as an index to workability and sidewall stability.

^D If soil contains a thick fragipan, duripan, or other material difficult (but not impossible) to excavate with hand tools, increase the limitation rating by one step unless it is severe.

 $^{\rm C}$ If soil stands in vertical cuts, like loess, reduce rating to slight.

^d If the soil is friable, reduce rating to moderate.

^e If bedrock is soft enough so that it can be dug out with ordinary hand tools or light equipment, such as back hoes, reduce ratings of moderate and severe by one step.

 $^{
m f}$ For class definitions see CanSIS Manual for Describing Soils in the Field, Ag. Can., 1975.

 9 See Guide for Interpreting Engineering Uses of Soils, U.S.D.A., 1971.

LIST OF PREVIOUS RAB BULLETINS

The BULLETIN is one of four Regular Publication series produced by the Resource Analysis Branch. BULLETINS present the results of technical or scientific studies including the interpretation or application of resource data.

RAB BULLETIN	 Terrain Inventory and Late Pleistocene History of the Southern Part of the Nechako Plateau. D.E. Howes.
RAB BULLETIN	 Queen Charlotte Island, Aspects of Environmental Geology. N.F. Alley, B. Thomson.
RAB BULLETIN	3 - North Central British Columbia: Environmental Significance of Geomorphic Processes. N.F. Alley, G.K. Young.
RAB BULLETIN	4 - Outdoor Recreation Resources of the Northeast Coal Study Area 1976-1977. H.J. Block.
RAB BULLETIN	5 - Visual Resources of the Northeast Coal Study Area 1976-1977. R.J. Tetlow and S.R.J. Sheppard.
RAB BULLETIN	6 - Wildlife Resources of the Northeast Coal Study Area 1976-1977. G. Smith.
RAB BULLETIN	7 - Biophysical Soil Resources and Land Evaluation of the Northeast Coal Study Area 1976-1977 Volumes 1 and 2. T. Vold.
RAB BULLETIN	8 - Vegetation Resources of the Northeast Coal Study Area 1976-1977. A.P. Harcombe.
RAB BULLETIN	9 - Aquatic Migratory Bird Resources of the Northeast Coal Study Area. N.S. Trenholme.
RAB BULLETIN 3	10 - Aquatic System Units of the Northeast Coal Study Area. E.A. Harding.
RAB BULLETIN 1	II - Northeast Coal Study Area 1977-1978: A List of Vascular Plant Species. A. Ceska.
RAB BULLETIN 1	12 - Wildlife Resources of the Northeast Coal Study Area 1977-1978. G. Smith.
RAB BULLETIN 1	L3 - Outdoor Recreation Resources of the Northeast Coal Study Area 1977-1978. K. Sky.
RAB BULLETIN 3	14 - An Analysis of Solar Radiation for British Columbia. J.E. Hay.
RAB BULLETIN 1	15 - Soil Resources of the Lardeau Map Area. U. Wittneben.

printed by *Reprographics*

MAP PRODUCTION DIVISION

3

ç

ł

ء.

3